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Abstract—With the shift to chip multiprocessors, managing
shared resources has become a critical issue in realizing their full
potential. Previous research has shown that thread mapping is a
powerful tool for resource management. However, the difficulty of
simultaneously managing multiple hardware resources and the
varying nature of the workloads have impeded the efficiency
of thread mapping algorithms. To overcome the difficulties of
simultaneously managing multiple resources with thread mapping,
the interaction between various microarchitectural resources and
thread characteristics must be well understood.

This paper presents an in-depth analysis of PARSEC bench-
marks running under different thread mappings to investigate the
interaction of various thread mappings with microarchitectural
resources including, L1 I/D-caches, I/D TLBs, L2 caches, hardware
prefetchers, off-chip memory interconnects, branch predictors,
memory disambiguation units and the cores. For each resource, the
analysis provides guidelines for how to improve its utilization when
mapping threads with different characteristics. We also analyze
how the relative importance of the resources varies depending on
the workloads. Our experiments show that when only memory
resources are considered, thread mapping improves an applica-
tion’s performance by as much as 14% over the default Linux
scheduler. In contrast, when both memory and processor resources
are considered the mapping algorithm achieves performance
improvements by as much as 28%. Additionally, we demonstrate
that thread mapping should consider L2 caches, prefetchers and
off-chip memory interconnects as one resource, and we present a
new metric called L2-misses-memory-latency-product (L2MP) for
evaluating their aggregated performance impact.

I. INTRODUCTION

Compared to traditional uniprocessors, chip multiprocessors
(CMPs) greatly improve system throughput by offering com-
putational resources that allow multiple threads to execute
in parallel. To realize the full potential of these powerful
platforms, efficiently managing the resources that are shared
by these simultaneously executing threads has become a critical
issue.

In this paper, we focus on managing CMP shared resources
through thread mapping. Previous research has shown that
thread mapping is a powerful tool for managing resources [6,
8, 17, 22, 26]. However, despite the intensive and extensive
research on this topic, properly mapping threads to achieve
the optimal performance for an arbitrary workload is still an
open question. Finding the optimal thread mapping is extremely
difficult because one must consider all relevant resources and
the interaction between these many resources is workload
dependent. Previous research has shown that L2 caches, front-
side-bus and prefetchers have to be considered when managing

memory hierarchy resources [29]. However it remains unclear
whether there are additional resources that should be consid-
ered, and how to holistically improve their utilization based on
the workload characteristics.

To holistically manage multiple resources with thread map-
ping, there are three major challenges.

1) The first challenge is to identify the key resources that
need to be considered by thread mapping algorithms.
Neglecting the key resources would result in suboptimal
performance.

2) The second challenge is to determine how to map threads
to improve the utilization of each key resource. The
best thread mapping also depends on the thread run-
time characteristics. For each key resource, we need to
identify the related thread run-time characteristics and
determine how to map threads when they exhibit these
characteristics.

3) The third challenge is to handle situations where no
thread mapping can improve the utilization of all key
resources. Under such circumstances, thread mapping
algorithms must prioritize the resources and focus on
improving the utilization of resources that can provide
the maximum benefit.

Previous research on thread mapping focused on improving
the utilization of the resources within the memory hierar-
chy [29] or only focus on individual resource [6, 17, 26].
Although the proposed approaches are successful in improv-
ing the utilization of these resources, the best application
performance is not always guaranteed [28]. Moreover, most
previous work has been done using single-threaded workloads,
while emerging workloads increasingly include multi-threaded
programs. Multi-threaded workloads have different run-time
characteristics, thus require different mapping strategies.

As a first step towards overcoming the challenges of holis-
tically managing multiple resources, we provide an in-depth
performance analysis of all possible thread mappings for a set
of workloads created using applications from the multi-threaded
PARSEC benchmark suite [4]. While other work has looked at
the memory hierarchy, in this work we take a holistic look
at both the memory resources and processor resources (e.g.,
branch predictors, memory disambiguation unit, etc.), and eval-
uate their relative importance. In this analysis, we identify the
key resources that are responsible for performance differences.



The analysis also determines the thread characteristics related
to each key resource, and studies how to map threads with these
characteristics to improve the utilization of the key resources.
Additionally, to help make trade-off decisions, we analyze the
relative importance of the key resources for each workload,
and investigate the reason for prioritizing some resources
over the others. We observe that, by focusing on multiple
resources, proper thread mapping can improve an application’s
performance by up to 28% over current Linux scheduler, while
consideration of only memory resources provides improvement
of only 14%.

Specifically, the contributions of this paper include:
1) An in-depth analysis that identifies the key hardware

resources that must be considered by thread mapping
algorithms, as well as the less important resources that
do not need to be considered. Unlike previous work that
considered only shared memory resources for mapping
single-threaded applications, our paper demonstrates that
for multi-threaded applications, thread mapping has to
consider more resources, and thread characteristics for
better performance.

2) An analysis of how to improve each key resource’s
utilization with thread mapping when managing threads
with different run-time characteristics. To the best of
our knowledge, this analysis is the first that investigates
the characteristics of multi-threaded workloads and their
implications for managing both memory and processor
resources with thread mapping.

3) An analysis shows that L2 caches, prefetchers and mem-
ory interconnections should be considered as one resource
because of their complex interactions. We also propose a
new metric L2-misses-memory-latency-product (L2MP)
to measure their aggregated performance impact.

4) An analysis that identifies the ranking of the key re-
sources for each workload, and the reason for the ranking.

The remainder of this paper is organized as follows: Sec-
tion II provides an overview of hardware resources and the
thread characteristics considered in our analysis. Section III
identifies the key resources for thread mapping algorithms.
Section IV analyzes how to improve the utilization of individual
resources via thread mapping. Section V discusses using the re-
source rankings to simultaneously managing multiple resources.
Section VI summarizes the performance results. Section VII
discusses related work and Section VIII concludes the paper.

II. PERFORMANCE ANALYSIS OVERVIEW

To address the challenges mentioned above, we perform a
comprehensive analysis of how an application’s performance
is effected when threads with various characteristics share
multiple hardware resources. This section gives an overview
of the resources, the metrics, the run-time characteristics, and
the thread mappings that are covered in this analysis.

A. Hardware Resources
We address the resources that are commonly available on

current CMP processors. Fig. 1 gives a schematic view of
the resources provided by an Intel quad-core processor. The
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Fig. 1: A schematic view of an Intel quad-core processor.

resources we consider can be classified into two categories: the
memory hierarchy resources and the processor resources.

Memory hierarchy resources include L1 instruction caches
(I-cache), L1 data caches (D-cache), instruction and data
translation look-aside buffers (I/D TLB), L2 caches, hardware
prefetchers and off-chip memory interconnect. We use an Intel
Core 2 processor, which has two prefetch mechanisms, Data
Prefetch Logic (DPL) and L2 Streaming Prefetch [16]. DPL
fetches a stream of instructions and data from memory if a
stride memory access pattern is detected. L2 Streaming Prefetch
brings two adjacent cache lines into an L2 cache.

Processor resources include the cores and components that
require training to function, such as branch predictors and
memory disambiguation units. In this paper, we use the term
Resource Cores when we discuss the core as a resource.

B. Metrics
The number of cache misses, the amount of memory trans-

actions and memory access latency are used to evaluate the
utilization of the memory hierarchy resources. The number
of mispredictions and stalled CPU cycles due to these mis-
predictions are used to evaluate the training-based processor
resources.

Processor utilization is used to evaluate the utilization of
Resource Cores. Note that, this processor utilization is viewed
from the OS perspective. For example, suppose there is one
thread that runs solely on a core. Due to I/O operations or
synchronizations, half of the execution time of this thread is
staying in the OS waiting queue. Then the core that executes
this thread has a processor utilization of only 50%. In this
paper, the processor utilization refers to the overall processor
utilization of all cores in the system.

We use two metrics to evaluate the performance of the
applications: the number of CPU cycles consumed and the exe-
cution time. Memory resources and the training-based processor
resources impact the total cycles consumed by an application.
Accordingly, we use executed CPU cycles to estimate the
performance impact of these resources. The execution time,
on the other hand, is affected by both processor utilization and
the executed cycles. We use execution time when evaluating
the performance impact of all the resources. The relation of
execution time, executed cycles and processor utilization is
described by equation (1).

Exec Time =
Exec Cycles

Num Cores × Proc Util × Frequency
(1)

Num Cores and Frequency refer to the number of cores
and the processor frequency, respectively. Suppose there is an
application with four threads running on a quad-core proces-
sor of 1GHz. Each of the four thread requires 500 million



PMU Counter Description
L2 LINES IN:DEMAND L2 misses
L2 LINES IN:PREFETCH Prefetched cache lines
ITLB MISSES ITLB misses
DTLB MISSES DTLB misses
PAGE WALKS:CYCLES TLB miss penalty
L1D REPL L1 D-cache misses
L1I MISSES L1 I-cache misses
CYCLES L1I MEM STALLED L1I miss penalty
BR MISSP EXEC Branch mispredictions
RES STALLS:BR MISS CLR Br misprediction caused stalls
MEMORY DISAM:SUCCESS Success mem-disambiguation
MEMORY DISAM:RESET Mem-disambiguation mis-penalty
BUS TRANS ANY Total memory transactions
BUS REQUEST OUTSTANDING Outstanding mem-transactions
BUS TRANS BRD Read memory transactions
BUS TRANS IFETCH Instruction fetch transactions

TABLE I: PMUs used in our analysis.

CPU cycles to execute, and each thread has 50% processor
utilization due to I/O operations and synchronizations. Then
for this application, its execution time is (500M(cycles) ×
4(threads))/(4(cores)× 50%× 1GHz) = 1 second.

All of the metrics mentioned in this section can be acquired
from performance monitoring units (PMUs) [16]. TABLE I
gives the name of the PMUs we used in our analysis.

We compute memory access latency from PMUs using the
equation (2) proposed by Eranian [13]. Essentially, in equa-
tion 2, memory latency is computed by dividing the total cycles
of all memory read transactions by the number of memory
reads.

Mem latency =
BUS REQUEST OUTSTANDING

BUS TRANS BRD − BUS TRANS IFETCH
(2)

C. Thread Characteristics

Thread characteristics include the properties of a single
thread and the interactions among multiple threads.

For single thread properties, we consider a thread’s cache
demand, memory bandwidth demand and I/O frequency. Ad-
ditionally, to describe how threads utilize prefetchers, we
introduce three metrics: prefetcher effectiveness, prefetcher
excessiveness and prefetch/memory fraction. We define a
thread’s prefetcher effectiveness as the percentage of the
L2 cache misses that are reduced when the prefetchers are
turned on compared to when they are turned off. We define
a thread’s prefetcher excessiveness as the percentage of the
additional cache lines that are brought into the L2 cache
when the prefetchers are turned on than when they are turned
off. Prefetch/memory fraction is defined as the fraction of
prefetching transactions in the total memory transactions when
prefetchers are on. Prefetcher effectiveness measures how much
the application benefits from the prefetcher; prefetcher exces-
siveness measures how much extra pressure is put on memory
bandwidth due to prefetching activity; and prefetch/memory
fraction illustrates the overall impact of prefetchers on memory
bandwidth.

For multiple thread interactions, we consider data sharing,
instruction sharing, and the frequency of synchronization oper-
ations. These interactions usually happen among threads from
the same application. We call such threads sibling threads.

Mapping Core0 Core1 Core2 Core3
L2 cache L2 cache

OSMap Any thr. Any thr. Any thr. Any thr.
IsoMap a1,a1 a1,a1 a2,a2 a2,a2
IntMap a1,a1 a2,a2 a1,a1 a2,a2
SprMap a1,a2 a1,a2 a1,a2 a1,a2

TABLE II: Thread mappings used in our analysis. a1 and a2 are
threads from application 1 and application 2 respectively. Each applica-
tion has four threads. Threads from the same application are assumed
to have similar characteristics. Note that we do not consider SMT
there, so when two threads are pinned to one core, they share that
core in a time multiplexing manner.

D. Thread Mappings
In our experiments, we examined all possible thread map-

pings when running two multi-threaded applications each with
four threads. Therefore, there are eight threads in total, more
threads than cores. Using more threads than cores allows
thorough evaluation of the resources, including L1 caches,
TLBs, branch predictors, memory disambiguation units and
Resource Cores. Moreover, because real application threads
have synchronizations and I/O operations, they can not use all
of the cores allocated to them. Thus using more threads than
cores can improve the overall processor utilization.

To guide our analysis, we choose four thread mappings that
cover all resource sharing configurations (either sibling threads
share a resource or non-sibling threads share a resource). All
other thread mappings could be viewed as hybrid versions of
these four mappings. TABLE II shows the four thread mappings
on a quad-core processor running Linux. Except for the OS
mapping, all mappings are done by statically pinning threads
to cores using the processor affinity system call. How these
four thread mappings use resources is described below.
OS Mapping (OSMap): This thread mapping is determined by
the Linux scheduler. The OS tries to evenly spread the threads
across the cores in the system to ensure fair processor time
allocation and low processor idle time. Under this mapping, as
long as there is an available core and a runnable thread, that
thread is mapped to run on that core. As a result, any thread
can run on any core and share the resources associated with
these cores. The OSMap is used as the baseline for performance
comparison.
Isolation-mapping (IsoMap): Under IsoMap, sibling threads
are mapped to run on the two cores that share one L2 cache.
In other words, they are isolated on that L2 cache. L1 caches,
TLBs, L2 caches, hardware prefetchers and cores are shared
by siblings.
Interleaving-mapping (IntMap): Under IntMap, threads from
different applications are mapped to the cores in an interleaved
fashion. L1 caches, TLBs and cores are still only shared by
sibling threads. L2 caches and prefetchers are shared by threads
from different applications.
Spreading-mapping (SprMap): Under SprMap, four threads
of each application are evenly spread on the four cores. As a
result, every core executes two threads which come from two
different applications. L1 caches, TLBs, L2 caches and cores
are shared by threads from two applications.

Note that, although we assume that sibling threads are
identical here, some PARSEC benchmarks have sibling threads



Benchmark Data sharing Working set Bandwidth Req. Synch. Ops. I/O time (%) Pref. Eff. Pref. Exces. Perf./Mem Frac.
canneal (CN) low 2 GB 2.1GB/s 34 0% 6% 49% 44%
facesim (FA) low 256 MB 3.9GB/s 17K 0.40% 95% 0% 95%
fluidanimate(FL) low 128 MB 1.5GB/s 17771K 0.14% 67% 42% 57%
streamcluster (SC) low 256 MB 6.5GB/s 129K 0% 84% 64% 90%
x264 (X2) low 16 MB 1.3GB/s 17K 10% -270% 861% 55%
blackscholes (BS) high 2 MB 40MB/s 8 2% 98% 0% 98%
bodytrack (BT) high 8 MB 118MB/s 116K 31% 41% 32% 47%
swaptions (SW) high 512 KB 10KB/s 23 0% -29% 347% 88%
vips (VP) high 16 MB 137MB/s 40K 25% 86% 35% 92%

TABLE III: Thread characteristics of PARSEC benchmarks.

with different characteristics. However, we observe that the
difference between the sibling threads is negligible. Therefore,
thread mappings that only differ in the placement of sibling
threads usually have similar performance.

III. KEY RESOURCES IDENTIFICATION

This section identifies the key resources for thread mapping
algorithms. A resource should satisfy two criteria to be consid-
ered as a key resource for thread mapping algorithms:

1) The utilization of this resource varies considerably among
different thread mappings.

2) Thread mapping caused utilization variations of this
resource result in considerable variations in an application’s
performance.

Criterion one can easily be determined directly using PMUs.
However, the second criterion requires two approaches. Al-
though experimenting on a real machine provides more accurate
understanding of thread mappings, the ability to precisely
account each resource’s performance impact is limited by the
types of PMUs available in the hardware. For example, for
branch predictors, there are PMUs that count the number of
mispredictions, as well as the number of cycles stalled due to
these mispredictions. However, for L1 D-cache, there are only
PMUs that give the number of L1 D-cache misses. There is
no PMU that tells the number of cycles spent on L1 D-cache
misses. Therefore, for different resources, different approaches
have to be taken:

1) Direct Approach For resources that have PMUs to
measure their performance impacts, we use the reading from
these PMUs directly.

2) Indirect Approach For L1 D-caches, L2 caches and off-
chip memory interconnects, there are no PMUs to directly
measure their performance impact. For these resources, we
first verify with PMUs that the performance variations across
mappings are caused by memory stalls. Then we compare the
performance of the thread mappings. If the application’s per-
formance is improved in one mapping, and only one resource’s
utilization is improved in this mapping, then we can conclude
that it is this resource that causes the performance improvement.

A. Experimental Design

To find the key resources, we performed experiments on a
real CMP machine. Here we introduce the experimental design.
We use PARSEC benchmarks suite version 2.1 (with native
input set) to create our workloads because these benchmarks
have a large variety of thread characteristics. TABLE III
gives the run-time characteristics of PARSEC benchmarks.

In Table III, data sharing, working set and synchronization
operations are collected with a simulator by the PARSEC
authors [4]. The amount of data sharing (high or low) refers
to the percentage (high or low) of the cache lines that are
shared among sibling threads. The working set here is an
architectural concept which means the total size of memory
touched by a benchmark. We use working set size to estimate
the cache demand of a benchmark. Synchronization operations
measures the total number of locks, barriers and conditions
executed by a benchmark. All other characteristics are collected
on an Intel Q9550 processor. The I/O time is collected by
instrumenting the I/O functions. Bandwidth requirement of a
benchmark is acquired by dividing the total amount of memory
accessed by the execution time of the benchmark. The total
amount of memory accessed equals to the total number of
memory transactions times the size of each transaction, which
is 64 Bytes. Prefetcher effectiveness, prefetcher excessiveness
and prefetch/memory fractions are computed following their
definitions in Section II-C. The negative values of prefetcher
effectiveness for swaptions and x264 suggest that these two
benchmarks experience more L2 cache misses when hardware
prefetchers are turned on.

Each workload consists of a pair of benchmarks. Therefore,
we can compare the mappings where sibling threads share the
resources with the mappings where non-sibling threads share
the resources. We use nine PARSEC benchmarks and thus
there are 36 pairs (workloads) in total. Four benchmarks, ferret,
dedup, freqmine, raytrace, are not used in our analysis due to
compilation errors, configuration errors or execution errors.

For each mapping, each workload is executed until the
longest benchmark has finished three runs. Shorter benchmarks
are restarted if the longest benchmark has not finished. The
average of the results of the first three runs are presented. The
variation of the results for the same mapping and workload
is very small. For IsoMap, IntMap, and SprMap, the variation
is less than 2%. For OSMap, the variation is higher, usually
between 2% and 4%. However, since we only use OSMap as a
baseline, the higher variation would not affect our conclusions.

All experiments are conducted on a platform that has an Intel
quad-core Q9550 processor. Each core of this processor has one
32KB L1 I-cache and one 32KB L1 D-cache. Every two cores
share one 6MB L2 cache. (Fig. 1). This platform has 2GB
memory and runs Linux kernel 2.6.25. Readings from PMUs
are collected with PerfMon2 [12].
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Fig. 3: Comparison of the performance of x264 running with stream-
cluster under IntMap and SprMap. Lower bar is better. We show
only two mappings here to highlight the comparison. Comparing four
mappings does not change the conclusion.

B. L1 D-Cache

We first evaluate the importance of L1 D-cache. Fig. 2 shows
the normalized average L1 D-cache misses of each benchmark
under the four mappings. For each PARSEC benchmark B,
there are eight workloads (or pairs) that contain benchmark B.
For each mapping, we run the eight workloads, and read the L1
D-cache misses of B. Then we compute the average of the L1
D-cache misses of B for each mapping, and report the results
in Fig. 2. We repeat the same process for all benchmarks and
all four mappings. As Fig. 2 shows, L1 D-cache misses vary
from 2% to 14%, depending on the thread mapping.

We evaluated L1 D-cache’s impact on performance with the
indirect approach. Fig. 3 shows the CPU cycles and memory
resource utilization of x264 running with streamcluster under
IntMap and SprMap. Because no other resources’ utilization
have changed from one mapping to another, only memory
resources are shown in the figure. Fig. 3 shows that although
IntMap has more L2 misses and higher memory latency, its
performance is still better than SprMap due to fewer L1 misses.
Therefore, thread mapping induced variation of L1 D-cache
misses can cause considerable performance variation.

In conclusion, L1 D-cache misses vary depending on thread
mappings. Furthermore, this variation can cause considerable
performance variation. Consequently, L1 D-Cache should be
considered as a key resource.

C. L2 Cache, Hardware Prefetchers and Off-chip Memory
Interconnect

Previous research has demonstrated that thread mapping
can significantly impact the utilization of L2 caches, hard-
ware prefetchers and off-chip memory interconnect, and con-
sequently impact application performance [6, 17, 22, 26, 29].
Thus, these resources should be considered as key resources.
Results of our experiments corroborate this conclusion. How-
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Fig. 5: Average processor utilization of each benchmark running under
the for mappings. Normalized to OSMap.

ever, unlike previous research, our experiment results show that
these memory resources are better viewed as one resource by
thread mapping algorithm, and we provide a new metric called
L2MP for evaluating their aggregated impact. The detailed
discussion on this subject can be found in Section V-A.

D. Branch Predictors

In our experiments, we observe that one thread mapping
could have 15 times more branch mispredictions than another
mapping, which suggests that branch predictors’ mispredica-
tions vary significantly depending on thread mappings.

We evaluate the performance impact of branch predictors
with the direct approach. Fig. 4 shows the performance of
streamcluster and swaptions running together. Streamcluster
consumes 48% more CPU cycles under the SprMap than the
IntMap, and swaptions consumes 8% more CPU cycles under
SprMap. Fig. 4 also shows that 99% of the increased CPU
cycles are caused by branch mispredictions. Therefore, the
variation of branch mispredictions can produce considerable
application performance variation.

In conclusion, branch mispredictions vary depending on
thread mappings. Furthermore, this variation can cause consid-
erable performance variation. Consequently, branch predictors
should be considered as a key resource.

E. L1 I-cache, I/D TLBs and Memory Disambiguation Units

Different thread mappings have a great impact on the uti-
lization of L1 I-caches, I/D TLBs and memory disambiguation
units. One thread mapping can have more than ten times
more misses/mispredictions from these resources than another
mapping. Yet the absolute amount of time spent in serving these
extra misses/mispredictions (acquired from PMUs directly)
accounts for less than 2% (in most cases less than 0.5%) of
the total execution time. Therefore, we conclude that these
resources should receive low priority when mapping threads
of the PARSEC benchmarks.
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Key resources
L1 D-caches, L2 caches, prefetchers,
off-chip memory interconnect,
branch predictors and Resource Cores

Less important resources L1 I-cache, I-TLBs, D-TLBs,
and memory disambiguation units

TABLE IV: Key resources and less importance resources.

F. Resource Cores

Fig. 5 gives the average processor utilization of each bench-
mark under the four mappings. It shows that processor utiliza-
tion varies significantly across thread mappings.

We evaluate the Resource Cores’s performance impact using
the direct approach. Equation (1) in Section II-B shows that any
improvement in the processor utilization yields an improvement
in execution time. Therefore, the variation of the processor
utilization caused by thread mapping can produce considerable
application performance variation.

Fig. 6 shows the performance of the pair of streamcluster
and facesim running under IntMap and OSMap. Streamcluster
consumes 2% fewer CPU cycles under IntMap. Facesim con-
sumes 8% more cycles under IntMap. However, both bench-
marks execute at least 5% faster under IntMap than OSMap.
The improvement of execution time for both benchmarks are
primarily due to increased processor utilization.

In conclusion, processor utilization varies depending on
thread mappings. Furthermore, this variation can cause consid-
erable performance variation. Consequently, Resource Cores
should be considered as a key resource.

G. Summary

TABLE IV summarize the importance of the resources
discussed in this section.

IV. RESOURCE THREAD MAPPING GUIDELINES

Having identified the important resources, this section pro-
vides guidelines for mapping threads to improve the utilization
of individual resources when managing threads with different
run-time characteristics.

A. L1 D-cache

Fig. 7 shows the maximum and minimum L1 D-cache
misses of each benchmark under the four mappings. For all
benchmarks examined, IsoMap and IntMap produce lowest L1
D-cache misses, which suggests that it is better to share L1
D-cache among sibling threads that exhibit the characteristics
of data sharing.
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Fig. 7: Maximum and minimum L1 D-cache misses each benchmark
experiences under the four mappings. Normalized to IsoMap mini-
mum. Lower bar is better.
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Fig. 8: Maximum and minimum numbers of prefetched cache lines of
each benchmark when running under the four mappings.

B. L2 Cache

Our experimental results regarding L2 caches corroborate
previous studies. For threads that have high amounts of shared
data, mapping them to the same L2 cache can reduce L2
misses [22]; for threads with low or no data sharing, it is best
to avoid mapping threads with high cache demands to the same
L2 cache [17]. Because L2 cache-aware thread mapping is well
studied, we do not discuss L2 caches further.

C. Prefetchers

There are three cases that must be considered when mapping
threads to improve prefetcher performance.

Case 1: For threads that share high amounts of data, mapping
those threads to share the same prefetcher results in fewer mem-
ory prefetches because the L2 caches are also shared. Fewer
memory prefetches translate into a lower memory latency
because there are fewer memory transactions waiting in the
queue. The overall effect is better performance. For example,
Bodytrack, vips and blackscholes have high amounts of data
sharing. In Fig. 8, these three benchmarks have the fewest
prefetched cache lines under IsoMap. The performance results
also confirm that the IsoMap yields the best performance. Under
IsoMap, these three benchmarks consumes as much as 11%
fewer cycles than under other thread mappings.

Case 2: For a benchmark that has low or no data sharing
but high prefetcher excessiveness, mapping its threads to share
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Fig. 9: Breakdown of the memory transactions of workload can-
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Fig. 10: Maximum and minimum memory transactions each bench-
mark generates under the four mapping. Lower bar is better.

the same prefetchers results in fewer memory prefetches. For
example, streamcluster, canneal, fluidanimate and x264 have
low data sharing but high prefetcher excessiveness. In Fig. 8,
these benchmarks have fewer prefetching memory transactions
in IsoMap. The performance results also show that IsoMap
yields the best performance. Under IsoMap, these four bench-
marks consumes as much as 14% fewer cycles than under other
thread mappings from improved memory utilization.

Fig. 9 further illustrates this phenomenon with total memory
transactions of the pair of canneal and fluidanimate. Both
benchmarks have the fewest prefetching transactions (cache
lines) using the IsoMap. Fig. 9 also shows that, when running
under IsoMap, the prefetching transactions are even fewer than
when they are running alone using IntMap (“Solo-Int” in the
figure). One possible explanation of this phenomenon is that the
prefetchers fetch the same cache lines for the sibling threads.
Therefore, these cache lines can be fetched only once when
prefetchers and L2 caches are shared. As this phenomenon
only happens for high prefetcher-excessive threads, we suspect
that these cache lines are not actually needed, but rather
mispredicted to be useful by the prefetchers. However, since
we could not find detail information of Intel’s prefetching
algorithm, we cannot confirm this explanation.

Case 3: For threads with low data sharing and low prefetcher
excessiveness, the number of memory prefetches have a strong
correlation with the number of L2 cache misses, and fewer
prefetches and L2 cache misses both benefit performance. For
these threads, thread mappings that reduce the L2 cache misses
can also reduce prefetched cache lines. Facesim is a PARSEC
benchmark that has these characteristics. For facesim, our
results show that the thread mapping that produces the fewest
L2 cache misses also produces fewest memory prefetches and
best performance.

D. Off-chip memory interconnect

Here, we discuss how to map threads to reduce total memory
transactions and memory latency.

1) Total Memory Transactions: Most memory transactions
of the PARSEC benchmarks are from L2 misses and prefetches.
Therefore, thread mappings that can reduce L2 cache misses
and prefetched cache lines would also reduce the total memory
transactions. Similar to managing prefetchers, there are three
cases to consider.

Case 1: For threads that have high data sharing, IsoMap
produces fewest L2 cache misses and prefetching transac-
tions, and hence, fewest memory transactions. For the three
benchmarks (bodytrack, vips and blackscholes) that have these
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Fig. 11: Maximum and minimum memory latency each benchmark
experiences under the four mappings. Lower bar is better.
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Fig. 12: SprMap tends to have four threads of the same benchmark to
run simultaneously, whereas IsoMap (and IntMap) have threads from
different applications to share the memory interconnect all the time.
H1-H4 are the threads of a high-bandwidth application, and L1-L4 are
the threads of a low-bandwidth application.

characteristics, Fig. 10 shows that they have fewest memory
transactions under IsoMap.

Case 2: For threads that have low or no data sharing and high
prefetcher excessiveness, IsoMap has the fewest prefetching
transactions, with no or slightly increased L2 cache misses.
Accordingly, for these threads, IsoMap also has the fewest
memory transactions. For the four benchmarks (streamcluster,
canneal, fluidanimate and x264) that have these characteristics,
Fig. 10 shows that they have fewest memory transactions under
IsoMap.

Case 3: For threads that have low data sharing and low
prefetcher excessiveness, thread mappings that have the fewest
L2 misses also have the fewest prefetched cache lines and
memory transactions (as discussed in Sections IV-C). For
facesim, our results (Fig. 10) show that the thread mapping that
produces the fewest L2 misses also produces fewest memory
transactions.

2) Memory Latency: Fig. 11 shows the maximum and
minimum memory latencies of each benchmark under the
four mappings. Memory latencies depend on two factors:
(1) whether high-bandwidth-demand threads are sharing the
memory interconnect, and (2) the number of total memory
transactions.

High-bandwidth-demand threads sharing the memory inter-
connect results in high queuing delays which prolong the
memory latency. Fig. 12 depicts how IsoMap and SprMap use
the memory interconnect. For SprMap, most of the time, it has
four sibling threads running simultaneously, which also means
four sibling threads sharing memory interconnect. IsoMap
and IntMap always have threads from different applications
running simultaneously and share the memory interconnect.
For an application A, if it is running with a relatively low-
bandwidth-demand application, IsoMap and IntMap are better
than SprMap, because they avoid sharing the memory intercon-
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Fig. 13: Processor utilization (total and breakdown) of four pairs of
PARSEC benchmarks.

nect by only A’s threads. If A is running with a relatively high-
bandwidth-demand application, SprMap is the best, because A’s
threads do not share the memory interconnect with the other
application’s high-bandwidth-demand threads. In Fig. 11, every
benchmark has the lowest minimum latency under IsoMap. The
minimum latency happens when a benchmark runs with another
relatively light-bandwidth-demand benchmark, where IsoMap
is better than SprMap as we explained. Meanwhile, every
benchmark has the lowest maximum latency under SprMap.
Maximum latency happens when a benchmark runs with an-
other relatively heavy-bandwidth-demand benchmark, in which
case SprMap is the best.

Furthermore, reducing memory transactions can also reduce
memory latency. In Fig 11, IsoMap has the lower memory
latencies than IntMap because most benchmarks generate fewer
memory transactions under IsoMap.

E. Branch Predictors

Our experiment results show that IsoMap and IntMap have
lower branch mispredictions than SprMap and OSMap. IsoMap
and IntMap map sibling threads to share branch predictors.
Because sibling threads usually execute the same pieces of
code, they may also share branches. Therefore, the branch
execution history of one thread can help its siblings have fewer
mispredictions.

F. Resource Cores

Fig. 13 shows the processor utilization of four workloads
running under the four mappings. Compared to the OSMap,
IsoMap, IntMap and SprMap have up to 12% better processor
utilization for the first three workloads in Fig. 13.

To investigate the reason that OS has lower processor utiliza-
tion, we acquired Linux scheduling history with kernel profiler.
We discovered that the reason for the low processor utilization
of OSMap is the synchronizations. Under OSMap, any thread
can run on any core, which creates contention for the CPU
time. The consequence of this contention is that some threads
get delayed because they do not get enough CPU time to
execute. Many multi-threaded programs use barriers frequently
to synchronize their threads (such as the benchmarks used in
the first three workloads of Fig. 13). If one thread get delayed,
it becomes a bottleneck and all its sibling threads have to
wait for it. Therefore, there are not enough runnable threads
in the system, and the processor utilization drops. For the
first three workloads of Fig. 13, we observed approximately
a 100% increase in waiting time on synchronizations for every
thread under OS mapping. The other three mappings, on

the other hand, successfully eliminate possible bottlenecks by
guaranteeing each thread a fair share of processor time with
thread pinning, and thus improve processor utilization.

On the other hand, OSMap has the best processor utilization
for workloads with frequent I/O operations (as illustrated by
the last workload in Fig. 13). An application with frequent
I/O-operations spends much time waiting for I/O completion.
Consequently, it may not be able to fully utilize the cores
to which its threads are pinned. When mapping threads with
frequent I/O operations, allowing threads to execute on any free
core has the best processor utilization.

G. Summary

In summary, there are seven thread characteristics that should
be considered when mapping threads, which are data sharing,
prefetcher excessiveness, bandwidth demand, cache demand,
instructions sharing, synchronization frequency and I/O fre-
quency. The thread mapping guidelines for improving each
important resource as summarized as follows.

L1 D-cache When threads have data sharing, mapping them
to the same L1 D-cache can reduce L1 D-cache misses.

L2 cache For threads with high data sharing, mapping them
to the same L2 cache can reduce L2 misses. For threads with
low or no data sharing, it is better to avoid putting threads with
high cache demand on the same L2 cache.

Prefetchers For threads with high data sharing, mapping
them to share the same prefetchers can reduce prefetching
transactions. For thread with low or no data sharing, and high
prefetcher excessiveness, mapping them to the same prefetchers
can reduce prefetching transactions. For threads with low or no
data sharing, and low prefetcher excessiveness, thread mappings
that can reduce L2 cache misses can also reduce prefetching
transactions.

Off-chip memory interconnect For lower memory latency,
high-bandwidth-demand threads should not be mapped to use
the same memory interconnect at the same time. Furthermore,
thread mappings that reduce total memory transactions can help
improve memory latency. Thread mappings that can reduce the
L2 cache misses and prefetching transactions can also reduce
the memory transactions.

Branch Predictors Sharing branch predictors between sib-
ling threads can reduce branch mispredictions.

Resource Cores For threads with frequent synchronizations,
it is better to restrict the cores that these threads can use with
thread pinning. For threads that have frequent I/O operations,
it is better to let them to use any free cores like the OSMap.

V. MANAGING MULTIPLE RESOURCES

Thus far, we have discussed each resource individually.
However, in a real system, thread mapping algorithms have
to consider all the key resources altogether because they are
all influencing the application’s performance. We observe that
there are many cases where no thread mapping can improve
every resource at the same time. Under such circumstances,
thread mapping algorithms have to improve the utilization of
the resources that can provide the maximum benefits. This
section provides an analysis about the relative importance of
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Fig. 14: Comparison of the performance of streamcluster running with
blackscholes under IsoMap and IntMap. Lower bar is better.
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Fig. 15: Breakdown of the memory transactions generated by stream-
cluster when running with blackscholes under IsoMap and IntMap.

the resources. It also gives a new metric, called L2MP, for
evaluating the aggregated performance impact of L2 caches,
prefetchers and off-chip memory interconnects.

A. L2 Caches, Prefetchers and Off-chip memory interconnect

First, we discuss the relative importance of L2 caches, the
off-chip memory interconnect and prefetchers. Fig. 14 gives an
example that improving the utilization of L2 caches and off-
chip memory interconnect are two conflicting goals. Fig. 14
shows the performance and utilization of memory resources
of streamcluster when running with blackscholes. The figure
shows that streamcluster has a lower memory latency under
IsoMap, but it has fewer L2 misses under IntMap. For overall
performance, streamcluster executes faster under IsoMap than
IntMap despite that it has more L2 misses.

The cause of this conflict is the prefetcher. Fig. 15 shows
the breakdown of the memory transactions generated by
streamcluster under IsoMap and IntMap. As discussed in Sec-
tion IV-C, IsoMap can reduce the prefetcher excessiveness of
streamcluster. Therefore, when running under IsoMap, stream-
cluster generates fewer prefetching transactions, and fewer
memory transactions. Since there are fewer memory transac-
tions to process, the memory latency is reduced. However,
mapping these threads to the same prefetchers also means
mapping them to the same L2 cache. Because streamcluster’s
threads have large cache demands and low data sharing, they
contend for the cache space and experience more cache misses.
However, since the majority of the memory transactions are
from the prefetchers, the total memory transactions still drop
under IsoMap, which leads to lower memory latency and better
application performance.

Although memory latency and prefetchers are more impor-
tant for streamcluster, for some benchmarks, such as facesim,
L2 caches are more important. It is very hard to argue the
relative importance of these three resources because their per-
formances are closely related. The majority of memory transac-
tions are due to L2 misses and to prefetches. Therefore, memory
interconnect performance is affected by the performance of
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Fig. 16: Correlation between L2MP and executed cycles for stream-
cluster.

L2 caches and prefetchers. Moreover, the cycles stalled due
to L2 misses depend on both the number of L2 misses and
the memory latency. More L2 misses may not produce more
stalled cycles if the memory latency is reduced. For these rea-
sons, thread mapping algorithms should use a single aggregate
metric to encapsulate the L2 caches, prefetchers, and memory
interconnect as a unified resource.

To evaluate the aggregated performance impact of these
three resources, we propose a new metric L2-misses-Memory-
latency-product (L2MP), which is defined as the product of
L2 misses and memory latency. Because prefetchers impact
the application’s performance through L2 misses and memory
latency, this metric also implicitly considers prefetchers. For
memory-intensive applications, L2MP has a strong correlation
with the application’s performance. Fig. 16 shows the corre-
lation between L2MP and the total cycles of streamcluster.
Fig. 16 has 32 points. Each point represents the L2MP and
total execution cycles of streamcluster when it runs with one
other benchmark under one of the four mappings. Since there
are eight workloads (pairs) that has streamclsuter, and there are
four mappings, the total number of points is 8×4 = 32. Fig. 16
shows that correlation coefficient of L2MP and total execution
cycles is 0.96, suggesting a strong correlation. Other memory-
intensive benchmarks, canneal, fluidanimate and facesim, the
correlation coefficients are 0.94, 0.95 and 0.93 respectively.
Furthermore, as both L2 misses and memory latencies can be
acquired on-line from PMUs, L2MP can be used by on-line
thread mapping algorithms. In the following sections, we refer
the group of L2 caches, prefetchers and memory interconnect
as L2-Prefetcher-Mem.

B. L1 D-cache and L2-Prefetcher-Mem

First we discuss the relative importance of L1 D-cache
and L2-Prefetcher-Mem. For applications with high bandwidth
demands, L2-Prefetcher-Mem is more important than L1 D-
caches. Nonetheless, for applications which have high L1 D-
cache hit ratio and low L2 misses, L1 D-caches are more
important. One example is x264. 94% of x264’s total memory
accesses hit in L1D cache, and only 0.2% of them cause L2
misses. Thus x264 is more sensitive the performance of L1
D-cache, as illustrated by Fig. 3.
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Fig. 17: The performance of bodytrack and streamcluster running
together. For execution time and L2MP, lower bar is better. For
processor utilization, high bar is better.

SC CN FL FA SW BS VP X2 BT
SC LM LM,P LM,P B,LM LM LM LM LM
CN LM,P LM,P LM,P LM,P LM,P P P P
FL LM,P LM,P LM,P LM,P LM,P P P P
FA LM,P LM,P LM,P LM,P LM,P P P P
SW B P P P P P P P
BS P P P P P P P P
VP P,LM P P P P P P P
X2 P,L1 P,L1 P,L1 P,L1 P,L1 P,L1 P P
BT P P P P P P P P

TABLE V: The most important resources for each of the 36 pairs of
benchmarks we examined. “P” refers to Resource Cores, “B” refers
to branch predictors, “LM” refers to L2-prefetcher-Mem, “L1” refers
to L1 D-cache. Empty cells represent workloads that created using
only one benchmark that we did not examine. Two resources in a cell
means that both resources can be improved simultaneously with thread
mapping.

C. Resource Cores and L2-Prefetcher-Mem
In this section we evaluate the relative importance of Re-

source Cores and L2-Prefetcher-Mem. For threads that have
extremely high bandwidth requirements, such as streamcluster,
L2-Prefetcher-Mem trumps Resource Cores. Fig. 17 shows the
performance of bodytrack and streamcluster running together.
For better processor utilization, the OSMap allows streamclus-
ter to run on all four cores since bodytrack can only use
30% of the processor time due to its frequent I/O operations.
Accordingly, 3 or 4 streamcluster’s high bandwidth threads
run simultaneously, which increases the memory latency. On
the contrary, IsoMap and IntMap allocate only two cores to
streamcluster which avoids stressing the memory interconnect
with high-bandwidth threads running simultaneously. However,
these two mappings suffer from low processor utilization be-
cause bodytrack cannot fully utilize the two cores allocated to
it. When all resources are considered, IsoMap and IntMap have
better overall performance.

However, if the workloads contain no extremely high band-
width requirement applications, it more important to improve
the utilization of Resource Cores than L2-Prefetcher-Mem.

D. Relative importance of all key resources
Although we only discussed three groups of resources in

this section, the trade-off between resources actually happens
among all resources. TABLE V summarizes the most impor-
tant resources for the 36 pairs of benchmarks we examined.
Cell(row, col) = R in the table represents that when benchmark
row runs with benchmark col, mapping threads to improve
resources R can provide the maximum performance gains for
benchmark row. TABLE V shows that the relative importance
of the key resources varies depending on the benchmark char-
acteristics. Even for the same benchmark, the most important
resources vary depends on its co-runners.

E. Summary
In summary, a thread’s most important resources depend

on its own characteristics, as well as on its co-runners’. This
observation implies that, not only do thread mapping algorithms
have to adapt their mapping decisions to the workloads when
improving the utilization of one resource, but also have to adapt
their mapping decisions to the workloads when determining the
most important resources to improve.

VI. PERFORMANCE RESULTS

When L2-prefetcher-Mem or L1 D-caches or branch predic-
tors are the most important, either IsoMap or IntMap performs
best. When only Resource Cores is the most important, OSMap
usually performs best. Among the 36 workloads, we can im-
prove the execution time of 29 workloads over the OSMap. The
average improvement of the execution time for all 36 workloads
over OSMap is 4%. For the 26 workloads that contains the four
memory-intensive and synchronization-intensive benchmarks,
streamcluster, canneal, fluidanimate and facesim, the average
improvement is 8%.

The workload streamcluster and fluidanimate has the high-
est performance improvement over OSMap. Under IsoMap,
streamcluster’s total cycles are reduced by 14% through re-
duced prefeteched cache lines and memory latency. And its
processor utilization is improved by 20%. Enjoying improve-
ment from both types of resources, the execution time of
streamcluster is improved by 28%. The execution time of
fluidanimate is also improved by 2% under IsoMap.

VII. RELATED WORK

There has been prior work on performance analysis and
resource management in CMPs via thread mapping. Zhuravlev
et al. conducted various performance analyses for memory
hierarchy resources and provided several scheduling algo-
rithms [28, 29]. Dey et al. described a methodology to analyze
an application’s performance when the application threads share
the memory hierarchy resources [9]. Mars et al. synthesized
last-level cache sharing by thread mapping and analyzed cross-
core performance interference on two architectures [19]. Tang
et al. studied the impact of memory subsystem resource sharing
on data center applications [23]. Chandra et al. and Xie and
Loh used thread mapping to address cache contention [6, 26].
Knauerhase et al. developed an idea to evenly spread the
threads by mapping to mitigate shared cache contention [17].
Several studies investigated mapping threads based on cache
line sharing to reduce cross-chip cache accesses [8, 22]. Snavely
et al. proposed the method to find the best thread mapping by
sampling all possible thread mapping configurations on a hyper-
threaded processor [21]. Most of these works mainly provide
performance analysis for shared resources in the memory
hierarchy, whereas we examine the usage of processor resources
as well as the shared-memory resources. Moreover, most of
previous work used single-threaded workloads. In this paper,
we examine multi-threaded workloads which require different
thread mapping strategies. Teng et al. studied the migration cost
of multi-threaded Java applications [24]. Their results show that
for real Java applications, the migration overhead is very small.



There also has been prior work on the PARSEC’s character-
ization. The authors of PARSEC characterized the benchmarks
from working set, locality, cache utilization, off-chip traffic,
programming models and the scaling trend of the inputs [4].
Barrow-Williams et al. described communication characteristics
among the PARSEC benchmarks’ threads [1]. Bhaduria et
al. described thread scalability and micro-architectural design
choices for the benchmarks over a wide variety of real ma-
chines along with cache performance, sensitivity with respect
to DRAM speed and bandwidth [2]. Lakshminarayana and Kim
characterized and categorized PARSEC benchmarks into three
classes based on execution time variability [18]. Zhang et al.
analyzed the data sharing of PARSEC benchmarks [27].

Several studies investigate the performance impact of the
hardware resources and how to improve their designs. Cain
et al. studied prefetchers on IBM Power architectures [5].
New designs are proposed to address the over-aggressiveness
of current prefetchers [10, 11, 15]. Hsu et al. studied three
shared cache partitioning policies for different objectives [14].
Bhattacharjee et al. studied the implication of current TLB
design for PARSEC benchmarks [3]. Wu et al. investigated
the importance of prefetchers and TLBs in terms of intra-
application contention [25]. Simultaneously managing multiple
resources have been studied before using approaches other than
thread mappings [7, 20]. While we focus on the implications
of these hardware resources in terms of thread mappings, the
solutions and insights from these studies could be used in
conjunction with our findings on thread mappings to further
improve performance.

VIII. CONCLUSION

To overcome the challenges of simultaneously managing
multiple hardware resources with thread mapping, this pa-
per provides an in-depth performance analysis of different
thread mappings. The analysis suggests that thread mapping
algorithms should give high priority to improve the key re-
sources, which are L1 D-caches, L2 caches, hardware prefetch-
ers, off-chip memory interconnect, branch predictors and Re-
source Cores. Mapping threads to improve the utilization of
these resources can significantly improve the application’s
performance. The analysis also concludes that thread mapping
algorithms should consider more thread characteristics than
cache demands and data sharing, which include prefetcher
excessiveness, memory bandwidth requirements, instruction
sharing, synchronization frequency and I/O frequency. We also
analyzed how the relative importance of the key resources
varies depending on the workload characteristics. By manag-
ing both memory and processor resources based on priority
and workload characteristics, thread mapping can improve an
application’s performance by up to 28% over contemporary
Linux scheduler, while considering only memory resources only
provides performance improvement by up to 14%.
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