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Abstract

As the worlds computation continues to move into the massive datacen-

ter infrastructures recently coined as “warehouse-scale computers” (WSCs),

developing highly efficient systems for these computing platforms is increas-

ingly critical.

The architecture of modern WSCs remain in their relative infancy. WSC

architects have started with commodity off-the-shelf components including

commodity processors and open source system software components, that

are then stitched together to design a simple and cost effective WSC. This

approach has been effective for producing systems that are functional, and

that can scale the delivery of web-services as demand increases. However,

efficiency has suffered, as these components have not been designed and

refined with the unique characteristics of WSCs in mind. These characteris-

tics may be critical for a highly efficient WSC design, and as such, we must

rethink the architecture of modern WSCs.

This dissertation argues that one such characteristic has been overlooked:

the diversity in execution environments in modern WSCs. We define a given

task’s execution environment as the coupling of the machine configuration,

and the co-running tasks simultaneously executing alongside the given task.

At any given time in a WSC, we have a high degree of diversity across

these execution environments. This dissertation argues that acknowledging,

exploiting, and adapting to, the diversity in execution environments are crit-
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ical for the design of a highly efficient WSC. When ignoring this diversity,

three critical design problems arise, including 1) the homogeneous assump-

tion, where all machines and cores in a WSC are assumed to be equal and

managed accordingly, 2) the rigidness of applications, where application bi-

naries can not adapt to changes across and within execution environments,

and 3) the oblivion of interference, where interference between tasks within

an execution environment can not be measured or managed.

This dissertation addresses each of these three design problems. First,

we address the homogeneous assumption at the cluster level by redesigning

the task manager in the WSC to learn which execution environments tasks

prefer, and map them accordingly. Second, we address the rigidness of appli-

cations at the machine level by providing a mechanism to allow applications

to adapt to their execution environment, and leverage this mechanism to

solve pressing problems in WSCs. Lastly, we address the oblivion of inter-

ference at both the cluster and machine levels by providing novel metrics

and techniques for measuring and managing interference to improve the uti-

lization of WSCs.

By incorporating an awareness of the diversity in execution environments

in these three key design areas, we produce a WSC design that is significantly

more efficient in both the performance of the applications that live in this

domain, and the utilization of compute resources in the WSC. By improving

efficiency for these two metrics, we effectively require a smaller WSC from

some fixed workload, which has implications on reducing not only the cost

of these systems, but also their environmental footprint.
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Chapter 1
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1.3 Three Design Problems . . . . . . . . . . . . . . . . . . 6

1.3.1 The Homogeneous Assumption . . . . . . . . . . . 7
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1.4.1 Analyzing EE Diversity in Production WSCs . . . 11

1.4.2 Intelligently Mapping Jobs at the Cluster Level . . 12

1.4.3 Online Adaptation at the Machine Level . . . . . . 13

1.4.4 Mitigating Interference at Cluster and Machine

Levels . . . . . . . . . . . . . . . . . . . . . . . . . 14

The landscape of computing is changing. Traditionally, the notion of

computing held by users were of desktops in their homes that are used to

accomplish some task, work or play, and return to their daily lives. However,

in the recent decade, there has been a tectonic shift in the way end users

view computing. With the evolution of the internet, and the emergence

of mobile devices such as smartphones, tablets, and highly portable lap-

1
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tops, we are now always connected, and interface computing continuously

throughout the day. Much of the computation cycles consumed by this

emerging market lives in massive datacenter infrastructures recently coined

as “warehouse-scale computers” (WSCs) [50,79]. The distinction made with

this new term is in viewing the entire warehouse itself, not as a collection

of many computers, but as a single, massively parallel computer, where the

programs run by this computer are large-scale web-services. This emerging

computing domain is rapidly expanding. As noted by Forrester Research,

cloud computing was a $40 billion market in 2011, and will grow six fold to

$241 billion market by 2020 [101].

WSCs are massive computers with tens to hunderds of thousands of cores

and petabytes of main memory, spread across thousands of machines. The

underlying hardware components that comprise the WSC are primarily com-

posed of commodity parts including processors, memory, disk, network, etc.

These components are stitched together to compose a warehouse of inter-

connected machines. The architecture of such a system is largely defined by

the middleware and system software stack. These software components pro-

vide a single programmatic view of the WSC, and organizes the underlying

hardware infrastructure for efficient and scalable operation. Internet service

companies such as Google, Amazon, Yahoo, Microsoft, and Apple spend tens

to hundreds of millions of dollars on WSCs to provide web-services such as

search, mail, maps, docs, video, voice recognition, etc [1,9,20,58]. This large

cost stems from the machines themselves, networking equipment, power dis-

tribution and cooling, the power itself, and other infrastructure [35, 45].

Improving the efficiency of WSCs have been identified as one of the top

priorities of web-service companies as it improves the overall total cost of

ownership (TCO) of WSCs, and as noted by the Environmental Protection

Agency (EPA) [35], improving efficiency is not only important for the cost
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Figure 1.1: The Facets of WSC Efficiency. This Work Focuses on Performance and
Utilization.

to companies, but for the environmental footprint of these WSCs as this

computing domain rapidly expands.

However, inefficiency remains rampant in modern WSCs.

1.1 Rampant Inefficiency in WSCs

When considering the efficiency of WSCs there are a number of design objec-

tives and metrics to consider. These facets of WSC efficiency are illustrated

in Figure 1.1. In this work, we focus on software performance and machine

utilization for improving the efficiency of WSCs. In addition to these ob-

jectives being identified as critical for efficiency in WSCs [50], improvements

in both the overall performance of applications running in the WSCs and the

utilization of the compute resources in WSCs have beneficial implications

across many of the other design objectives.

To understand why WSCs are currently inefficient, its important to re-

flect on the design of these systems in recent history. Modern WSCs have

been evolving for only about a decade now. During this time, the architects

of these systems has had a functionality first, efficiency second approach.

The first order objective has been to design a WSC system that can de-

liver web-services and products to the massive user base in such a way that
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these infrastructures can scale with demand. To build a simple and cost

effective system, WSC architects have used commodity off-the-shelf compo-

nents including commodity x86 processors and open source system software

components such as Linux, GCC, and the JVM. These general purpose

components are then stitched together to design a simple and cost effective

WSC system. As a second order objective, system architects then refine and

improve upon these components for efficiency.

The problem with this approach is these commodity components were

not built with WSCs in mind, and these massive WSCs do not resemble the

traditional computing environments for which many of these commodity

components have been initially designed and refined. When starting with

these components to design the WSC architecture, system architects may

produce a design that overlooks the unique characteristics and properties of

WSCs. Thus, we must rethink the architecture of WSCs.

In this dissertation, we argue that one such characteristic is critical for

designing a highly efficient system: the diversity of execution environments

in WSCs.

1.2 Diversity of Execution Environment in WSCs

Given a running task in a WSC, its execution environment can be broadly

defined as the set of elements in its context that impacts the performance

and overall functioning of that task. Throughout the scope of this work,

we focus on two of these elements: the machine, and its load. As such, the

specific definition of execution environment used herein is the coupling of

the machine configuration and co-running tasks simultaneously executing

alongside the given task. Figure 1.2 provides an illustration of an execution

environment. The regions highlighted in red show the components that
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Figure 1.2: Execution Environment of a Task

comprise the execution environment of a task.

Within modern WSCs we have a high level of diversity across execution

environments. Figure 1.3 provides a simplified illustration of the diversity

that is commonly found in production WSCs. Across the machines shown

in this WSC, we observe diverse microarchitectural configurations. In the

Figure, we have an older Xeon architecture with only two cores, a newer

Xeon architecture with four cores, and an Opteron architecture with four

cores. These machines, spanning several generations of Intel and AMD

architectures, differ not only in their number of course, but also in their

microarchitectural design. In addition to diverse machine configurations,

at any time during the lifetime of a WSC, each machine is loaded with

different types, and a different number, of tasks. This co-runner diversity

is also illustrated in Figure 1.3. Although we see a significant amount of

diversity across various execution environments, modern WSC design does

not acknowledge this diversity.

This dissertation argues for a WSC design that acknowledges the diver-

sity in execution environments. We claim that incorporating an awareness

of, and enabling adaptation to, this diversity is critical for highly efficient
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Figure 1.3: Diverse Execution Environments in WSCs

WSCs. In this dissertation, we address three design problems that results

from overlooking the diversity across execution environments in WSCs.

1.3 Three Design Problems

There are three core problems that arise due to a WSC design that is obliv-

ious of EE diversity:

1. [Cluster Level] The homogeneity assumption. The heterogeneity of

machines that compose a WSC cluster is ignored. Tasks are not placed

where they run best.

2. [Machine Level] The rigidness of applications. Application tasks do

not adapt to changes across and within execution environments. Tasks

run inefficiently.

3. [Cluster and Machine Level] The oblivion of interference. Inter-

ference between the tasks running within an execution environment is

not measured or managed. The over-provisioning of compute resources

is used for performance isolation leading to lower utilization.
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Figure 1.4: The Homogeneous Assumption - The Job Manager’s View of a WSC

1.3.1 The Homogeneous Assumption

At the cluster level, the homogenous assumption is a source of inefficiency.

WSCs have been embraced as homogeneous computing environments [9,50].

However, as previously discussed, this homogeneity is not the case in prac-

tice. WSCs are typically composed of cheap and replaceable commodity

components. As machines are replaced in these WSCs, new generations of

hardware are deployed while older generations continue to operate. This

leads to a WSC that is composed of a mix of machine platforms, e.g. a

heterogeneous WSC. Table 1.1 shows the amount of distinct machine con-

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9

4 3 2 3 2 3 2 5 2 2

Table 1.1: Number of Machine Types in Production WSCs

figurations found in 10 randomly selected anonymized Google WSCs in op-

eration. As shown in the figure, these 10 WSCs house as few as two and as

many as five different microarchitectural configurations spanning Intel and

AMD servers from several consecutive generations. Yet, the assumption of

homogeneity has been a core design philosophy behind the job management



Chapter 1. Introduction 8

subsystems of modern WSCs [50]. As Figure 1.4 shows, the job manager

views the WSC as a collection of tens to hundreds of thousands of cores

with the assumption of homogeneity. Each task in the WSC is configured

with the number of cores and amount of memory it requires. The job man-

ager then arbitrarily selects a machine with the required cores and memory

available to assign the task.

Some types of tasks are very sensitive to changes in execution envi-

ronment, while others are less affected. However, the diversity across the

underlying microarchitectures and application co-runners in the WSC is not

explicitly considered by the job management subsystem. As we show in

this dissertation, ignoring this diversity in execution environments leads to

inefficient execution of applications in WSCs. We also present an enhanced

mapping system that exploits this diversity to improve the performance of

the WSC.

1.3.2 Rigidness of Applications

At the machine level, the rigidness of applications is a source of inefficiency.

Traditionally, an application program is written by a programmer, then stat-

ically compiled to a binary executable file composed of instructions from a

targeted instruction set architecture (ISA). This binary can then be run on

a range of micro-architectures that conforms to that ISA. The structure and

layout of the binary code is determined statically, and consequently, it re-

mains ridged across inputs, micro-architectures and execution environments.

It is well known that semantically equivalent variations in the code structure

and layout can cause a wide range of variance in its performance and other

properties [39,131]. As a result, programmers and optimizing compilers are

faced with the task of statically determining the optimal code layout and

structure for application binaries. However, these code structure and layout
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Figure 1.5: A Single Rigid Binary Executing in Three Contexts

decisions are impacted by changes across, and within, execution environ-

ments. These changes occur across application runs, and indeed during a

single run.

Figure 1.5 shows three execution environments of a single application:

in the first context the application runs alone on a single core machine, in

the second context the same binary runs on a multicore machine, and in

the third context the application’s execution environment is includes three

other co-running processes on a quad core machine. The applications op-

timal code layout and execution behavior may vary across these contexts.

There are a class of problems that require the dynamic response to events as

they occur during execution. To allow this flexibility, online adaptation is

required. However, we lack a lightweight, deployable mechanism to enable

online adaptation in modern WSCs. In this dissertation, we present a new

paradigm for online adaptation that allows the adaptation of an applica-

tion to its environment, and the environment to the application. We then

leverage this approach to address two pressing problems in WSCs.
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1.3.3 The Oblivion of Interference

At the cluster and machine levels, the oblivion of interference is a source of

inefficiency. The cost of construction and operation of WSCs ranges from

tens to hundreds of millions of dollars. As more computing moves into the

cloud, it is becoming exceedingly important to utilize all the resources in

WSCs as efficiently as possible. However, the utilization of the computing

resources in modern WSCs remains low, often not exceeding 20% [72].

Each machine in the WSC house numerous cores, often 4 to 8 cores per

socket, and 2 to 4 sockets per machine. However, in light of the significant

potential for parallelism on a single machine, there are a number of resources

shared among cores. This sharing can result in performance interference

across cores, negatively and unpredictably impacting the performance of

user-facing and latency-sensitive application threads [117]. Strictly defined

performance requirements can also be refered to as quality of service (QoS)

requirements. Interference negatively, and unpredictably, degrades QoS.

To avoid the potential for interference on applications with strict QoS re-

quirements, co-location is disallowed for latency-sensitive applications. This

policy leaves cores idle, results in the overprovisioning of compute resources,

and ultimately leads to lower utilization in the WSC.

This overprovisioning is often unnecessary, as co-locations may or may

not result in significant performance interference. Figure 1.6 demonstrates

the uncertainty of interference in modern WSCs. In this figure, we show the

performance ( 1
latency

), of a key user-facing component of Google’s web-search

when co-located with other Google workloads on a single socket, normalized

to solo execution. The horizontal line shows the maximum allowable perfor-

mance interference. The co-location of some workloads does not violate this

QoS threshold (light bars), while others violate the threshold (dark bars).

The inability to quantify and predict the performance impact of inter-
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Figure 1.6: Some co-locations violate web-search’s 90% QoS threshold. The inabil-
ity to precisely predict this performance interference leads to disallowing co-location for
web-search and consequently, low machine utilization.

ference between tasks within the execution environment leads to the heavy

handed solution of simply disallowing co-location. In this dissertation, we

show it is indeed possible to perform this precise prediction using a novel

mechanism and provide new metrics for characterizing an application’s sen-

sitivity to interference, as well as its aggressiveness.

1.4 Summary of Contributions

This dissertation investigates, and exploits, the diversity found in execution

environments within production WSCs by first analyzing the diversity found

in WSCs, and then addressing the three design challenges discussed.

1.4.1 Analyzing EE Diversity in Production WSCs

We first perform a study of the performance impact of the diverse exe-

cution environments (EE) across machines from Google’s production fleet,

and Google’s large-scale commercial WSC workloads. We also replicate this

study using an experimental testbed composed of benchmark workloads to
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provide repeatable experimentation without the need of a commercial pro-

duction environment. Chapter 3 examines:

• Variability Across Execution Environments: We investigate the

performance variability for large-scale web-service applications caused

by diversity in machine configuration and application co-runners. This

is the first work to investigate this variability in a production commer-

cial WSC. (Section 3.1)

• Opportunity Factor: We introduce a novel metric, the opportunity

factor, that quantifies the sensitivity of an application to diversity in

machine configuration and application co-runners. This metric also

indicates an applications potential performance improvement when

mapped to execution environments where they run best. (Section 3.2)

1.4.2 Intelligently Mapping Jobs at the Cluster Level

At the cluster level, we provide an intelligent mapping approach where tasks

in the WSC are placed in execution environments where they run best.

Chapter 4 examines:

• SmartyMap: We present SmartyMap, an extension to the current

WSC architecture to exploit the heterogeneity in WSCs. SmartyMap

intelligently maps jobs to machines to improve the overall perfor-

mance of a WSC. A required component of such an approach is the

ability to score and rank job-to-machine maps. We design map scor-

ing approaches that take advantage of the live monitoring services in

modern WSCs. We also provide four map scoring policies and discuss

the key trade offs between them. (Section 4.1)

• Benefit of Intelligent Mapping: We investigate the effectiveness of

SmartyMap and demonstrate the performance opportunity of exploit-
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ing the heterogeneity in those production WSCs. In addition to pro-

duction datacenters, our study also includes thorough experimentation

on a Google testbed composed of 9 large-scale production web-service

applications and 3 types of production machines, as well as an exper-

imental testbed composed of benchmark applications. (Section 4.2)

• Factors Affecting EE Diversity: We perform a careful study of

how varying the diversity in applications and machine types in a WSC

affects how “homogenous” or “heterogeneous” the WSC is. We find

that even a slight amount of diversity in these factors can present a sig-

nificant performance opportunity. Based on our findings, we then dis-

cuss the tradeoffs for server purchase decisions and show that hetero-

geneous WSCs may be more cost-efficient than homogeneous WSCs.

(Section 4.3)

1.4.3 Online Adaptation at the Machine Level

At the machine level, we provide a mechanism to allow tasks to adapt to

the execution environment in which it runs. Chapter 5 examines:

• Lightweight Online Adaptation: The design of the Lightweight

Online Adaptation Framework (Loaf), a novel lightweight online adap-

tation framework for native binary applications that is both able to

adapt an application to its execution environment, and also the ex-

ecution environment to the application. Loaf is composed of three

core mechanisms: periodic probing for lightweight introspection, sce-

nario based multiversioning for online code restructuring, and cross

core application cooperation for coordinated adaptation across cores.

(Section 5.1)
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• Online Adaptation for Aggressive Optimizations: Using our

Loaf framework, we provide an approach that enables applications to

self-select compiler optimizations based on the execution environment

in which it runs. This approach, Scenario Based Optimization, dy-

namically applies aggressive optimizations (known to either improve

or degrade performance) only when these optimizations are detected

to beneficial. (Section 5.2)

• Online Adaptation for Contention Detection and Response:

We present a Loaf based runtime, the Contention Aware Execution

Runtime (CAER) environment, that is capable of instantaneous con-

tention detection and response on real commodity machines. CAER

uses two contention detection heuristics: Burst Shutter, and Rule

Based techniques. When contention is detected, CAER dynamically

adapts low priority applications to minimize the interference caused

to higher priority applications. (Section 5.3)

1.4.4 Mitigating Interference at Cluster and Machine Levels

At both the cluster and machine levels, we provide novel capabilities in

measuring and managing interference between tasks within an execution

environment. Chapter 6 examines:

• Precise Interference Prediction: We present the design of Bubble-

Up, a general characterization methodology that enables the precise

prediction of the performance degradation that results from contention

for shared resources in the memory subsystem. A precise prediction

is one that provides an expected amount of performance lost when

co-located. With this information, co-locations that do not violate the
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QoS threshold of an application can be allowed, resulting in improved

utilization in the WSC. (Section 6.1)

• Improving WSC Utilization with Bubble Up: Using 17 pro-

duction Google workloads and production machines we demonstrate

how using Bubble-Up to steer co-location decisions can significantly

improve the utilization of WSCs. (Section 6.2)

• Direct Methodology to Quantify Interference Sensitivity: We

present a general direct measurement technique and metric for quanti-

fying cross-core interference sensitivity at both application and phase

levels, and the design of CiPE, a framework that employs this mea-

surement technique along with contention synthesis to characterize

application sensitivity to cross-core interference. We also design and

present four contention synthesis kernels and the core algorithms for

each. (Section 6.3)
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In this chapter, we provide background on how tasks are placed in WSCs,

the importance of quality of service (QoS) requirements in WSCs, and the

implications of co-locating tasks on machines in modern WSCs. We also

present a summary of the related work of this dissertation.

2.1 Task Placement in Modern WSCs

In modern warehouse-scale computers, each web-service is composed of one

to hundreds of application tasks, and each task runs on a single machine. A

task is composed of an application binary, associated data, and a configura-

tion file that specifies the machine level resources required. These resources

include the number of cores, amount of memory, and disk space that are to

be allocated to the task. The configuration file for a task may also include

16
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special rules for the cluster manager such as whether to disallow co-locations

with other tasks.

Task placement is conducted by a cluster-level manager that is responsi-

ble for a number of servers. Based on the resource requirement, the cluster

manager uses an algorithm similar to bin-packing to place each task in a

cluster of machines [82]. After a task is assigned a machine, a machine

level manager (in the form of a deamon running in user-mode) uses resource

containers [8] to allocate and manage the resources belonging to the task.

For the remainder of this work, we use the term application to represent

the program binary for a given component of a web-service, and application

task as this binary coupled with its execution configuration file. The term

job may also be used interchangeably with task.

2.2 Quality of Service

As multicores become widely adopted in datacenters, the cluster manager

consolidates multiple disparate tasks on a single server to improve the ma-

chine utilization. However, various application tasks in a datacenter often

have different quality-of-service (QoS) priorities. User-facing applications

for web-search, maps, email and other internet services are latency-sensitive,

and have high QoS priorities. Applications such as file backup, offline image

processing, and video compression are batch applications that often have no

QoS constraints. For these, latency requirements are not strictly defined.

We define the QoS of a latency-sensitive application in terms of the rele-

vant performance metric specified in its internal service level requirements

(SLAs). For example, the QoS of Google’s web-search is measured using

query latency and queries-per-second, in contrast to Bing’s [58, 65], which

uses the quality of search results provided.
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2.3 Co-location

Tasks are co-located when they run simultaneously on a single machine.

Managing performance interference and providing task level performance

isolation on the machines housed by WSCs has been a challenge due to con-

tention for resources shared across the numerous cores on a single machine.

When co-locating a latency-sensitive application with other applications on

the same server, the latency-sensitive application is at risk of suffering sig-

nificant QoS degradations when the co-running applications are aggressively

contending for resources such as shared cache space or memory bandwidth.

Due to the inability of predicting the amount of this performance inter-

ference, the current placement policy in current WSCs is to disallows any

co-location of a latency-sensitive task with other tasks on the same machine

to guarantee its QoS. This ad-hoc approach is a major contributor to the

low utilization we find in modern WSCs.

2.4 QoS Flexibility

There is a trade-off between the QoS performance of latency-sensitive appli-

cations and the machine utilization in WSCs. When equipped with mech-

anisms to measure and manage interference, a small amount of QoS degra-

dation can be allowed to increase co-locations and improve the machine

utilization. If a co-location is predicted to cause less QoS degradation than

a specified threshold, the cluster manager can allow the co-location. We

specify the tolerable amount of QoS degradation in a QoS policy. For ex-

ample, a 95% QoS policy indicates that we are willing to sacrifice 5% of

the QoS performance to improve machine utilization. To enforce these QoS

policies, the precise prediction for QoS degradation due to co-location is

needed. These QoS issues, and challenges affecting machine utilization, are
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revisited later in this dissertation (Chapters 5 and 6), the earlier parts of

this dissertation addresses software performance.

2.5 Related Work

Warehouse-Scale Computing

Much of the related datacenter research have focused specifically on improv-

ing energy and power efficiency [1,3,29,46,84,91]. There has also been work

on scheduling in the datacenter [51], enabling QoS-aware control in the dat-

acenter [85], and programming the datacenter [14]. Other works develop

tools and support for interacting and developing for the datacenter [10,114].

There has been some important work studying web search in WSCs, includ-

ing the work by Barroso et al. [9], which presents an insightful look at the

design and layout of an industry strength web-search datacenter. More re-

cently, Reddi et al. [58] presented the impact of running an industry-strength

search engine on a datacenter composed of Atom chips.

There are prior works that have acknowledged heterogeneity in datacen-

ters [13, 128]. While these works focus on datacenters that provide utility

computing and improving MapReduce, our work focuses on the global design

and optimization of the emerging space of WSCs. In this work, we focus on

WSC efficiency via improving performance and utilization. There has been a

significant amount of research effort applied to the domain of heterogeneous

multicore architecture. Some of the most seminal works in this area were

those by Kumar et al. [66,67]. In these work, Kumar used simulation to in-

vestigated the performance benefit of exploiting heterogeneous architectures

by evaluating heuristics to dynamically schedule thread workloads based on

a speedup factor. This work lead to a number of other works on scheduling

for the heterogeneous multicore [64,68,69,102,107]. The work by Winter et
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al. [121] is related to the numerical optimization techniques used in this dis-

sertation. This work investigated the task of scheduling for “unpredictably”

heterogeneous multicore processors due to process variation.

PROPHET provides a goal-oriented provisioning infrastructure tunes

the datacenter to satisfy the needs of particular end users [122]. The work

by Kazempour et al. was the first to implement changes to the hypervisor

scheduler to incorporate asymmetry-awareness [61]. Another related work

discusses a scheduling policy that uses a linear programming approach that

maximizes system capacity to map an application across a desktop grid [4].

This work focuses on distributed desktop computers and does not consider

the interaction between microarchitectural and co-location diversity.

Online Adaptation in Managed Runtimes

Current online dynamic optimization approaches can be separated into two

categories: those that deal with managed run-time systems targeting byte-

code and those that apply to native application binaries. The majority of

online optimization frameworks that target bytecode work at the function

granularity [5, 90, 111]. These optimizers detect frequently executed meth-

ods and identify them as hot. These hot methods are then just-in-time

compiled and recompiled at higher levels of optimization, depending on how

often they are executed. Other bytecode online optimization and adaptation

approaches [119, 120] address memory and other issues. However this work

is concerned more with online adaptation of arbitrary binaries.

Online Adaptation at the Binary Level

This work deals with the class of online optimizers and optimization frame-

works that deal with native binaries directly such as Dynamo [7], Dy-

namoRIO [12], and Strata [106]. These current dynamic optimization tech-
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niques have had limited success. One of the seminal works that has inspired

many future projects was the work by Bala et al. [7] on Dynamo. Dynamo is

a binary to binary translator and dynamic optimizer that works at the basic

block and trace levels. Dynamo was the only online optimizer of its class

to achieve consistent performance gains. This has mostly been attributed

to the intricacies of the PA-RISC platform for which it was implemented.

Attempts have been made to reproduce this performance benefit on other

architectures but have been largely unsuccessful. Bruening et al. reimple-

mented the Dynamo infrastructure for x86 with the DynamoRio project [12]

and was unable to achieve significant improvement. A similar effort was

made with the Strata [106] infrastructure and was also unable to achieve

performance gains. One major challenge these three approaches face is the

added overhead from virtualizing the application and maintaining control

of the executing binary. In fact there has been much work focused on op-

timizing the dynamic optimizer itself, in particular the handling of indirect

branches [49].

Research attention has also been paid to online optimization approaches

using multicore architecture and novel hardware techniques. The Adore in-

frastructure has been used by Lu et al. [74] to achieve dynamic software

prefetching via the use of helper threads and performance monitoring hard-

ware. A similar technique was also later applied to SUN’s UltraSparc Ar-

chitecture [75]. Zhang et al. proposed Trident [129, 130], a new dynamic

optimizer framework that requires hardware support. This work proposes

that trace selection occurs entirely in hardware and uses a number of hard-

ware extensions. This work shows promising potential, but currently cannot

be applied as it depends on novel micro-architectural features to be devel-

oped.
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Extracting Run-time Information

The usefulness of information about an application’s run-time behavior and

dynamic micro-architectural impact has also shown to be quite important.

Profiling has become the cornerstone for understanding an application’s be-

havior and can play an important part in compiler optimizations as shown

in the work by Chang et al. [23]. This seminal work introduces compiler

support for profile feedback directed compiler optimizations. The compiler

executes the application on a number of canned inputs, profiles it, and re-

compiles the application using this information. Using profiling information

has lead to many new kinds of optimizations [44,92,97]. However these com-

piler optimizations remain rigid and thus tends to be applied conservatively.

Performance counters have shown to be a great tool to enable low over-

head profiling of micro-architectural events. Moreover, these hardware struc-

tures are becoming more complex as is seen in the work by Dean et al. [32].

Azimi et al. presents a technique to use limited performance counters to

simultaneously profile numerous events via sampling [6]. In recent work by

Cavazos et al. [18] performance counters and machine learning are used to-

gether to find better compiler optimization settings for applications. These

performance counters are also being used for more than just profiling. In the

works by Chen et al. [24] and our prior work [78] performance monitoring

hardware are used to form dynamic hot traces without slowing down the

running application. We also see performance counters used in Java VMs

and JITs to steer optimization in the works by Schneider et al. [105] and

Adl-Tabatabai et al. [2]

Function Cloning and Versioning

Function cloning and Multiversioning is an inter-procedural code transfor-

mation that is used by a number of optimizations dating back to the earliest
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works on compiler optimization [15–17, 30, 31, 33, 118]. It was originally

conceived for classic optimizations such as inter-procedural constant prop-

agation (IPCP) [16]. It has also been been used by Carini et al. for flow

insensitive IPCP [17] and Cierniak et al. for inter-procedural array remap-

ping [30].

Multiversioning approaches have also been used by Diniz et al. [33] and

Voss et al. [118]. In the work by Diniz et al. multiversioning is used in

the context of a parallelizing compiler for object-based languages to pro-

vide a mechanism to dynamically switch the implementation of a particular

synchronization mechanism online. Although the concept of dynamic feed-

back is discussed in this work, a general mechanism to achieve online code

adaptation using multiversioning is not explored. In addition, the mech-

anisms used in this work to gather information to steer version switching

is significantly limited in comparison to the scenario based multiversioning

approach presented in this work. The multiversioning approach provided

by Diniz’s dynamic feedback relies entirely on a timing approach, only al-

lowing for variants of the sampling/production phase heuristic presented in

their work. However our scenario based multiversioning provides much more

general monitoring capabilities in that our approach is guided by the abil-

ity to identify scenarios based on a collection of the information available

through our lightweight introspection interface. In addition the idea of hav-

ing a number of co-running application adapting in cooperation is also not

explored.

The work by Voss et al. [118] discusses the idea of switching regions of

executing code dynamically, however multiversioning is not performed stat-

ically. Versions are generated continuously by compiler tools and optimizers

running on sockets and machines separate to the executing applications. In

addition users of their system must learn a new domain specific language,
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and the flexibility of potential adaptation policies is limited to what can be

expressed in this language. Requiring this new language presents a signifi-

cant amount of complexity, which is contrary to the goal of Loaf. Also the

fact that a new language must be learned to use their system may further

deter users from adopting this approach.

More recently mutliversioning has been used in a number of works by

Fursin et al. as a mechanism to provide dynamic machine-learning testbeds

for evaluating optimization configurations and performing online optimiza-

tion space pruning [39, 40]. In this work we take advantage of function

cloning and multiversioning to provide a general, flexible and lightweight

approach to enable online code adaptation.

Contention and Interference

When two application are running on neighboring cores, contention for the

shared cache can affect application Quality of Service (QoS) and can nega-

tively affect overall throughput and scheduling fairness. QoS and Fairness

techniques have received much research attention [48,54,55,62,83,88,89,108].

These works propose QoS and fairness models, as well as hardware and plat-

form improvement to enable QoS and fairness be enforced. Rafique et al.

investigates micro-architectural extensions to support the OS for cache man-

agement [94]. There has been a number of works aimed at better understand-

ing and modeling cache contention [11, 19] and job co-scheduling [26, 59].

Other hardware techniques to enable cache management have also received

research attention [22,52,98,113]. Suhendra [113] proposes partitioning and

locking mechanisms to minimize unpredictable cache contention. Cache re-

configuration [98] has also been proposed as a mechanism to enable cache

partitioning. Although these works show promising future directions for

hardware and system designers to take when addressing these problems,
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unfortunately current commodity micro-architectures cannot support these

solutions as they do not meet the micro-architectural assumptions made

these works. Another very promising direction based on what is likely to

be future hardware capabilities, is to leverage core specific dynamic voltage

scaling as is presented by Herdirch, Illikkal, Iyer, et al [48].

While there has been a lot of work on mitigating the performance inter-

ference due to resource contention on multicore, not much work is directly

applicable to the datacenter co-location problem. Perhaps the closest related

work is the Quarta work by Govindan et al. [41]; however this work requires

access to physical memory addresses which can only be attained via custom

changes to the OS, and as the authors themselves mention, such an approach

is not feasible at user-level. One direction that has attracted much research

attention is the management of shared cache and bandwidth through tech-

niques such as resource partitioning [22,71,86,87,93,95,96,109,110,112,124],

throttling [34] and adaptive cache replacement policies [57]. Previous work

has also investigated providing QoS management for different applications

on multicore [43,48,56,83]. While demonstrating promising results, the pre-

vious work on QoS management and resource partitioning typically requires

changes to the hardware design, which is not applicable to deployed servers.

Software resource partitioning has also been proposed [28,70,115]. However,

most software partitioning techniques focus on shared cache, while ignoring

memory bandwidth contention, which is another main cause of performance

interference. In general, our work is complementary to the above resource

management research. While previous work focuses on providing resource

management for performance isolation or performance optimization for co-

running applications, our work focus on predicting which applications can be

co-run with a given application without degrading its QoS beyond a certain

threshold.
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Previous work on scheduling to mitigate contention and to improve cache

sharing is closely related to our work [25,38,60,63,127]. For an application,

different co-runners may cause different amounts of performance interference

on a CMP. The intuition of many contention-aware scheduling is to classify

applications based on how aggressively they are for shared memory resources

and intelligently matches highly aggressive applications with not aggressive

applications to minimize the performance degradation [60,63,132]. However,

most previous work focuses on maximizing the overall throughput or main-

taining performance fairness. The approaches cannot address challenges

when applications have different priorities and a subset of the applications

have strict requirements in terms of the tolerable QoS degradation. The

challenge for scheduling to provide such QoS guarantee is that the sched-

uler needs to accurately predict the potential performance degradation for

co-running applications. Current classifiers in contention-aware schedulers

only indirectly classify or rank applications in terms of their levels of aggres-

siveness [63,123,132] or predict their potential cache misses [19,60,76], but

cannot provide direct accurate prediction in terms of performance degrada-

tion.
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In this chapter, we perform a study of execution environment (EE) di-

versity as it exists in commercial production WSCs and its impact on large-

scale commercial web-service workloads. We also replicate this study using

benchmark workloads on machines spanning multiple commodity machine

configurations to provide repeatable experimentation. Finally, we introduce

a metric, opportunity factor, that, given the application mix and machine

mix in a WSC, quantifies an application’s sensitivity to, and potential per-

formance improvement from, exploiting the heterogeneity in that WSC.

27
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CPU GHz Cores L2/L3 Nickname

Clovertown Xeon E5345 2.33ghz 6 8mb Clover

Istanbul Opteron 8431 2.4ghz 6 6mb Istan

Westmere Xeon X5660 2.8ghz 6 12mb West

Table 3.1: Production Microarchitecture Mix

3.1 Diversity in Execution Environments

The potential benefit of exploiting, and adapting to, execution environment

(EE) diversity within WSCs can be illustrated by the amount of performance

variability suffered by applications due to varying their execution environ-

ment. Specifically, this variation includes changes in machine configurations

and the set of possible co-running applications. In this section, we inves-

tigate this performance variability for large-scale commercial web-services.

We focus not only on how sensitive each application’s performance is to the

EE diversity, but also the variance of this sensitivity across a set of applica-

tions. To investigate how our findings generalize to other applications, and

to provide repeatable experimentation, we also present results using an ex-

perimental testbed composed of benchmark applications in addition to the

production study.

3.1.1 WSC Test Platform

We first conducted our experiments across the three production platform

types presented in Table 3.1. These three platforms are commonly found

coexisting in a single WSC in Googles production fleet. The applications

we use in the study are described in Table 3.2. These applications cover

nine large industry-strength workloads that are responsible for a significant

portion of the cycles consumed in arguably the largest web-service WSC

infrastructure in the world. Table 3.2 also presents a description for each

application. Each application corresponds to an actual binary that is run
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workload description type

bigtable A distributed storage system for managing
petabytes of structured data

user-facing

ads-servlet Ads sever responsible for selecting and placing tar-
geted ads on syndication partners sites

user-facing

maps-detect-face Face detection for streetview automatic face blur-
ring

batch

search-render Web-search frontend server, collect results from
many backends and assembles html for user.

user-facing

search-scoring Web-search scoring and retrieval user-facing

protobuf Protocol Buffer, a mechanism for describing ex-
tensible communication protocols and on-disk
structures. One of the most commonly-used pro-
gramming abstractions at Google.

user-facing

docs-analyzer Unsupervised Bayesian clustering tool to take key-
words or text documents and “explain” them with
meaningful clusters.

both

saw-countw Sawzall scripting language interpreter benchmark both

youtube-x264yt x264yt video encoding. batch

Table 3.2: Production WSC Applications

in the WSC. These applications are part of a test infrastructure developed

internally at Google composed of a host of Google workloads and machine

clusters that have been both laboriously configured by a team of engineers

for performance analysis and optimization testing across Google. Each ap-

plication shown in the table operates on a repeatable log of thousands of

queries from actual user activity from production. The number of cores used

by each application is configured to three for both solo and co-location runs.

We also use this test infrastructure in Chapter 4.

3.1.2 Microarchitectural Diversity

We first characterize the performance variability that arises due to microar-

chitectural diversity in WSCs. In addition to quantifying the magnitude

of the performance variability, our study also aims to investigate firstly,

whether microarchitectures consistently outperforms others for all applica-

tions; and secondly, the differences in how sensitive the performance of each

application is to varying platform types. As we discuss later in this section,
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Figure 3.1: Performance comparison of key Google applications across three microar-
chitectures. Each cluster is normalized to poorest performing architecture (the higher the
better)

the variance in performance sensitivity across all applications in a work-

load is an important indicator or the potential benefit from exploiting, and

adapting to, EE diversity.

Figure 3.1 presents the experimental results for our Google testbed with

9 key Google applications running on 3 types of production machines.1 The

y-axis shows the performance (average instructions per second) of each ap-

plication on three types of machines, normalized by the worst performance

among the three for each application. As Figure 3.1 shows, even among

three architectures that are from competing generations, there is a signifi-

cant performance variability for Google applications. More interestingly, no

platform is consistently better than the others in this experiment. Although

the Westmere Xeon outperforms the other platforms for most applications,

maps-detect-face running on the Istanbul Opteron outperforms the West-

mere Xeon by around 25%. On the other hand, the Clovertown Xeon and

Istanbul Opteron compete much more closely.

1Docs-analyzer’s data on Istanbul is missing because it is not configured for that
particular platform.
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Figure 3.2: Google application performance when co-located with bigtable (BT),
search-scoring (SS), and protobuf (PB). Negative indicates slowdown

It is also important to note that even though the Westmere Xeon plat-

form is almost always better than the other two, the performance sensitivity

to platform types vary significantly across applications, ranging from gain-

ing only 10% speedup for protobuf when switching from the worst plat-

form (Opteron) to the best (Westmere Xeon), to as large as 3.5x speedup

for docs-analyzer. From this experiment, we conclude that diversity in

machine configurations present in modern WSCs has a significant impact

on application performance.

3.1.3 Co-Runner Diversity

Figure 3.2 illustrates the performance variability due to co-location interfer-

ence for Google applications. This figure shows the performance interference

of each of the 9 Google applications when co-locating with another applica-

tion: bigtable (BT), search-scoring (SS) and protobuf (PB). The y-axis

shows the performance degradation of each benchmark when co-located on

each platform. We calculate this degradation using the application’s ex-

ecution rate when co-located normalized to the execution rate when it is

running alone on that platform. The lower the bar, the more severe the
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performance penalty. We observe that the same co-runner causes varying

performance penalties to different applications. We observe a performance

degradation ranging from close to no penalty, 2% or less in some cases, to

almost 30% .

More interestingly, the variability in co-location penalty is not an iso-

lated factor. It is also complicated by the diversity in microarchitectures.

For each application shown in the figure, a single co-running application

may cause varying performance penalties as the underlying microarchitec-

ture changes. It is important to note that microarchitectural diversity on

average has a more significant performance impact than co-location diver-

sity. The performance variability due to microarchitectural heterogeneity is

up to 3.5x; while the there is generally less than 30% performance degrada-

tion due to co-location. However, the relative impact of the two depends on

applications. For some applications (e.g protobuf), co-running diveristy has

a greater impact than machine diversity. From this experiment, we conclude

that diversity in co-running tasks present in modern WSCs has a significant

impact on application performance.

3.1.4 Motivation for Intelligent Mapping

As we demonstrate in Chapter 4, this variability in performance sensitiv-

ity (various speedup ratios) impacts how job placement decisions should be

made to maximize the overall performance. This variability is indeed in-

dicative of the amount of potential performance improvement achievable by

intelligent mapping. For a WSC composed of limited number of each mi-

croarchitecture, the overall performance can be maximized by a smart job

manager that prioritizes mapping applications with higher speedup ratios

to faster machines. For example, as shown in Figure 3.1, to achieve the

best overall performance, docs-analyzer or big-table should be priori-
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CPU GHz Cores L2/L3 Memory

Core i7 920 2.67ghz 4 8mb 4gb

Core 2 Q8300 2.5ghz 4 4mb 3gb

Phenom X4 910 2.6ghz 4 6mb 4gb

Table 3.3: Experimental Microarchitecture Mix
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Figure 3.3: Performance comparison of benchmark workloads across three microarchi-
tectures.

tized to use the Westmere Xeon over protobuf. Furthermore, as we show

in Figure 3.2, when exploiting EE diversity in WSCs to perform better job-

to-machine mapping, there may be a compounding benefit to consider both

machine and co-runner diversity simultaneously. In Chapter 4, we provide a

technique to exploit this opportunity, and delve into more details as to the

causes of this performance variability.

3.1.5 Benchmark Testbed

To investigate how our findings using Google’s infrastructure generalize to

other application sets, and to provide experimental results that are repeat-

able without requiring access to Google’s internal infrastructure, we replicate

our study in an experimental benchmark testbed. In our experimental infras-

tructure we use a spectrum of 22 SPEC CPU2006 benchmarks on their ref

input as our application types and three state-of-the-art microarchitectures
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Figure 3.4: Benchmark slowdown when co-located with lbm.

as our machine types running Linux 2.6.29. The underlying microarchitec-

tures of these three machine types are presented in Table 3.3. All application

types are compiled with GCC 4.5 with O3 optimization. The results are pre-

sented in Figures 3.3 and 3.4. Similar to Figures 3.1 and 3.2, Figures 3.3

and 3.4 present each benchmark’s normalized performance when running on

varying hardwares, and its performance degradation when co-located with

lbm, respectively. These two figures demonstrate that the observations of

performance variability of Google applications can be generalized to SPEC

benchmarks on the machine types used in our benchmark testbed. In ad-

dition, applications present various levels of performance sensitivity to such

EE diversity. This indicates that the homogeneity assumption may leave

a large performance opportunity untapped within our benchmark testbed

also.

3.1.6 Implications on WSC Design

The findings of the studies presented in this section shows that EE diversity

has a significant impact on the performance of tasks as they run in modern

WSCs. However, currently, this EE diversity is ignored by the system design

of WSCs. Tasks are not placed within the EE where they run best, tasks can
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not adapt to its EE, and current systems can not measure and manage EE

events such as the interference between tasks. This dissertation argues that

exploiting, and adapting to, the EE diversity in modern WSCs is critical for

a highly efficient WSC design.

3.2 An Opportunity Metric for EE Diversity

An important concept arises from the previous section. Depending on how

“immune” or “sensitive” an application is to microarchitectural and co-

runner variation, each application would benefit differently from a job map-

ping policy that takes advantage of EE diversity. We introduce a metric,

opportunity factor, that approximates a given application’s potential perfor-

mance improvement opportunity relative to all other applications, given a

particular mix of applications and machine types. The higher the opportu-

nity factor, the more sensitive an application to diversity in the WSC. Note

that this opportunity factor can be calculated only when the application

mix and the machine mix are known.

For a given WSC, we can denote the application of type i as Ai, and the

microarchitecture of type j as Mj . We define the speedup factor for Ai as:

SFAi
=

maxj,k{IPSAi,Mj ,Ck
} −minj,k{IPSAi,Mj ,Ck

}

minj,k{IPSAi,Mj ,Ck
}

, (3.1)

where IPSAi,Mj ,Ck
is application Ai’s IPS (instruction per second) when it is

running on machine Mj with a set of co-runners Ck. The SFAi
is essentially

the amount of performance variability of Ai in all possible configurations of

the execution environment, composed of the cross product of all machine

options and co-runner options. Using SFAi
, we can define the Opportunity
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Factor (OF) for Ai as:

OFAi
=

SFAi∑
j SFAj

(3.2)

OFAi
represents the sensitivity of each application type to the overall

diversity of a given application mix, relative to all other applications. This

metric allows datacenter designers, operators and reliability engineers to

reason about the performance improvement potential of various applications

in the datacenter and identify applications that are most likely to benefit

from intelligent job mapping. We present and discuss OF results for both

Google and benchmark testbeds in Section 4.2.4.
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In this chapter, we address the homogeneous assumption at the cluster

level by providing a mechanism to automatically and continuously learn the

execution environments tasks prefer, and intelligently map tasks where they

run best. We then evaluate this approach in both our commercial produc-

tion environment, and our benchmark testbed as presented in Chapter 3.

Finally, we perform an investigative analysis of the key factors impacting

the performance opportunity of exploiting EE diversity in WSCs, and the

implications on machine purchasing strategies for populating WSCs.

4.1 Opportunistic Mapping with SmartyMap

In this section, we discuss how heterogeneity in WSCs can be exploited to

improve the cost efficiency of WSCs by improving overall performance. We

first present the overview of our approach. We then present the formula-

tion of the problem of mapping a set of jobs to the heterogeneous WSC

as an optimization problem. Finally, we describe our mapping approach,

SmartyMap, and present four mapping policies.

4.1.1 Overview of SmartyMap

SmartyMap utilizes continuous profiling information provided by the moni-

toring service commonly found in WSCs, such as the Google Wide Profiler

(GWP) [100], to intelligently map jobs to machines. Figure 4.1 illustrates

how SmartyMap is integrated in a WSC system to exploit EE diversity.

We formulate the problem of mapping jobs to machines as a combinatorial

optimization problem and thus the main component of SmartyMap is an

optimization solver (Section 4.1.2).

A key requirement for SmartyMap and especially for the optimization

solver is the evaluation and comparison of mapping decisions. As illustrated
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Figure 4.1: The Overview of SmartyMap

in Figure 4.1, Map Scorer utilizes GWP to perform such evaluation. GWP

continuously monitors and profiles jobs as they run in production WSCs,

and archives the profiles in a database. Map Scorer extracts information

from the GWP database to build and continuously increment an internal

representation of profiles, keeping track of the performance of each appli-

cation in various execution environment. Using these profiles, Map Scorer

compares various mapping decisions, and identifies better mappings based

on the historical data describing how well a job performs in a given environ-

ment. It is important to note that, during the optimization process, instead

of actually mapping jobs to various execution environments to measure its

performance variability and identify the best mapping (which would be ex-

tremely costly), our approach utilizes the historical profiling data stored by

GWP to simulate and score mappings. The presence of a continuous moni-

toring service, in this case GWP, is the key to making SmartyMap feasible

in a production.

It is important to make the distinction between the costs associated with

populating the GWP database (referred to later as profiling complexity),
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which occurs continuously through the lifetime of operation of the WSC,

versus the cost of utilizing the information in GWP’s database to search for

the optimal mapping, which is often in the order of minutes for a typical

scale of thousands of machines and dozens of application types. There are

tradeoffs between the amount of profiling and the accuracy of estimating

and comparing mapping decisions based on the profiling. These trade-offs

are discussed in detail in Section 4.1.3.

4.1.2 Mapping an Optimization Problem

As mentioned earlier, we formulate the problem of mapping jobs of dif-

ferent types and characteristics to a set of diverse execution environments

as a combinatorial optimization problem. The optimization objective is to

maximize the overall performance of the entire WSC, e.g. the aggregated

instruction-per-second (IPS) of all jobs. Focusing on job mappings that im-

prove overall performance by formulating it as an optimization problem is

especially suitable for modern WSCs due to the unique properties of this

computing domain: the set of important web-service applications are known

and fairly stable; the main web-service jobs are often long running jobs; and

migrations of jobs rarely happens because of the high cost.

The core algorithm (Algorithm 1) used by SmartyMap to solve the

optimization problem is based on traditional iterative optimization tech-

niques [99, 103, 121]. We use a stochastic hill climbing algorithm. First

a random mapping is generated, then for each iteration that mapping is

perturbed with a random swapping between two job placements. If the

new mapping is better (determined by a scoring function) this mapping is

kept, otherwise the jobs are “unswapped.” This search process continues

for a given period of time, controlled by the parameter optimization timer.

Remember, these mappings are simulated internally by SmartyMap using
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Algorithm 1: Core Optimization Algorithm

Input: set of free machines and available jobs
Output: an optimized mapping

1 while free machines and available jobs do
2 map random job to random machine;
3 end
4 set last score to the score of current map;
5 while optimization timer not exceeded do
6 foreach machine do
7 foreach job on that machine do
8 swap job with random job on random machine;
9 set cur score to the score of current map;

10 if mapping score is better then
11 set last score to cur score;
12 else
13 swap jobs back to original placements;
14 end

15 end

16 end

17 end

scores (Section 4.1.3) calculated from GWP information. When the simu-

lated mappings converges to optimal the optimized mapping is then used to

steer the actual mapping of jobs to machines.

4.1.3 Map Scoring

A score of a particular placement of a job to a machine is used to mea-

sure how good the placement of a job is. To score an entire map of jobs

to machines we use the sum of all of the placement scores. The higher the

score, the better the map. The scoring policy is an essential part in Smar-

tyMap. It is used in each optimization iteration to compare mappings. In

this work, we present and evaluate a number of scoring policies that vary in

the required profiling necessary to generate the score. Table 4.1 shows the

descriptions and profiling complexities for our map scoring policies, where

|A| corresponds to the number of application types, |M | corresponds to the
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Approach Description Complexity

Smarty-C Co-location Score: This score is based
only on co-location penalty and only re-
quires profiling the co-location penalty on
any type of machine. Once a co-location
profile is collected it is then used to score
that co-location regardless of the underly-
ing microarchitecture.

|A|n

Smarty-Cs Co-location Score (Smart): This score
is based on co-location penalty with mi-
croarchitecture specific information. Infor-
mation about co-location penalty must be
collected for all platforms of interest.

|A|n × |M |

Smarty-M Microarchitectural Affinity Score:
This score is based on microarchitectural
affinity and captures only the speedup of
running each application on one microar-
chitecture over another.

|A| × |M |

Smarty-MCs Microarchitectural Affinity and Co-
location Score: This scoring method
includes both microarchitectural affinity
and microarchitecture specific co-location
penalty. This scoring technique has the
heaviest profiling requirements.

|A|n+1 × |M |

Table 4.1: Mapping Scoring Policies

number of machine types, and n corresponds to the number of co-runners

allowed on each machine. The profiling complexity indicates the amount of

profiling the Map Scorer needs from GWP. For example, among all policies,

Smarty-M requires the smallest amount of profiling, |A| x |M |, indicating

that the scorer only needs performance profiles of each application type on

each machine type from GWP, without the need of knowing the applica-

tion’s co-runners when the profiling was conducted. In a practical setting

of a WSC, |A| is in the order of magnitude of 10s – 100s, |M | is often less

than 10 and n is often only 1 or 2 as typically only one or two major web-

service jobs, in addition to several low-overhead background processes such

as logsaver, are co-located on a given machine in a WSC.

The accuracy of the scoring policy determines the mapping quality of

SmartyMap. Smarty-MCs has the complete information thus could provide
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the best result. Meanwhile, Smarty-M, Smarty-C and Smarty-Cs require

less time for GWP to collect all needed information. However, they are

also less accurate, thus may lead to suboptimal results. The trade off is

between the amount of available profiling information and maximizing the

performance gain. In addition, the landscape of diversity present in the WSC

has a significant impact on the usefulness of some profiling information. In

Section 4.3 we further investigate the factors that impact the diversity and

discuss the selection of the appropriate map scoring policies.

The complexity of SmartyMap is decided by both the profiling complex-

ity of scoring policies and the computation complexity of the optimization

solver. However, as we mentioned before, GWP continuously profiles in the

background through the lifetime of a WSC and its cost is thus hidden from

SmartyMap. SmartyMap simply utilizes the profiling information available

at any given time and keeps on updating its performance profiles based on

the newly accumulated profiling data collected by GWP to continuously

improve its scoring and thus the mapping decisions. On the other hand,

the complexity of using our optimization solver based on the map scores to

search for the optimal mapping is relatively low, typically in the order of

minutes.

4.2 The Benefit of SmartyMap

We first evaluate SmartyMap using our production and benchmark testbeds

and investigate the amount of performance improvement gained by exploit-

ing the EE diversity in a given WSC over the status-quo. In addition, we

compare four different scoring policies of SmartyMap to gain insights on the

impacting factors of the potential performance benefit.
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4.2.1 Goals and Methodology

The goal of this evaluation is to quantify and demonstrate the performance

opportunity when taking advantage of the EE diversity in a WSC. We ac-

complish this by measuring the performance improvement when using our

diversity-aware approach, SmartyMap, over the diversity-oblivious mapping.

We also evaluate the performance of four different scoring policies discussed

in Section 4.1.3. Comparing various scoring policies allows us to identify

the performance improvement provided by considering microarchitecture or

co-location in isolation, which sheds light on the important factors that im-

pact the amount of EE diversity. In addition to the overall performance

of an entire WSC, we present the application-level performance achieved by

SmartyMap and compare it with the estimation provided by the opportunity

factor discussed in Chapter 3.2.

We conduct thorough investigation and evaluation in three domains, us-

ing Google and benchmark testbeds as well as production data running live

web-services in the field. For experimentation using Google and benchmark

testbeds, we use platform types previously presented in Tables 3.1 and 3.3

along with the 9 Google key applications and 22 SPEC CPU2006 bench-

marks, respectively.

For our testbed evaluation, we construct an oracle based on comprehen-

sive runs on real machines. Given a map of jobs to a set of machines this

oracle reports the performance of that mapping. To construct this oracle,

we run all combinations of co-locations on all machine platforms and collect

performance information. This performance information is in the form of

instructions per second (IPS) for each application in every execution envi-

ronment. Using this information we construct a knowledge bank that is used

as a reference for the performance of a particular event in a given WSC. We

have validated that all runs are repeatable in our Google and Benchmark
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Figure 4.2: Opportunistic Mapper compared to random and worst cases. (higher is
better)

testbeds (performance variation of 1% on average). Given a job-to-machine

mapping, we use the knowledge bank as the oracle to calculate the aggre-

gate performance of the entire WSC composed of various machine types.

The knowledge bank is used in modeling GWP and provides partial pro-

filing information that the map scorer needs. In this case, depending on

the scoring policy, partial information (such as only machine diversity or

co-location diversity) is calculated from the knowledge bank using sample

runs to populate GWP’s databased at various levels of profiling complexity.

4.2.2 Overall IPS

In Figure 4.2 we compare our SmartyMap, the random mapper and the worse

case mapper for overall performance of a WSC. We first use the aggregated

instructions per second (IPS) of the entire WSC as our performance metric.

The experiments shown in this figure are conducted on the Google testbed

(1st cluster of bars) and the benchmark testbed (2nd and 3rd clusters of

bars). The y-axis shows the normalized overall performance (IPS) of a

WSC when using various job-to-machine mapping policies. To calculate the

normalized IPS performance of an entire WSC for a given job-to-machine

mapping, we aggregate the average IPS of all jobs. The normalization base-
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line for each cluster of bars is the sum of the average IPS of each job when

it is run alone on its best performing machine type. The higher the bar is,

the better the IPS performance.

The first cluster of bars presents results for the Google testbed. In

this experiment, the testbed WSC is composed of 500 machines with 1000

jobs running; two jobs are co-located on each machine. We choose the

2-Jobs scenario because typically only one or two major web-service jobs

are co-located on a given machine in a WSC. The machine composition

and workloads of the WSC are randomly generated from the three machine

types shown in Table 3.1 and 9 key Google applications shown in Table 3.2.

Each bar in the cluster presents the performance for the worst mapping,

random mapping, as well as SmartyMap using four varying scoring policies

as discussed in Section 4.1.3. Similarly, the second and third clusters present

results for benchmark testbed. For the 1-Job scenario, there are 500 jobs

running in a WSC composed of 500 machines, with only one job running

on each machine; while the 2-Jobs scenario has 1000 jobs running on 500

machines. The machine composition and workloads of the WSC are also

randomly generated using the three machine types from our benchmark

testbed (Table 3.3) and SPEC CPU2006 suite.

In Figure 4.2 we observe a significant benefit from using SmartyMap for

the Google testbed experiment. Among the four scoring policies of Smar-

tyMap, we achieve the best performance when considering both machine and

co-location diversity (Smarty-MCs), which improves the overall normalized

IPS of the entire WSC by 18% over the random mapping (from 0.72x to

0.85x) and 37% over the worst case mapping. Also, in this experiment,

Smarty-M performs comparably well as Smarty-MCs. This indicates that

there is a significant performance benefit to consider the machine diver-

sity. Meanwhile, when only co-location effects are considered to score maps
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(Smarty-C and Smarty-Cs), we observe less overall performance gains. It is

within 1-2% of the random mapping result. However, note that the random

mapping already greatly improves the IPS over the worst case, by around

17%. This is because Smarty-C and Smarty-Cs focuses only on the perfor-

mance impact of resource contention between co-located applications on the

same machine. When the workload is a fairly balanced mix of contentious

(memory-intensive) applications and non-contentious (CPU intensive) ap-

plications, randomizing the mapping can effectively decrease the chance of

co-locating two contentious applications, and in turn improve over the worst

case by reducing a significant amount of co-location penalties. These results

indicate that for the Google workloads and production machine mix in our

testbed, exploiting the machine diversity may have a bigger impact than

considering co-location diversity alone. However the relative importance of

machine and co-location diversity depends on the machine/workload mix.

We explore those impacting factors in greater detail in Section 4.3.1.

The results for the benchmark testbed, shown as the second and third

clusters of bars, are in general consistent with the Google testbed results.

For the 1-Job scenario in the benchmark testbed, as we expect, Smarty-C

and Smarty-Cs do not improve performance over random mapping. And

Smarty-M and Smarty-MCs perform equally well. This is because there is

no co-location in a 1-Job scenario. The performance improvement of Smar-

tyMap using Smarty-MCs over the worst case mapping is 26% and close to

14% over random mapping. For the 2-Jobs scenario (the 3rd cluster) we ob-

serve that scoring policies that only consider co-location diversity (Smarty-

C, Smarty-Cs) are quite effective, generating up to an 8% improvement

over random mapping. This is better than the performance of Smarty-C in

2-Jobs scenarios for Google applications, demonstrating that the effective-

ness of Smarty-C depends on the machine/workload mix. Only consider-
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Figure 4.3: Mapping policy’s impact on latency to complete all jobs. (lower is better)

ing microarchitectural diversity without considering co-location (Smarty-M)

can produce a 12% performance benefit over the random mapping, higher

than Smarty-C. When SmartyMap combines both machine diversity and co-

location penalty diversity (Smarty-MCs), the performance improvement is

increased to about 16%.

4.2.3 Latency

In addition to the aggregated IPS, we also compare the latency of all jobs in a

WSC, defined as the execution time of the longest-running job under a given

job-to-machine mapping. Figure 4.3 shows the latency of various mapping

policies, normalized to the latency when all jobs run alone on their best

performing machine type. Interestingly, although the random mapping can

improve the average IPS performance, it performs equally as poorly as the

worst mapping for improving latency. In this experiment our SmartyMap

improves the job placement of the slowest job resulting in lower overall

latency. Again, Smarty-MCs performs the best, and Smarty-M performs

comparably well.
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4.2.4 Impact at the Application-level

We further examine the performance improvement of each application and

compare it with the estimation by the opportunistic factor (Section 3.2).

Figure 4.4 presents the performance improvement at the application level

from the 2-Jobs scenario with 500 machines and 1000 applications for

Google testbed as in Figures 4.2 and 4.3. The y-axis shows each appli-

cation type’s performance using SmartyMap, normalized to each type’s av-

erage performance in a random mapping. This figure demonstrates that

application types have varying amounts of performance benefit from Smar-

tyMap. For example, while there is a 16%-19% performance improvement

overall, docs-analyzer, which is sensitive to both microarchitectural and

co-location diversity, achieves a 80% performance improvement over ran-

dom mapping. There are also applications that suffer performance degrada-

tion. However, as shown in the figure, the performance improvement greatly

outweighs these degradations. Figure 4.5 presents the opportunity factor

(OF) of each application, calculated using Equation 3.1 and Equation 3.2

in Section 3.2. As the corresponding Figures 4.4 and 4.5 show, OF cor-

rectly identifies the top applications that benefit from SmartyMap including

docs-analyzer and search-render. However not all of the application-

level opportunity is realized. Remember that mapping to exploit EE di-

versity in WSCs is a constraint optimization problem. As a result, not all

applications can be mapped to their individual optimal situations to achieve

the maximum performance improvement. For example, docs-analyzer has

a slightly better OF than bigtable and they both prefer Westmere platform,

so as the “preferred” Westmeres in a WSC are consumed by docs-analyzer,

bigtable’s mapping options are reduced. As shown in Figures 4.6 and 4.7,

we observe similar results for the applications in our benchmark testbed.

Both SmartyMap and the opportunistic factor (OF) rely on GWP pro-
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Figure 4.6: Speedup at the application level. (Benchmark)
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Figure 4.8: Performance improvement from SmartyMap over the currently deployed
mapper in production

filing information. And both of their accuracy is determined by the amount

of profiling. However they have different focuses. OF focuses on each in-

dividual application. It summarizes the amount of performance variability

an application has due to EE diversity, relative to the rest of the work-

loads; and it indicates the maximum amount of performance improvement

the application can benefit from intelligent mapping. On the other hand,

SmartyMap often focuses on improving the overall performance of a WSC.

OF helps identify applications that can have significant performance im-

provement and can be used by WSC operators to make mapping decisions

on top of SmartyMap. For example, operators may realize the potential

of bigtable using OF, and thus prioritize its mapping by inserting special

rules in SmartyMap.

4.2.5 SmartyMap in the Wild

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9

4 3 2 3 2 3 2 5 2 2

Table 4.2: Number of Machine Types in Production WSCs

Lastly, we employ SmartyMap on live production GWP profiles to study

the potential performance improvement when exploiting EE diversity in the
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wild for live production WSCs. We conducted our evaluation in 10 ran-

domly selected WSCs in Google’s production fleet. These WSCs present

various levels of machine diversity. We have collected detailed Google-Wide

Profiling (GWP) [100] profiles of around 100 job types running across these

WSCs consisting of numerous machines in the wild. These jobs span most

of Google’s main products, including web-search. Using the GWP profiles,

we conducted a postmortem SmartyMap analysis to re-map jobs to ma-

chines and calculate the expected performance improvement. To do that,

firstly, instructions per cycle (IPC) samples are derived from GWP profiles.

We use cycle and instruction samples collected using hardware performance

counters by GWP over a fixed period of time, aggregated per job and per

machine type. IPS (instructions per second) for each application on each

machine type is then computed by normalizing the IPC by the clock rate.

These IPS samples are used for map scoring. Here we use Smarty-M policy,

considering only microarchitectural diversity.

Using SmartyMap, we produce an intelligent job-to-machine mapping in

a matter of seconds at the scale of thousands of machines of multiple types,

over a hundred job types and the performance profiles of over the course of a

month of operation. Figure 4.8 shows the calculated performance improve-

ment when using SmartyMap over the currently deployed diversity-oblivious

mapping in 10 anonymized Googles active WSCs. Although some major

applications are already mapped to their best platforms through manual as-

signment, we have measured significant potential improvement of up to 15%

when intelligently placing the remaining jobs. The performance opportunity

calculation based on this section is now an integral part of Google’s WSC

monitoring infrastructure. Each day the number of ‘wasted cycles’ due to

inefficiently mapping jobs to the WSC is calculated and reported across each

of Google’s WSCs world wide.
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It is important to note that each of these 10 WSCs have varying machine

and application mixes. As shown in Table 4.2, the amount of performance

opportunity does not simply depend on the number of machine types in the

WSC. For example, D6 has 12% performance improvement although it is

composed of only 2 machine types. However, while D7 is composed of 5 ma-

chine types, its performance improvement is only around 5%. Instead, it is

the diversity along both machine and application mixes that drastically im-

pacts the performance potential. In the next section, we further explore how

these factors impact the amount of diversity and the resulting performance

opportunity in WSCs.

4.3 Factors Impacting EE Diversity

The rationale behind the homogeneity assumption stems from a lack of un-

derstanding on how the gradual introduction of diversity in a WSC impacts

performance variability. In this section, we perform a study of how vary-

ing the diversity in a WSC affects the performance opportunity from the

diversity available in the WSC along two dimensions, application mix and

machine platform mix. We then present insights into how these two factors

affect server purchase options as well as the selection of the appropriate map

scoring policies.

4.3.1 Impact of Workload Mix on EE Diversity

In this section, we evaluate a variety of workload mixes to investigate how

workload mixes impact the performance improvement when exploiting EE

diversity. We partitioned our 9 Google applications into two types, memory

intensive (and thus likely to be contentious) and CPU intensive. We also

selected the top 8 memory intensive applications and the top 8 CPU inten-
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Workload Application Types

Google Mostly Mem bigtable, ads-servlet, search-render, docs-
analyzer

Google Mostly CPU maps-detect-face, search-scoring, proto-
buf, saw-countw, youtube-x264yt

Memory lbm, libquantum, mcf, milc, omnetpp, so-
plex, sphinx, xalancbmk

CPU hmmer, namd, povray, h264ref, gobmk,
dealII, sjeng, perlbench

Mix ( 1
2
Mem/ 1

2
CPU) lbm, libquantum, mcf, milc, hmmer,

namd, povray, h264ref

Mostly Mem ( 3
4
Mem/ 1

4
CPU) lbm, libquantum, mcf, milc, omnetpp, so-

plex, hmmer, namd

Mostly CPU ( 3
4
CPU/ 1

4
Mem) hmmer, namd, povray, h264ref, gobmk,

dealII, lbm, libquantum

Table 4.3: Workload Mixes
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Figure 4.9: Impact of varying workload mix on available EE diversity for Google testbed.
Performance is normalized to random mapping. (higher is better)

sive applications from SPEC 2006. As shown in Table 4.3, we constructed

7 types of workloads using our classification. We then conducted various

job mapping experiments on these workloads to investigate the performance

benefit of using SmartyMap over the random mapping. All experiments

on the Google testbed use a WSC of 500 machines evenly distributed from

3 machine types listed in Table 3.1 (166 Clovertown Xeon, 166 Istanbul

Opteron, 168 Westmere Xeon). Similarly, the benchmark testbed experi-

ments use 400 machines composed of 3 types of microarchitectures listed in

Table 3.3 (133 Core i7s, 133 Core 2s, 134 Phenom X4s).

Figures 4.9 and 4.10 present our experimental results for the Google

and benchmark testbeds, respectively. We conducted a 2-jobs-per-machine
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Figure 4.10: Impact of varying workload mix on available EE diversity for SPEC bench-
mark testbed. Performance is normalized to random mapping.

experiment using the Google testbed and both 1-Job and 2-Jobs scenarios for

the benchmark testbed. In each figure, the x-axis shows each experiment’s

configurations. For example, in Figure 4.10, the notation 1J-MostlyCPU

indicates the 1-job-per-machine scenario and the workload is composed of 3
4

CPU intensive benchmarks and 1
4 memory intensive benchmarks. The y-axis

shows SmartyMap’s performance improvement over the random mapping.

The performance metric is the overall aggregated IPS of all machines. As the

figures show, the amount of performance benefit of using SmartyMap to take

advantage of EE diversity varies when the workload mix varies. Specifically,

we have the following observations and insights.

1. The performance benefit potential is smaller for CPU intensive work-

loads than memory intensive workloads or mixed workloads. Figure 4.9

shows that for Google experiments, the workload of mostly CPU in-

tensive applications achieves a little over 10% improvement over the

random mapping, as opposed to close to 15% for memory intensive

workloads. In Figure 4.10, both 1J-CPU and 2J-CPU experiments

have relatively low performance improvement (less than 5%). This

indicates that for CPU intensive benchmarks, the microarchitectural

diversity is smaller. For our workloads and the 2 sets of microarchitec-
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tures (Tables 3.1 and 3.3), much of the performance variability

and opportunity are in the diversity of memory subsystem

design.

2. In general, more diverse workloads, such as workloads composed of

both CPU and memory intensive benchmarks, have higher perfor-

mance improvement potential for using Smartymap than workloads

composed of pure CPU or pure memory intensive benchmarks. For

example, in Figure 4.10, for the 1-Job scenarios (left half of the fig-

ure), Smarty-MCs has more performance improvement over the ran-

dom mapping for 1J-mix (15%) than 1J-CPU (3%) or 1J-Memory

(10%). Similarly, for the 2-Jobs scenarios (right half of Figure 4.10),

when the workload is composed of only CPU intensive benchmarks

(2J-CPU), the performance improvement is much smaller (4%) than

that for 2J-mix (14%), which has a more diverse workloads.

3. Considering machine diversity only (Smarty-M) is fairly competitive

with considering both machine and co-location heterogeneity (Smarty-

MCs) in most scenarios. On the other hand, considering co-location

only (Smarty-Cs) does not outperform considering machine diversity

only (Smarty-M) in any scenario. One reason is that for both our

Google and benchmark testbeds, the performance variability due to

microarchitectural diversity is as high as 3.5x and 2x, respectively,

while the performance variability due to the penalty of co-locating two

jobs is only around 30% (Figures 3.1 and 3.2). However, in the next

section we will further investigate the performance difference between

Smarty-MCs and Smarty-M when the amount of microarchitectural

diversity changes.
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4.3.2 Impact of Machine Mix on EE Diversity

In addition to the workload mix, microarchicture mix also has a significant

impact on the amount of EE diversity in a WSC. In this section we study the

impact of varying microarchitecture mix on the performance improvement

of SmartyMap. We conducted experiments using 6 types of machine mixes

for Google testbeds. The 6 types include: an entire WSC composed of all

Clovertown Xeon, all Istanbul Opteron, all Westmere Xeon, 1
2 Clovertown

+ 1
2 Istanbul, 1

2 Instanbul+ 1
2 Westmere and 1

2 Clovertown + 1
2 Westmere.

The workload for Google testbed is composed of all 9 key Google applica-

tions (Table 3.2). We also conducted similar experiments on the benchmark

testbed, using a a workload composed of mostly memory intensive applica-

tions (Table 4.3).

Figures 4.11 and 4.12 present the results for Google and benchmark

testbed, respectively. Similar to previous figures in Section 4.3.1, in each

figure, the y-axis shows the performance improvement of SmartyMap using

four different scoring policies over the random mapping for different machine

mixes.

The first observation from these two figures is that even mixes of ma-

chines from a similar generation present a significant performance oppor-

tunity for exploiting EE diversity. In Figure 4.11, even for machine mixes
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Figure 4.12: Impact of varying machine mix on EE diversity for SPEC benchmark
testbed. Performance is normalized to random mapping.

composed of only 2 types of machines, SmartyMap generates significant per-

formance improvement over random mapping. For Clovertown and Istan-

bul, which have similar average performance (Figure 3.1), the performance

improvement of their mix is also significant (more than 10%). Similar ob-

servation can be made for the benchmark testbed as shown in Figure 4.12.

It is also important to note that for some machine mixes, the benefit

of using Smarty-MCs (considering both microarchitecture and co-location)

over Smarty-M (considering only microarchitectural diversity) is significant.

For example, in the 2J-Core 2+Phenom X4 scenario shown in Figure 4.12

(the last cluster of bars), Smarty-MCs’s performance improvement over the

random mapping is 14%, significantly higher than the Smarty-M’s 8% im-

provement. This is different from the observations we made in Section 4.3.1

that often Smarty-M performs similarly with Smarty-MCs. The reason for

this difference is that there is less microarchitectural diversity (only 2 types

of machines in the mix) in these experiments than those in Section 4.3.1

and thus the co-location diversity becomes more important. This observa-

tion demonstrates that although the microachitectural diversity is generally

dominantly important, the amount of additional performance benefit when



Chapter 4. Mapping Jobs to Diverse Execution Environments 60

Smarty−MCs

  0.5

  0.6

  0.7

  0.8

  0.9

  1

C
lo

v
er

Is
ta

n

W
es

t

C
lo

v
er

+
Is

ta
n

Is
ta

n
+

W
es

t

W
es

t+
C

lo
v

er

N
o

rm
al

iz
ed

 I
P

S

Worst

Random

Smarty−C

Smarty−Cs

Smarty−M

Figure 4.13: Normalized performance of various options of WSC machine composition
(higher is better)

considering co-location is largely determined by the workloads mix and the

machine mix. We discuss more on this topic in Section 4.3.4.

4.3.3 Which Servers to Purchase?

An important question arises when making server purchasing decisions. Is

machine diversity in a WSC desirable or not? Should we try to increase or

decrease it?

The study of EE diversity in this chapter indicates that when mak-

ing such “heterogeneous” vs “homogeneous” decisions, simply comparing

servers’ average performance for the workload is insufficient and may be

misleading. Instead, we advocate using SmartyMap to estimate the per-

formance of WSC with various machine mixes. In fact, Smartymap makes

the “heterogeneous” WSC a potentially more cost effective (better perfor-

mance/dollar) option than purely homogeneous WSCs.

To illustrate that, Figure 4.13 shows the performance of several WSCs

composed of various machine mixes. The experiments are conducted using

the same workload as in Figure 4.11, composed of all 9 Google applications.

In contrast to Figure 4.11, the performance of all experiments here is normal-

ized to a single baseline, the aggregate IPS of all applications, each running
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alone on its best performing platform. The baseline thus is the optimal

(not necessarily achievable) performance. This facilitates the comparison of

relative performance between WSCs.

Figure 4.13 shows that for homogeneous WSCs (WSCs composed of only

1 type of machine), Westmere is significantly better than the other two ma-

chine types, whose normalized performance is close to 1x. The WSCs com-

posed of all Clovertown or Istanbul perform poorly, achieving only 55% and

less than 70% normalized IPS, respectively. However, Westmere is rather

pricey compared to the other two options. On the other hand, when us-

ing SmartyMap, the WSC composed of half Istanbul and half Westmere

can achieve more than 90% of the performance as the WSC composed of

all Westmere. And the WSC composed of half Clovertown and half West-

mere performs 80% as well as all Westmere. The two heterogeneous WSCs

are more cost-effective than the homogeneous Westmere WSC because half

Westmere and half Istanbul (or Clovertown) would be drastically cheaper

than a WSC of all Westmere, while achieving 90% of the performance (or

80% for Clovertown/Westmere mix). This makes the heterogeneous WSC a

potentially better purchase candidate. However, without SmartyMap, sim-

ply looking at the average performance of these three types of machines may

generate the misleading conclusion that the performance of heterogeneous

WSCs is significantly worse than the homogeneous WSCs composed of elite

machines. As shown in Figure 3.1 (the last cluster of bars), there is a drastic

2x performance difference between Clovertown and Westmere, and around

60% for Istanbul and Westmere, indicating their mix may not deliver similar

performance as a WSC full of Westmere. When only looking at the perfor-

mance of the random mapping, the performance of half Istanbul and half

Westmere is only 80% compared to 90% when using SmartyMap. For half

Clovertown and half Westmere, the performance of random mapping is 75%
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compared to 82% when using SmartyMap. In summary, using SmartyMap, a

heterogeneous WSC may be a more cost-effective option than homogeneous

WSCs.

4.3.4 Revisiting Map Scoring

In addition to the findings discussed in the above sections, this study also

leads to a number of insights on how to select the scoring policy:

1) No free lunch. Among all four scoring policies, Smarty-MCs always

delivers the best performance improvement. However, it also requires the

most amount of profiling to be effective.

2) Smarty-M: big bang for your buck. As this section shows, in most

settings, Smarty-M generates significant performance improvement over ran-

dom mapping with a very small amount of profiling. The profiling complex-

ity is only |A|x|M | as shown in Table 4.1. This indicates that Smarty-M

can be adopted as an easy and effective first step for SmartyMap and can

be triggered as soon as GWP finishes profiling the basic machine diversity

information.

3) Smarty-MCs: gradually improve over Smarty-M. As Sec-

tion 4.3.2 shows, depending on the workload and machine mixes, Smarty-

MCs may also improve over Smarty-M significantly, delivering extra perfor-

mance benefit, especially when there is much co-location penalty variability.

Therefore, Smarty-MCs can be used to gradually improve over the map-

ping of Smarty-M, as the GWP accumulates more information regarding

co-location.

4) It is important to remember that although the profiling complexity of

Smarty-MCs appears high (Table 4.1), GWP runs continuously throughout

the lifetime of the WSC probing each machine once every minute. As the

scale of the WSC increases to thousands of machines the rate at which the
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profiling information becomes robust also increases.
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In this chapter, we address the rigidness of applications at the machine

level by providing a mechanism that enables applications to add to its exe-

cution environment, and also the environment to the application. There is

a class of problems whose solutions require this online adaptation. Two of

these problems are pressing challenges in modern WSCs: the adaptive appli-

cation of aggressive compiler optimizations, and the dynamic detection and

response to contention. After presenting a novel lightweight approach to on-

line adaptation, we demonstrate the utility of this mechanism by designing

novel solutions to both of these problems.

5.1 A Mechanism for Online Adaptation in WSCs

To perform online adaptation, information that is only available at run-time

must be used to restructure the application’s execution, its environment, or

both. Online adaptation is composed of two key tasks. First, the applica-

tion’s execution or execution environment must be monitored as it executes.

Second, when a particular run-time characteristic or event is observed, the

application’s execution or its environment is then restructured or adapted in

some way to accommodate this behavior. To perform these two key tasks,

online adaptation approaches require a run-time component to be present

and executed in tandem with the host application.

However achieving online adaptation for native applications has proved

quite challenging. The runtime layer necessary to perform the monitoring

and dynamic restructuring of the binary application increases the amount

of work required to execute the application. The benefit of adding run-time

online optimization or adaptation must outweigh the penalty suffered from

the added complexity. Effectively achieving online adaptation at the binary

level has proved difficult and has, by-in-large, not been adopted for practical
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use in current industry and commercial domains. Current techniques fall

into two categories: heavyweight dynamic binary translation approaches

that provide too little benefit for the added complexity, and approaches that

propose novel hardware changes and are unable to be realized on current

chip architectures. Both of these approaches are not suitable for modern

WSCs. A new approach is needed.

In this section, we present a new paradigm for achieving online adapta-

tion at the binary level that uses what we call lightweight introspection. In

contrast to a heavyweight online adaptation technique that requires either

instrumentation of the host application to enable monitoring or the dynamic

translation of the applications binary instructions, a lightweight online adap-

tation technique uses no instrumentation and performs no binary to binary

online translation. Our lightweight introspection approach takes full advan-

tage of the performance monitoring hardware features that are ubiquitous in

current micro-architectural design [53] to perform all online monitoring with

negligible overhead and minimal added software complexity. Using a tech-

nique we call periodic probing, monitoring is performed by taking snapshots

of the hardware performance monitors using timer interrupts. In this work,

we take advantage of this lightweight online adaptation methodology to de-

sign Loaf, the Lightweight Online Adaptation Framework. To effectively

achieve online optimization on current microarchitectures, Loaf enables 1)

the monitoring of the application and execution environment, 2) the dy-

namic restructuring of application code, and 3) the cooperative adaptation

of the co-runners in an applications execution environment.

5.1.1 An Overview of Loaf

In order to effectively enable online adaptation, Loaf must provide the capa-

bility to monitor online events and adapt the application or its environment
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to these events. To achieve these capabilities we have three key functionality

requirements for Loaf which includes:

1. An efficient mechanism for the online monitoring of the application or

its environment’s behavior.

2. An efficient mechanism to allow the dynamic restructuring of applica-

tion code. One of the key methods used to adapt application behavior

is to allow code restructuring in response to dynamic events.

3. An efficient mechanism to enable the adaptation of multiple co-running

applications and threads in an application’s execution environment.

Multicore architectures are ubiquitous in today’s computing environ-

ment, and an application can be affected by its simultaneously execut-

ing co-runners.

The underlying philosophy of our online adaptation approach is to

achieve efficiency by remaining as lightweight as possible. An approach

that is lightweight is critical for deployability in modern WSCs. Therefore,

to achieve the tasks of online adaptation, observation and adaptation, with

minimal application interference we use the following approaches to the three

design goals mentioned above:

1. To achieve online monitoring, we use the lightweight approach of pe-

riodically probing the hardware performance monitors on current mi-

croarchitectures. We call this approach lightweight introspection.

2. To achieve the dynamic restructuring of application code, we use the

lightweight approach of statically providing multiple code versions for

regions of interest and allowing dynamic switching based on online

monitoring. We call this approach scenario based multiversioning.
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Figure 5.1: Loaf Overview. (1) Lightweight Introspection (2) Scenario Based Multiver-
sioning (3) Cross-Core Application Cooperation

3. To accommodate adaptation of the application and its environment

based on events that occur due to simultaneous co-scheduling on cur-

rent multicore architectures, we use the lightweight approach of sharing

dynamic monitoring information across cores using a shared commu-

nication table, allowing multiple threads to cooperate during online

adaptation. We call this approach cross-core application cooper-

ation.

Figure 5.1 illustrates how a user of the Loaf infrastructure interacts with

Loaf. Each of the three components mentioned above corresponds to the

numbers in Figure 5.1 respectively. The blue sections of each component

denotes the locations a user must touch to implement the desired adaptation

policy. An adaptation policy is a specification of a desired response to some

dynamic event or set of events. With a particular adaptation policy in mind,

the user can leverage Loafs API in each of these components to enact the

policy.
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Algorithm 2: Loaf LIE Initialization

1 events of interest← user defined events;
2 probe interval← user defined interval

3 foreach e in events of interest do
4 active counters←PMUConfigure(e)
5 end
6 foreach c in active counters do
7 PMUBeginCounting(c)
8 end

9 IssueTimerInterrupt(probe interval)

Algorithm 3: Loaf Periodic Probes

1 PMUStopCounters();
2 foreach e in events of interest do
3 e.value←PMUReadCounter(e)
4 end

5 DoAdaptationAnalysis();
6 Adapt();

7 if new events of interest then
8 events of interest← new events of interest
9 end

10 if new probe interval then
11 probe interval← user defined interval
12 end

13 foreach e in events of interest do
14 active counters←PMUConfigure(e)
15 end
16 foreach c in active counters do
17 PMUBeginCounting(c)
18 end

19 IssueTimerInterrupt(probe interval)
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5.1.2 Online Monitoring

To achieve the necessary task of efficient online monitoring we use lightweight

introspection as shown in Figure 5.1(1). The core intuition of this approach is

to remain lightweight by leveraging periodic probing with the usage of hard-

ware performance monitors. These hardware performance monitors provide

realtime micro-architectural information about the applications currently

running on chip. As the counters record this information, the program ex-

ecutes uninterrupted, and thus recording this online profiling information

presents no instrumentation overhead. These capabilities can be leveraged

with one of the many software APIs, such as PAPI [73] or Perfmon2 [36].

In this work, we use Perfmon2 as it is one of the most robust and flexible

PMU interfaces, and supports a wide range of micro-architectures.

The self introspection run-time employs a periodic probing approach,

meaning information is gathered and analyzed intermittently. Using a timer

interrupt the environment will periodically read the performance monitoring

hardware, reset the timer, and restart the performance monitoring counters.

The algorithms that comprise our lightweight introspection engine is shown

in Algorithms 2 and 3. Periodic probing is an efficient method for collect-

ing information from hardware performance monitors. The overhead of this

technique is determined by two factors: the frequency of probes (e.g. inter-

rupts), and the complexity of the analysis and adaptation work done during

those interrupts. These two factors are impacted by the nature of the de-

sired adaptation policy. For the policies implemented in our case studies,

the probe interval used is one every millisecond and the resulting overhead

is negligible.

Its important to note that hardware performance counters are a ubiq-

uitous hardware feature and has been used in prior work in various ways.

There has been work discussing and using performance counters for partic-
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ular applications such as selecting optimizations [18], enhancing operating

systems [63], and in Java virtual machines [104], among others. In this

work, we present a general online adaptation framework for native bina-

ries that leverages hardware performance monitors exclusively to provide a

lightweight monitoring and introspection runtime.

Our Loaf lightweight introspection runtime serves as the core mechanism

for the monitoring of application behavior, and the execution environment.

The runtime can be attached to a host application in a number of ways

including statically linking the run-time module into the application binary,

dynamically linking in as a module, or as a third party virtual application

host such as gdb. In this work we staticly link the runtime into the binary

itself. Further implementation details for online monitoring can be found in

Appendix A.

5.1.3 Adapting the Application

To achieve the dynamic restructuring of application code as execution occurs

we use a multiversioning technique we call scenario based multiversioning

(SBM) as shown in Figure 5.1(2). Traditionally, static code layout and

structure is rigid regardless of changes in its execution environment or ap-

plication phase, this is exactly what the scenario based multiversioning is

equipped to address. The key insight of this scenario based multiversioning

is to enable compiler writers to enable adaptation by statically anticipating

a variety of dynamic scenarios and situations and specializing code regions

accordingly. SBM is truly a static/dynamic hybrid framework. Using SBM,

compiler writers can apply various optimizations and code layouts across

multiple instances (or versions) of a code region, each specialized to particu-

lar dynamic situations and events that can be identified dynamically by the

introspection runtime. Execution can then be rerouted dynamically by the
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Figure 5.2: Alternate Versioning Scheme

runtime to execute the desired code regions. This capability is the key dis-

tinction between traditional multiversioning approaches and SBM. Instead

of adding checks and conditionals to the application binary to select and

switch versions, which necessitates the execution of checks during each exe-

cution of the multiversioned code, SBM allows for the unobtrusive rerouting

of the application binary without explicit checks. With SBM, this rerouting

can occur anytime during execution, and in parallel with execution. While

allowing flexible runtime adaptability, SBM retains all of the capabilities

and advantages of static compilation, such as the availability of high-level

source information.

The SBM approach used in this dissertation performs its multiversioning

at the function level allowing the generation of specialized versions of a func-

tion to target different scenarios. For SBM we provide an interface between

the static binary and a lightweight introspection run-time component in the

form of a dispatch table. This interface allows the introspection engine to

hook into the executing binary and reroute the execution via reseting the

active versions of the functions. To accomplish this we have two designs.

We call the first design the alternate versioning scheme and the second
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Figure 5.3: N-Version Versioning Scheme

the n-version versioning scheme. While both techniques requires the use of

a trampoline as the multiplexing mechanism, there are differences. Figure

5.2 shows the alternate version scheme. For this scheme, we have a default

and alternate version of particular functions. With the alternate version

scheme there is a single global switch that the dynamic component interfaces

to control which version the application uses. With this scheme the entire

binary will either execute the default versions for all multiversioned functions

or the alternative version. This provides a simple abstraction that a compiler

writer can use to design SBM based techniques that do not require too much

complexity.

Figure 5.3 shows the design of the n-version versioning scheme. This

scheme allows for any number of versions for any function and individual

version switching. For this scheme, we maintain a global mapping table

in memory for each function. Instead of a global switch, each call to a

multiversioned function is transformed to an indirect call. During execution,

the target address of the call is controlled by the dynamic component and

any combination of versions can be active at anytime. This allows for much

more complex SBM techniques where multiple scenarios can occur at the
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Figure 5.4: This graph shows the percent of execution time spent executing of the Top
5 hottest functions across SPEC2006 benchmarks.

same time.

One important consideration is that we cannot have multiple versions of

every function in our application binary. This would cause an unacceptable

amount of code growth, which would limit the applicability of SBM and

ultimately have a negative impact on application performance. Therefore

we limit the number of functions we multiversion to only the hottest func-

tions in the application. To efficiently multiversion our application we take

advantage of some basic profiling that has proven useful for determining the

hottest code in an application [24,74,75]. SBM can use the simple profiling

provided by GCC’s GProf to identify the hottest functions of the applica-

tion. We know from prior work that the top 2 to 8 functions most often

covers the vast majority of the dynamically executed instructions across the

SPEC 2006 benchmarks. In Figure 5.4 we show the dynamic instruction

coverage of the top 5 functions in the SPEC2006 benchmark suite. This

data was collected using GProf [42]. As the graph shows, just the top 5

hottest functions can cover a significant portion of an applications execu-

tion, many times over 90%. Multiversioning these top functions leads to a

very slight amount of code growth, for the SPEC2006 benchmarks less than

2% on average.
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Figure 5.5: Cross-Core Application Cooperation Run-time

5.1.4 Adapting the Environment

To accommodate the adaptation of an application and its environment based

on events that occur due to simultaneous co-scheduling on current multicore

architectures, we use a cross-core application cooperation (CCAC) approach

as shown in Figure 5.1(3). This approach is designed for problems that

require the coordination of a number of processes or threads for a partic-

ular goal. The design of the CCAC enabled Loaf run-time environment is

presented in Figure 5.5. In the scenario presented in the diagram, we have

four applications running simultaneously on a quad core machine. In order

to monitor and collect thread/core specific performance information on cur-

rent hardware, we collect performance monitoring information on each core

hosting the applications of interest and use a shared communication table to

provide this information to other Loaf runtimes. Also, adaptation directives

can be issued from one core to another through this shared communication

table. We use the table to allow multiple CCAC enabled Loaf run-times to

cooperate, respond, and adapt to each other.

We use shared memory to achieve this cross-core application coopera-
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tion (shown in Figure 5.5 as arrows pointing into the table). Performance

information is gathered and added to the communication table intermit-

tently using the lightweight introspection provided by Loaf. It is also useful

to record a window of multiple samples of performance information in the

table as keeping a window of recent activity will allow us to observe trends

in application behavior. To accommodate this communication protocol, we

also develop an abstract primitive for each table entry which is supplied by

our API.

5.1.5 Leveraging Loaf

With a lightweight framework for online adaptation in place, we can address

the two problems previously discussed. In the remainder of this chapter, we

present two case studies showing how the Loaf infrastructure is used to de-

sign and construct practical lightweight adaptive solutions to two pressing

problems in our field. The first problem is that of aggressive optimizations.

These are optimizations that are risky, as they can significantly improve or

degrade performance. As shown in previous work [39,131], the effect of ap-

plying this class of optimizations cannot be predicted statically, as it may

depend on input size, micro-architectural events, and execution environ-

ment. In this work we show how the Loaf infrastructure is used to enact an

adaptation policy to dynamically apply aggressive optimization only when

there is benefit.

The second case study illustrates how Loaf can be used to adapt the

environment to the application. The problem addressed in this case study is

that of cross-core application interference. Contention for shared resources

and cross-core application interference due to contention, pose a significant

challenge to providing application level quality of service (QoS) guarantees

on commodity multicore micro-architectures. The commonly used solution
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Global MemoryApplication Binary

Func Scenario 1 Scenario 2

foo 0x4C12 0x4F16

bar 0x5208 0x7244

main

foo_ver1

foo_ver2

bar_ver1

bar_ver2

Version Index Table

Active

foo (0x20) 0x4C12

bar (0x24) 0x5208

Binary

init_sbo

0x4C12

0x4F16

0x5208

0x7244

#tramp. to foo:
load r1, (0x20)
call r1 call to foo

Dynamic 
Introspection Engine

GCC 4.3.1
SBO Enabled

Perfmon2

Figure 5.6: Overview of Scenario Based Optimizations.

is to simply disallow the co-location of latency-sensitive applications and

throughput-oriented batch applications on a single chip, sacrificing utiliza-

tion. In this work, we show how to use Loaf’s ability to cooperatively adapt

co-running applications to design an agnostic contention aware execution

environment that will adapt an application’s environment to minimize cross-

core interference due to contention, while maximizing chip utilization.

5.2 Adapting the Application: Aggressive Opti-

mization

In this section, we demonstrate how Loaf can be used to adapt the applica-

tion to its environment by addressing a pressing problem in modern WSCs:

the adaptive application of aggressive compiler optimizations. We call this

approach, Scenario Based Optimizations (SBO). Figure 5.6 shows a more

detailed diagram of our SBO technique.
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Figure 5.7: This graph shows the speedup in execution time when aggressive optimiza-
tions are applied. Note that sometimes there is a benefit other times we see a degradation.

5.2.1 Motivation: Win Some, Loose Some

Aggressive optimization may increase performance in some contexts and

decrease performance in others. For our SBO approach we have identified

two such optimizations, software cache prefetching and loop unrolling. These

optimization heuristics, both found in GCC 4.3.1 as optional optimizations,

both improve performance in some cases and degrade performance in others.

Figure 5.7 shows the impact these optimizations have on performance

for 12 of the SPEC2006 benchmarks. These experiments were run on the

Core 2 Quad 6600 running Linux 2.6.25. This graph shows the speed up

that results from applying either or both of these optimizations.

With notable exception of lbm, in most cases, software prefetching has

a negative impact on performance. A negative interaction with the already

present hardware prefetching structures on the Core 2 is possible. If the

hardware prefetcher is already doing the work, having the explicit prefetch

instructions simply adds an extra burden to the architecture. Additionally,
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actionlearning

phase 1 phase 3phase 2

(T1) (T1) (T2)

Figure 5.8: This represents the three phase execution approach of SBO.

if the prefetch accuracy is low, the prefetch instructions may be only serving

to pollute the caches. As the figure shows, software prefetching is an aggres-

sive optimization. While software prefetching improves lbm’s performance

by 8%, in the case of hmmer, the degradation due to adding the software

prefetching is over 15%.

Loop unrolling is also an aggressive optimization, as we see a perfor-

mance improvement in some cases, and a degradation in others. This ob-

servation brings us to the primary motivation of our approach. Using the

dynamic introspection engine, coupled with Scenario Based Optimization

we are able to detect the scenarios when aggressive optimizations are im-

proving or degrading performance, and then reroute execution accordingly.

However the question arises as to how we achieve this adaptation using the

Loaf framework.

5.2.2 Three Phase Execution

For the design and implementation of SBO, we use the alternate versioning

SBM scheme mentioned previously, with an online three phase approach.

Statically, we generate code for two scenarios. First, we generate code with-

out software prefetching or loop unrolling for the scenario that aggressive

optimizations would degrade performance; we call this the non-aggressive
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version. Then, for the scenario that aggressive optimizations would improve

performance, we generate code for that same function that has software

prefetching and loop unrolling; we call this the aggressive version.

The dynamic component of our SBO approach has three phases, as shown

in Figure 5.8. The first two phases compose the learning and monitoring

part of SBO, and the third phase composes the action part of SBO. During

execution these phases continually loop until the host application terminates.

Our design of the three phase approach is as follows:

1. During the first phase we set the active version for the binary to non-

aggressive. The dynamic engine then starts the counters to look at the

absolute number of instructions retired. The application then executes

for T1 time. The number of instructions that successfully executed are

then recorded.

2. During the second phase we set the active version for the binary to

aggressive. We then do the same; we record the number of instructions

that executed for this T1 time. Before the third phase begins, we

compare the number of instructions retired for both phases 1 and 2.

3. We select the version with the highest number of instructions retired

to be executed in the third phase which lasts for T2 time. Essentially,

we select the version that has exhibited the lower average CPI for T1

time. This ad-hoc performance metric conveys whether the scenario

is well suited for aggressive optimization.

4. After T2 seconds of executing the winning version we enter phase one

and restart the process.

We use shorter time periods for T1 in phases 1 and 2 and select longer

time periods for T2 in phase 3. A longer value for T2 is used because our
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assumption is that there are steady phases, however phase changes do occur,

so we should retest to keep our versioning decision relevant.

5.2.3 The Effectiveness of SBO

In this section, we present the results of our experimentation evaluating the

effectiveness of Scenario Based Optimization. The goal of SBO is to elimi-

nate the degradations of aggressive optimization while reaping the benefits.

We also hypothesized that we would be able to exceed the potential benefits

of applying and using aggressive optimizations statically.

All of our experiments were performed on a machine with the Intel Core

2 Quad 6600 architecture and 2gb of ram. We used benchmarks from the

SPEC2006 v1.1 suite and ran them on their reference inputs to completion.

We used the GCC 4.3.1 compiler to compile these benchmarks. The bench-

marks were all compiled with optimization level -O2, and tuned to the Core

2 architecture (compiler option -march=core2). All experiments were run

on Ubuntu Linux Kernel 2.6.25 patched with Perfmon2.

Execution Time

Figure 5.9 shows the impact on execution time when applying aggressive

optimizations with, and without, SBO. The data shown in this graph has

been normalized to the baseline, optimization level -O2. Anything greater

than 100% marker shows a degradation anything lower than this marker

shows a speedup.

One of the major goals of SBO is to eliminate the degradations incurred

by aggressive optimizations. As the data in figure 5.9 shows, only when

using SBO do we observe performance improvements in all cases, with ex-

ception of gobmk. Degradations are effectively eliminated. In addition to

eliminating the degradations and leaving only performance improvement,
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Figure 5.9: This is the execution time after applying the aggressive optimizations stati-
cally compared to applying the same optimizations using SBO. (lower is better)

for the large majority of the benchmarks, the performance improvements

significantly exceeds those produced by any combination of aggressive op-

timization without SBO. In 9 out of the 12 benchmarks presented, SBO

exceeds the benefit of all combinations of aggressive optimizations applied

statically, in most cases more than doubling the performance boost.

Effect of Dynamic Switching

One important question that arises, is whether there is much switching oc-

curring dynamically. If there is not much dynamic switching occuring, there

may be no need to continually probe the counters and redo analysis. We ad-

dress this question in Figure 5.10. Here, we show the speedup of SBO adap-

tively switching the active version between aggressive and non-aggressive,

compared to only having one version execute for the duration of application

execution.

In Figure 5.10, the first bar shows SBO over only having the non-

aggressive version, and the second bar shows having SBO over having only

the aggressive version. In this figure, we highlight the fact that only for
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Figure 5.11: This graph highlights the power of a Scenario Based dynamic approach.
These benchmarks all degrade or show no benefit when applying aggressive optimizations
statically.

two benchmarks, povray and libquantum, it is better to have the statically

assigned aggressive version.

Degradation Reversal

In Figure 5.11, we highlight one of the brightest contributions of SBO. That

is the fact that SBO actually makes loop unrolling and software prefetching

show benefit where it would otherwise not. In the benchmarks presented

in this figure, software prefetching and loop unrolling simply does not work

without SBO. They both show degradations regardless of whether they are
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Figure 5.12: Here we show what percentage of the binary is occupied by code added by
prefetching and unrolling in addition to that added by SBO.

applied individually or simultaneously. However, when governed by SBO

these aggressive optimizations show significant performance improvements.

Code Growth

As we designed our SBO framework, careful attention was paid to other

types of overhead, such as the impact on code size. Scenario Based Opti-

mizations requires the duplication of functions, however it is not necessary to

multiversion every function. As previously mentioned, we only multiversion

the top 5 hottest functions.

Figure 5.12 shows the code growth due to the SBO framework. The

sizes of the added dynamic runtime component that is statically linked into

each binary are included in these measurements. The first bar shows the

size of the original binary, and the second bar shows the size of the binary

compiled with 2 versions of its top 5 hottest functions and the SBO dynamic

component linked in. We see that the final code size of the binary is largely

unaffected by SBO. This is due to the fact that the increase in code size

ranges from 3kb, to a mere 12kb. For many benchmarks the absolute sizes

of the binary are in the hundreds and thousands of kilobytes.
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5.3 Adapting the Environment: Contention De-

tection

In this section we demonstrate how Loaf can be used to adapt the environ-

ment to an application by addressing another pressing problem in modern

WSCs: the dynamic detection and response to contention.

5.3.1 Challenge of Interference in WSCs

Multicore architectures are ubiquitous and have become the norm in com-

puting systems today. These architectures dominate in many domains, in-

cluding WSCs where quality of service (QoS) and low latency requirements

dominate. Multicore architectures are composed of a number of process-

ing cores, each with a private cache(s), and typically larger caches that

are shared among many cores [53]. Other shared system resources include

the bus, main memory, disk, and other I/O devices. When processes and

threads are executing in parallel on a single multicore CPU we say they are

co-located. Co-located processes and threads place varying amounts of de-

mand on these resources; this demand can often lead to contention for these

resources. Resource contention directly impacts application performance.

When an application’s performance is negatively affected by another appli-

cation executing on a separate core, we call this cross-core interference.

Application priority and quality of service requirements often cannot

withstand unexpected cross-core interference. For example, applications

commonly found in the web-service data center domain such as search,

maps, image search, email and other user facing web applications are latency-

sensitive [21, 27]. These applications must respond to the user with min-

imal latency, as having high latency displeases the user. Data centers

for web-services classify applications as either being latency-sensitive or as
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throughput-oriented batch applications, where latency is not important [21].

To avoid cross-core interference between latency-sensitive and batch appli-

cations, web-service companies simply disallow the co-location of these ap-

plications on a single multicore CPU. Using this solution may leave the CPU

severely underutilized, and is a contributing reason to the server utilization

of these data centers often being 15% or less [72]. Low utilization results in

wasted power, and lost cost saving opportunities.

5.3.2 Motivation: Cross-Core Interference

Intel’s Core 2 Duo architecture has 2 cores, each with a private L1 cache

and a single L2 of 4mb shared between the two cores. Intel’s new Core i7

(Nehalem) architecture has 4 cores, each with private L1 and L2 caches and

a single 8mb shared L3 cache for all 4 cores [53]. These types of shared

memory multicore architectures are common in modern WSCs. When the

workload of the individual application processes and threads executing on

these multicore processors fits neatly into private caches, there is no cross-

core interference (assuming coherence traffic is at a minimum). When the

size of an application’s working set exceeds the size of the private cache, the

working set spills over into the larger shared caches. The shared last level

cache presents the first level of possible contention. Much of the contention

in these levels manifest themselves as traffic off-chip and thus show up as

misses in the last level cache on the chip.

Our strategy is to leverage Loaf to monitor activity in the last level

of cache to detect contention and focus on minimizing contention in shared

caches and bandwidth to memory. When more than one application is using

the shared last level of cache heavily, and the data is not shared, contention

occurs. One way to address this problem is to increase the size and asso-

ciativity of the cache. However, although cache sizes have been increasing
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Figure 5.13: Performance degradation due to contention for shared last level cache on
Core i7 (Nehalem) while running alongside lbm.

with every generation of processors, we are still far behind the demands of

today’s application workloads. Figure 5.13 shows the degradation in per-

formance of a set of applications due to cross-core interference caused by

cache contention. This experiment was run on a state of the art general

purpose processor (Intel Core i7 920 Quad Core), and demonstrates the

impact of just two applications contending on a multicore chip for a large

8mb, 16way associative, shared, last level cache. The applications shown

come from the SPEC2006 benchmark suite. Each application was first run

alone on the quad core chip, then with the lbm benchmark running alongside

on a neighboring core. The bars in Figure 5.13 shows the slowdown of each

benchmark running alongside lbm. Lbm is an example of an application with

aggressive cache usage. An application that is more affected by lbm implies

that that application is also aggressive with its cache usage. Remember this

data shows just two applications running on a quad core machine with a

large cache designed to handle the load from four cores simultaneously do-

ing work. In many cases we see a performance degradation exceeding 30%.

Figure 5.14 shows the increase in last level cache misses when running

with a contender. It is important to notice the delta in cache misses between
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Figure 5.14: Increase in last level cache misses when running with contender.

the application running alone and when it is running with the contender.

It is also important to get a sense of the absolute number of misses for

each and how that impacts its sensitivity to contention. Having a 150%

increase in cache misses impacts performance much less as the absolute

number of misses goes down. From this graph it is clear that the more

last level cache misses an application experiences, the more sensitive it is to

cross-core interference.

We define the utilization of a multicore processor as

U =

∑N
i=1

Ri

Ri+Ii

N
(5.1)

for some time, where N is the number of cores on the chip, Ri is the amount

of time spent running on core i, and Ii is the amount of time idle on core i.

5.3.3 A Solution with CAER

Our goal is to leverage Loaf to address the contention in the shared caches

of current multicore chip design by minimizing the cross-core interference

penalty on latency-sensitive applications while maximizing chip utilization.

To do so we use Loaf to design a runtime, CAER, the contention aware
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execution runtime.

Inferring Contention

The basic premise of our solution is that information from PMUs can be

used in a low/no overhead way to infer contention. In this work we focus

on the shared last level cache (LLC) miss behavior. Last level cache misses

directly (and negatively) impact the instruction retirement rate (i.e. IPC).

Figure 5.15 illustrates this phenomenon with two SPEC2006 benchmarks

that exhibit clear LLC miss phases. These benchmarks were run on their

ref inputs to completion. The x-axis represents time from beginning of the

application run to the end in all four of the graphs presented. Figure 5.15

shows two pairs of graphs, each pair correlating the LLC miss rate over

time to the instruction retirement rate over time. We can see clear and

compelling evidence of the inverse relationship between the number of LLC

misses and the retirement rate.

CAER is based on the hypothesis that if two or more applications are

simultaneously missing heavily in the last level shared cache of the micro

architecture, they are both making heavy usage of the cache and probably

evicting each others data (i.e. contending). This contention then leads to

increased cache misses in both applications, which is evident in Figure 5.14.

We believe that if we can dynamically monitor and analyze the chip wide

information about thread/core specific impact on the last level cache misses

we should be able to detect contention and thusly respond to this contention.

Architecture of CAER

The design and architecture of the CAER execution environment is pre-

sented in Figure 5.16. To the left of the diagram we present the overall

design vision of the CAER environment, and to the right we present the ac-
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Figure 5.16: Architecture of our Contention Aware Execution Runtime

tual working prototype we have implemented for this study. In the scenario

presented on the left of the diagram we have two latency-sensitive applica-

tions or threads, and two batch applications or threads. In order to monitor

and collect thread/core specific performance information on current hard-

ware, we must issue the performance monitoring unit (PMU) configuration

and collection directives on the particular core hosting the application of

interest. For this reason a Loaf runtime must be present beneath all appli-

cation threads of interest. These CAER runtimes are cooperative and must

share information, respond, and adapt to each other.

CAER’s cooperation is accomplished via shared memory using the com-

munication table discussed in Section 5.1 and also shown in Figure 5.16

(arrows pointing into the table). Notice that the runtime layer (CAER M)

beneath the latency-sensitive applications appear thinner in Figure 5.16.

These (monitor) runtime layers are more light weight than the main CAER

engines and only are responsible for collecting PMU data and placing this

data in the communication table. The main CAER engines that lie under-

neath the throughput-oriented batch applications processes this information

and perform the contention detection and response heuristics. CAER only

applies any dynamic adaption or modifications on the batch application.
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The latency applications always remain untouched.

The CAER runtime employs the periodic probing approach described in

Section 5.1. Using a timer interrupt the environment periodically reads and

restarts the PMU counters.

CAER runtime uses a period of one millisecond. Every millisecond each

CAER runtime probes their relevant performance monitoring units and re-

ports last level cache information to the communication table. This table

records a window of sample points, which allows us to observe trends of

many samples. The main CAER engines that lie under the batch processes

detect and react to contention. Note that all of the batch processes/threads

must react together. Reaction directives are also recorded in the table, and

all batch processes must adhere to the reaction directives. In the current

design of CAER, these directive include pausing and staggering execution.

Our prototype is shown to the right of Figure 5.16. This instance of

CAER supports two applications, one running atop CAER M, and the other

on the main CAER engine. The CAER runtime is statically linked into the

binary. Our prototype is fully functional and, as we show later, effective on

real commodity hardware.

The diagram in Figure 5.17 shows the contention detection and response

phases used in the CAER runtime that lies under the batch applications.

Throughout execution CAER resides in one of these states and continually

transitions among these states. After CAER performs its contention detec-

tion heuristic, either contention, or the absence of contention is asserted,

and we enter into the relevant response state as shown with the yes and no

transitions in Figure 5.17. We call the state where contention is asserted

the c-positive response, and the state where the absence contention is de-

tected the c-negative response. The next section explores the heuristics and

methods by which we detect contention corresponding to the left side of Fig-
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ure 5.17, and the subsequent section explores CAER’s contention responses

corresponding to the right side.

5.3.4 Detecting Contention with CAER

Before CAER can react to contention in the shared cache, it must first

detect that the applications are indeed contending. We have developed two

heuristics for this task: a burst shutter approach and a rule based approach.

These heuristics run continuously throughout the lifetime of CAER to detect

and respond to contention.

Burst-Shutter Approach

If our batch application’s execution is going to increase the last level cache

misses in the neighboring latency-sensitive application, we should be able to

see that spike in misses when the batch application has a burst of execution.

That is, if the latency-sensitive application is running alone while the batch

application is halted, when the batch application then has a burst of exe-
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Algorithm 4: CAER Shutter Burst Algorithm

1 footnotesize
Description: This main loop is executed throughout the lifetime of

the host application. (pause self is used to signal whether to
pause execution for the next period)

2 count← 0;
3 while application running do
4 update l window with llc misses;
5 update r window with neighbors llc misses;
6 count++;
7 pause self ← true;
8 if count equals switch point then
9 foreach e in r window until switch point do

10 steady average←
steady average+ (e/(Size(r window)− switch point)

11 end
12 pause self ← false;

13 end
14 if (count > switch point) and (count < end point) then
15 pause self ← false;
16 end
17 if count equals end point then
18 foreach e in r window from switch point to end point do
19 burst average←

burst average+ (e/(end point− switch point)
20 end
21 if ((burst average− steady average) >

noise thresh)and(burst average >
(steady average ∗ (1 + impact factor))) then

22 contending ← true;
23 end
24 else
25 contending ← false;
26 end

27 end

28 end

cution, we should see a sharp increase in the last level cache misses of the

latency-sensitive application. We perform this analysis online as follows:

1. We have a number of periods where we halt the execution of the batch

application and collect samples of the last level cache misses of the
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latency-sensitive application.

2. We then record the average last level cache miss rate.

3. We then have a number of periods where we execute the batch at

full force (i.e. burst) and record the misses of the latency-sensitive

application.

4. We calculate the average miss rate for these periods.

5. If the number of cache misses are significantly higher in the burst

case, we assert the batch application is impacting the miss rate of the

latency-sensitive application and report contention, else we report no

contention.

The corresponding algorithm is presented in Algorithm 4. There are a

number of parameters that can be tuned. We must determine how long (as

in how many periods) we would like to halt the batch process’s execution,

how long the burst should last, and how high the sharp increase should be

before asserting contention. In Algorithm 4 these parameters correspond to

setting the switch_point, end_point and impact_factor.

Rule-Based Approach

Our rule based approach is more closely based on the premise of our hy-

pothesis. Remember our hypothesis is that if two or more applications are

simultaneously missing heavily in the last level shared cache of the micro

architecture, they are both making heavy usage of the cache and proba-

bly evicting each others data (i.e. contending). The rule based heuristic

tries to test this directly. The basic intuition says, if the latency-sensitive

application is not missing in the cache heavily, it is probably not suffer-

ing from cache contention, and also if the batch application is not missing
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Algorithm 5: CAER Rule Based Algorithm

1 footnotesize

2 while application running do
3 update l window with llc misses;
4 update r window with neighbors llc misses;
5 contending ← true;
6 foreach e in l window do
7 average← average+ (e/Size(l window))
8 end
9 if average < usage thresh then

10 contending ← false
11 end
12 average← 0;
13 foreach e in r window do
14 average← average+ (e/Size(r window))
15 end
16 if average < usage thresh then
17 contending ← false
18 end

19 end

heavily in the cache, it is probably not using or at least not contending in

the cache very much. This heuristic works by maintaining a running aver-

age of the last level cache miss windows for both the latency-sensitive, and

batch applications. When this average for either application dips below a

particular threshold, we assert that we are not contending, otherwise we re-

port contention. Algorithm 5 presents the corresponding algorithm. In this

heuristic the parameters include the size of the window and defining what

missing heavily means. In the algorithm these correspond to window and

usage_thresh.

Responding to Contention with CAER

As Figure 5.17 shows, after detecting contention we transition into one of

the response states, either c-negative or c-positive. In these states the CAER

runtime environment can respond by dynamically modifying and adapting
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the batch application under which it runs. In this work CAER reacts to

contention by enforcing a fine grained throttling of the execution of the

batch application to relieve pressure in the shared cache.

Our CAER runtime environment currently employs two throttling based

dynamic contention response mechanisms: a red-light green-light approach,

and a soft locking approach. Our red-light green-light approach, as the name

implies stops or allows execution for a fixed or adaptive number of periods,

based on the outcome of our contention detection phase. The red-light part

of this response technique correlates to the c-positive result, the green-light

correlates to the c-negative result. An adaptive approach can be applied,

increasing the length if the detection phase is consistently producing the

same result. In our CAER runtime environment we use this red-light green-

light response with our burst shutter approach.

Our soft locking response technique applies a soft lock on the shared last

level cache until the cache is no longer being used heavily by the latency-

sensitive application. The amount of pressure placed on the cache by the

latency-sensitive application is measured using the same performance mon-

itoring information used for the contention detection phase. The batch

application is allowed to fully resume execution when the pressure on the

cache subsides. In our CAER runtime environment we use this response

technique with our rule based approach.

5.3.5 The Effectiveness of CAER

The goal of our contention aware execution runtime is to dynamically detect

and respond to contention on real commodity multicore processors. We aim

to minimize the cross-core interference penalty (overhead of the latency-

sensitive application due to contention) and maximize the utilization of the

chip. We demonstrate the effectiveness of our CAER environment by show-
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ing a considerable reduction in this cross-core interference penalty when al-

lowing co-location, while achieving a significant increase of chip utilization

compared to disallowing co-location.

Experimental Design

Our CAER prototype supports two applications, one deemed latency-

sensitive and the other a throughput-oriented batch application. We use

the SPEC2006 benchmark (C/C++ only) and run all programs to comple-

tion using their reference inputs. We use the Intel Core i7 (Nehalem) 920

Quad Core architecture to perform our experimentation. This processor

has three levels of cache, the first two private to each core, the third shared

across all cores. The sizes of the L1 and L2 caches are 16kb and 256kb re-

spectively. The L3 cache is 8mb and inclusive to the L1 and L2. The system

used has 4gb of main memory, and runs Linux 2.6.29.

In the experiments shown here, the lbm benchmark served as our batch

application and was co-located on a neighboring core. The main benchmark

is assumed to be the latency-sensitive application. Lbm was chosen as our

batch application because it presents an interesting adversary as it makes

heavy usage of the L3 cache. We have performed complete runs using other

benchmarks such as libquantum and milc and produced very similar re-

sults. Note that adversaries that make light usage of the L3 cache present

more trivial scenarios; contention occurs when two or more applications are

making heavy usage of the last level cache. As presented shortly, our exper-

imentation covers cases where the latency-sensitive application make both

light and heavy usage of the shared cache.

We have scripted our SPEC runs to launch the latency-sensitive appli-

cation shortly after the batch is launched. As our applications run, CAER

logs the decisions it makes and wall clock execution time of our latency-
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Figure 5.18: Investigating the reduction in cross-core interference penalty.

sensitive application running on CAER M. In the few cases the lbm (batch)

benchmark completes before the latency-sensitive we automatically and im-

mediately relaunch it and aggregate logs.

Minimizing Contention and Maximizing Utilization

First we evaluate the reduction in cross-core interference penalty due to

contention when running on our CAER environment. In Figure 5.18 we

show the slowdown in execution time due to contention when we co-locate

the latency-sensitive and batch applications. The first bars show the cross-

core interference penalty when co-locating the native applications directly

on multicore chip. The second bars shows the cross-core interference penalty

when co-locating the native applications on CAER with the burst shutter

heuristic. The last bars show this co-location on CAER with the rule based

approach.

As Figure 5.18 shows we significantly reduce the cross-core interference

penalty for the wide range of SPEC2006 benchmarks. Our burst shutter

contention detection technique uses the red-light green-light response with a
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response length of 10 periods. The impact threshold in Algorithm 4 for

the burst shutter detection is set to 5%, meaning if the batch application

burst causes a spike of 5% or more in last level cache misses of the latency-

sensitive application we assert contention. Using this approach CAER brings

the overhead due to contention from 17% down to 6% on average, while

gaining close to 60% more utilization of the processor over running the

latency-sensitive application alone, which can be seen in Figure 5.19.

Our rule based contention detection technique uses the soft locking re-

sponse and the usage threshold found in Algorithm 5 is set to 1500, mean-

ing we have to see an average of 1500 or more last level cache misses per

period (1 ms) to assert heavy usage of the cache. Using this approach

CAER brings the overhead due to contention from 17% down to 4% on av-

erage, while gaining 58% more utilization of the processor over running the

latency-sensitive application alone, as show in Figure 5.19.

Our rule based CAER contention detection approach slightly outper-

forms our shutter based approach on average. However, the shutter based

approach has a critical capability that our rule based approach lacks.. The

burst shutter approach is highly tunable to the QoS requirements of the

application. The impact threshold determines how much cross-core interfer-

ence the latency application is willing to withstand; this provides a “knob”

which intuitively sets the sensitivity of detection. Here we use “sensitiv-

ity” to mean the amount of impact needed to trigger a c-positive response.

Although the rule based approach is also tunable as to how conservative

or liberal the definition of “heavy usage” of the cache is, it provides a less

useful abstraction as the number of cache misses alone does not imply con-

tention. As the goal of this evaluation is to demonstrate the effectiveness of

our CAER runtime environment and its applicability to current multicore

architecture, we reserve further investigation of the heuristic tuning space
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Figure 5.19: Maximizing Utilization (Higher is Better)
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Figure 5.20: Minimizing Cross-Core Interference (Slowdown Eliminated, Higher is Bet-
ter)

for future work.

Figures 5.19 and 5.20 further illustrate CAER’s effectiveness. As men-

tioned before, Figure 5.19 shows the utilization gained on the multicore pro-

cessor when co-locating the latency-sensitive and batch applications using

CAER. Figure 5.20 is another way to represent the decrease in cross-core

interference penalty shown in Figure 5.18, showing the percentage of the

cross-core interference penalty eliminated. For both of these Figures, higher

is better. Running the latency-sensitive application alone will provide 100%

cross-core interference elimination but 0% utilization gained. Running the
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applications together will provide 0% cross-core interference elimination but

will have 100% utilization gained. Our goal is to maximize both while run-

ning both application on our CAER framework. It is important to note

that utilization gained and cross-core interference eliminated are two sepa-

rate units of measurement, so 50% cross-core interference eliminated for 50%

more utilization can be a great result depending on the cross-core interfer-

ence sensitivity of the latency-sensitive application. We provide a deeper

exploration of cross-core interference sensitivity in the following section.

Adapting to Cross-Core Interference Sensitivity

The amount of performance impact an application can experience due to

contention for shared resources differs from application to application. We

call this application characteristic its cross-core interference sensitivity. This

characteristic can also be determined by the amount of reliance an appli-

cation puts on a shared resource. Applications whose working set fits in

its core-specific private caches are cross-core interference insensitive. Ap-

plications whose working set uses shared cache, memory, etc, are cross-core

interference sensitive.

When performing contention detection and response the handling of

cross-core interference insensitive and cross-core interference sensitive ap-

plications should be different. More concretely, the amount of utilization

that is sacrificed to reduce contention of a cross-core interference sensitive

application should be higher than the cross-core interference insensitive ap-

plication. For example, an application a is 50% slower when experiencing

contention x, while another application b is 4% slower when contending with

x. We say application a is more cross-core interference sensitive than b. To

eliminate half of the cross-core interference penalty of a is more valuable

than b, meaning the benefit gained, a 20% increase in speed, with a is better
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Figure 5.21: Utilization gained relative to random for 6 most cross-core interference
sensitive applications.

than the 1.9% speed up in b. Thus, we should be willing to sacrifice more

utilization to eliminate 50% of the cross-core interference penalty for a than

b since a is more cross-core interference sensitive.

Lets take mcf as application a and namd as b. As shown previously in Fig-

ure 5.18 mcf suffers a 36% slowdown when contending with lbm, namd only

suffers a 2% performance degradation. Clearly mcf is more latency-sensitive

than namd, therefor a good contention detection and response approach will

be able to detect these different cross-core interference sensitivities and sac-

rifice more utilization for the former case. CAER does exactly this. For mcf

CAER burst shutter approach sacrifices 36% more utilization to accommo-

date mcf’s cross-core interference penalty, and CAER rule based sacrifices

80% more utilization.

Contention Detection Accuracy

When detecting contention it is possible to have both false positives and

false negatives. A false positive occurs when contention is detected where

there is none. A false negative occurs when no contention is detected where

there is contention. To evaluate a heuristic’s ability to accurately detect
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Figure 5.22: Utilization gained relative to random for 6 least cross-core interference
sensitive applications.

contention we have developed a baseline random heuristic. This heuristic

reports contention with probability P and no contention with probability 1−

P . In our experiments P equals 0.5. To respond to contention this heuristic

uses the red-light green-light with a length of 1 period. To illustrate a CAER

heuristic’s ability to detect contention accurately we use the following

A =
Uh

Ur
− 1 (5.2)

where Uh is the utilization gained from a heuristic h, and Ur is the uti-

lization gain with the random heuristic. Figures 5.21 and 5.22 demon-

strates the contention detection accuracy of the burst shutter and rule based

heuristics for the six most, and six least cross-core interference sensitive

benchmarks respectively. The y-axis corresponds with the calculation of

A from the equation. Figure 5.21 shows that, for cross-core interference

sensitive benchmarks, our CAER heuristics sacrifices more utilization than

the random technique, indicating that our detection is correctly responding

to these applications as high contenders (i.e. cross-core interference sensi-

tive). Figure 5.22 shows the opposite for cross-core interference insensitive
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benchmarks. The heuristics gain much more utilization than the random

heuristics, indicating we are correctly responding to these workloads as low

contenders.

Also note that any inversion in this response to cross-core interference

penalty indicates inaccurate contention detection. Gaining more utiliza-

tion for a cross-core interference sensitive application than the random

heuristic represents a false negative (asserting no contention where there is

contention). And contrarily, gaining less utilization for cross-core interfer-

ence insensitive applications represents a false positive (asserting contention

where there is none).
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In this chapter, we address the oblivion of interference at the cluster

and machine levels by providing novel mechanisms for precisely measuring

and managing interference within execution environments in WSCs. First,
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Figure 6.1: Task placement in a cluster. The cluster manager does not co-locate latency-
sensitive applications with others to protect their QoS from performance interference,
causing low machine utilization.

we present a general characterization methodology, Bubble-Up, that enables

the precise prediction of the performance degradation that results from con-

tention for shared resources in the memory subsystem. We then demonstrate

how Bubble-Up can be used to steer co-location decisions at the cluster level

using 17 production Google workloads and production machines to signifi-

cantly improve the utilization of WSCs. Finally, we provide a general metric

anddirect measurement technique for quantifying and characterizing an ap-

plication’s interference sensitivity that captures contentious phases and code

regions.

6.1 Precisely Predicting CCI Performance

Penalty

As discussed in previous chapters, there is a trade-off between the QoS

performance of latency-sensitive applications and the machine utilization

in modern WSCs. As shown in Figure 6.1, in modern WSC systems, co-

location between latency-sensitive jobs and other jobs is disallowed due to

the inability to precisely predict how the performance of latency-sensitive
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jobs will be affected by co-running jobs. However, this overprovisioning

is often unnecessary as co-locations may or may not result in significant

performance interference. It is the inability to precisely predict the perfor-

mance impact for a given co-location that leads to the heavy handed solution

of simply disallowing co-location. On the other hand, without prediction,

the brute-force approach of profiling all possible co-locations’ performance

interference to guide co-location decisions is prohibitively expensive. The

profiling complexity for all pairwise co-locations is O(N2) (N as the number

of applications). With hundreds to thousands of applications running in a

WSC, and the frequent development and updating of these applications, a

brute-force profiling approach is not practical. A linear approach is need.

The goal of this work is to provide a linear approach for the precise

prediction of the performance degradation that results from contention for

shared resources in the memory subsystem. A precise prediction is one that

provides an expected amount of performance lost when co-located. With

this information, co-locations that do not violate the QoS threshold of an

application can be allowed, resulting in improved utilization in the WSC.

This is a challenging problem as effects such as contention is not ex-

plicitly visible or manageable through the software interface to commod-

ity microarchitectures. The most relevant related work aims to classify

applications based on how aggressive they are for the shared memory re-

sources and identify co-locations to reduce contention based on the clas-

sification [19, 60, 63, 76, 80, 81, 125, 126, 132]. However, prior work has not

presented a solution to precisely predict the amount of performance degra-

dation suffered by each application due to co-location, which is essential

for co-location decisions of latency-sensitive applications in WSCs. In this

section, we present such a solution: The Bubble-Up methodology.
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Figure 6.2: Example sensitivity curve for A. Assuming B’s pressure score is 2 we can
predict A will be performing at 90% of full performance.

6.1.1 The Bubble-Up Methodology

The key insight of Bubble-Up is that predicting the performance interference

of co-running applications can be decoupled into 1) measuring the pressure

on the memory subsystem an application generates, and 2) measuring how

much an application suffers from different levels of pressure. The under-

lying hypothesis is both pressure and sensitivity can be quantified using a

common pressure metric. Having such a metric reduces the complexity of

co-location analysis. As opposed to the brute force approach of profiling and

characterizing every possible pairwise co-location, Bubble-Up only requires

characterizing each application once to produce precise pairwise interference

predictions (e.g. O(N)).

Bubble-Up is a two-step characterization process. First, each applica-

tion is tested against an expanding bubble to produce a sensitivity curve.

The bubble is a carefully designed stress test for the memory subsystem that

provides a “dial” for the amount of pressure applied to the entire memory

subsystem. This bubble is run along with the host application being char-

acterized. As this dial is increased automatically (expanding the bubble),

the impact on the host application is recorded, producing a sensitivity curve
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Figure 6.3: Bubble-Up Methodology. In Step 1, we characterize the sensitivity of the
host application task to pressure in the memory subsystem using a bubble. In Step 2, we
characterize the contentiousness of the host application in terms of the amount of pressure
it causes on a reporter.

for the host application such as the one illustrated in Figure 6.2. On the

y-axis, we have the normalized QoS performance of the application (latency,

throughput, etc), and the x-axis shows the bubble pressure. In the second

step, we identify a pressure score for the application using a bubble pressure

score reporter. After these two steps of the Bubble-Up methodology is ap-

plied to each application, we have a sensitivity curve and a pressure score

for each application. Given two applications A and B, we can then predict

the performance impact of application A when co-located with application

B by using A’s sensitivity curve to look up the relative performance of A,

at B’s pressure score. In the example shown in Figure 6.2, B has a pressure

score of 2, and as we can see from A’s sensitivity curve, A’s predicted QoS

with that co-location is 90%.

Two Step Methodology

Figure 6.3 illustrates the Bubble-Up methodology. The two steps to Bubble-

Up are,
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1. In Step 1, we characterize the sensitivity of each application task to

pressure in the memory subsystem. In this step, we use a carefully de-

signed stress test we call the bubble to iteratively increase the amount

of pressure applied to the memory subsystem (e.g. bubble up in the

subsystem). As we incrementally increase this pressure “dial”, we pro-

duce what we call a sensitivity curve for the application with QoS on

the y-axis and pressure on the x-axis. This sensitivity curve shows

how each application’s QoS degrades as pressure increases.

2. In Step 2, we characterize the contentiousness of each application task

in terms of its pressure on the memory subsystem. We call this mea-

sure of contentiousness a bubble score. To identify the bubble score

of an application, we use a reporter which observes how its own per-

formance is affected by the application to generate a score for the

application.

With the sensitivity curves and bubble scores of each application we are

able to precisely predict the performance degradation from arbitrary co-

locations. It is important to note that step one needs only to be applied

to applications whose QoS needs to be enforced. Step two only needs to be

applied to the applications that may threaten an application’s QoS.

Modeling Bubble-Up and Error

In this section, we present the formal modeling of our Bubble-Up method-

ology and the source of errors. We first provide a general model the per-

formance degradation an application A suffers when co-running with other

applications as,

DegAC
=

N∑

i

(SARi
× PCRi

) (6.1)
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where A is the application, C is the co-runner or set of co-runners, DegAC
is

the A’s degradation when running with C, Ri is a shared memory resource

component such as shared cache, memory bandwidth or memory controller,

PCRi
is the pressure C generates on the shared resource Ri, and SARi

is A’s

performance sensitivity to the pressure on the shared resource Ri. The total

degradation is the sum of the stalled cycles caused by contention for each

shared resource.

The main component of the Bubble-Up methodology is an expandable

bubble, which functions as a “dial” for pressure on the memory system. We

denote the bubble dial levels as a set B : {B0, B1, ..., BM} where M is the

number of dial levels for the bubble. As we dial up, the bubble generates an

increasing amount of pressure on each shared resource Ri, denoted as PBjRi
.

In step 1 of Bubble-Up, we increase the bubble size and at each bubble dial

j, we measure the degradation of application A when co-running with the

bubble Bj . The result is a set of A’s degradations at varying bubble sizes:
{
DegAB0

, DegAB1
, ..., DegABM

}
. This set is the discretized sensitivity curve

of application A.

When the bubble reporter provides a pressure score of a co-running ap-

plication C, it reports this pressure in the form of a bubble dial level, BK ,

that generates the closest amount of pressure as C (for details see Sec-

tion 6.1.1). To approximate application A’s degradation when co-running

with C (DegAC
), Bubble-Up then uses A’s degradation when running with

bubble BK (DegABK
).

Because the pressure score is using the bubble’s pressure to approximate

an application’s pressure, Bubble-Up introduces a small amount of error

when predicting the degradation of A. This error stems from the mismatch

of the relative pressures applied to the various individual shared resources.

As we discuss in Section 6.1.1, this mismatch is minimized by designing
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the bubble to prioritize those resources that act as first-order effects in the

degradation to A. By substituting DegAC
and DegABK

using Equation 6.1,

we can formally model the prediction error as:

Error =
∣∣∣DegAC

− ˜DegAC

∣∣∣ (6.2)

=
∣∣∣DegAC

−DegABK

∣∣∣ (6.3)

=
N∑

i

|SARi
× PBKRi

− SARi
× PCRi

| (6.4)

Step One: Characterizing Sensitivity

As described in Section 2.1, each task is configured to use a prescribed

number of cores for the cluster level bin packing algorithm used to assign

tasks to machines in the WSC. This number is usually less than the number

of cores available on a socket. The bubble is run on the remaining cores. It

is important to understand that there is no correct design for the bubble.

Each design needs only to approximate varying levels of pressure, and there

may be many good designs. In this section, we present one such design, and

show that our single bubble design is effective across myriad application

workloads and architectures. Keep in mind that there are a number of

assumptions made about the architectures for which this type of bubble

design is applicable. Most importantly we assume the microarchitecture

uses shared last level caches, memory controller, and bandwidth to memory.

The Art of Bubble Design Although there may be many ways to design

a bubble, to arrive at a good design that is not prone to error and impreci-

sion, there is a set of key requirements and guidelines that apply generally

to bubble design.

1. Monotonic Curves - As the bubble’s pressure increases (turning the
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pressure “dial” up) the amount of performance interference should also

increase monotonically. Assuming the host application task is sensitive

to cross-core interference, higher amounts of pressure should result in

worse performance.

2. Wide Dial Range - The pressure dial should have a range that

captures the contentiousness of all the application tasks of interest.

It should start from essential no pressure, and incrementally increase

pressure to a point close to the maximum possible pressure, or at least

worse than the most contentious application task in the set.

3. Broad Impact - The bubble should be designed to apply pressure to

the memory subsystem as a whole, not stressing a single component

in the memory subsystem. However, keep in mind that, as mentioned

in Section 6.1.1, error is introduced in the difference in component

pressure relative to the host task’s sensitivity. This error is generally

minimized if first-order effects are prioritized.

Designing the Bubble The design principle of our bubble is to use work-

ing set size as our measure of pressure. For a given working set size, we

perform memory operations in software to excercise that working set as

aggressively as possible.

Our bubble is a multithreaded kernel that generates memory traffic using

both loads and stores with a mixture of random and streaming accesses. The

number of threads spawned is based on the configuration file of the task being

characterized. The pressure “dial” we use is the working set size on which

our kernel works. For example, a pressure size of 1 means our bubble will

continuously smash a 1MB chunk of memory. As we increase the pressure,

we increase our kernel’s working set size. This increases the amount of data
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// Super cheap rand us ing a l i n e a r f e e d b a c k s h i f t r e g i s t e r
unsigned l f s r ;
#define MASK 0xd0000001u
#define rand ( l f s r = ( l f s r >> 1) ˆ (unsigned int ) \

(0 − ( l f s r & 1u) & MASK))

unsigned int f o o t p r i n t s i z e =0; // S i z e o f f o o t p r i n t
unsigned int dump [ 1 0 0 ] ; //Dumps (manual s sa )

#define r ( rand%f o o t p r i n t s i z e )

Figure 6.4: Bubble’s LFSR number generator.

while (1 )
{

dump[0]+=data chunk [ r ]++;
dump[1]+=data chunk [ r ]++;
dump[2]+=data chunk [ r ]++;
. . .
dump[98]+=data chunk [ r ]++;
dump[99]+=data chunk [ r ]++;

}

Figure 6.5: Manual SSA for no dependencies.

being pumped through the memory subsystem, as computation is not the

bottleneck. Figures 6.4 – 6.6 show the key design points for our bubble.

As shown in Figure 6.4, we use a linear shift feedback register (LFSR)

based psuedo random number generator as opposed the rand function pro-

vided by the C standard library. Minimizing the amount of computation

in between memory accesses is critical to maximize the activity applied

to a particular footprint. Using the standard library incurs a significant

amount of computation between random numbers. However, an LFSR im-

plementation requires only a few cycles to arrive at the next random num-

ber on modern processors. In our LFSR implementation, we use a mask of

0xd0000001u, which produces a period of 232 random numbers.

while (1 )
{

double ∗mid=bw data+(bw stream s ize /2 ) ;
for ( int i =0; i<bw stream s ize /2 ; i++)
{

bw data [ i ]= s c a l a r ∗mid [ i ] ;
}
for ( int i =0; i<bw stream s ize /2 ; i++)
{

mid [ i ]= s c a l a r ∗bw data [ i ] ;
}

}

Figure 6.6: Streaming access for bandwidth.
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Figure 6.5 shows the random memory accesses used in our bubble. Here

we have manually constructed a basic block of 100 memory operations that

are in single static assignment form such that there are no dependencies in

between operations. This basic block has a high level of instruction level

parallelism to maximize the number of operations applied to the footprint

of the kernel.

As Figure 6.6 shows, we also use a streaming access pattern in our bub-

ble. This implementation is based on the scalar portion of the STREAM

bandwidth stressing benchmark. Using this access pattern further stresses

the bandwidth to memory, and also triggers the prefetcher, another shared

resource at the level of the shared last level cache.

Step Two: Bubble Scoring

The second step of Bubble-Up is to produce a pressure score for an appli-

cation task that describes what size of bubble is representative of that task.

To detect this score we use a bubble score reporter. The reporter is a care-

fully designed single threaded workload that is sensitive to contention. Like

the bubble, the reporter is only designed once and then can be used with

myriad applications and architectures.

Designing the Reporter The reporter’s own sensitivity to performance

interference is used as a basis for reporting how its own performance has

been affected by the pressure generated by a host application. The impact

felt by the reporter is then translated in terms of the predicted bubble score

of the host application. The only guideline to designing a good reporter is to

have a broad sensitivity, e.g. it should be sensitive to the memory subsystem

holistically.

[Designing the Reporter] Like the bubble, there is also no correct
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design for the reporter. However, unlike the bubble, there is more flexibility

in designing the reporter. This flexibility comes from the fact that the

reporter is trained, and the sensitivity curve serves as a rubric for score

reporting, no matter the shape. To implement the reporter, we use a mixture

of random accesses and streaming accesses similar to those used for the

bubble itself, without the high ILP. The working set of the reporter is about

20MB, thus it uses the last level cache, memory bandwidth and prefetcher.

Before the reporter can be used, it must first be trained using the bubble

on the architecture for which it will be reporting. This training involves

running the reporter against the bubble on the architecture of interest, and

collecting the sensitivity curve of the reporter. This needs to be done only

once. The reporter can then use its own sensitivity curve to translate a

performance degradation it suffers to the corresponding bubble score. The

curve is essentially used in reverse. Instead of using scores to predict QoS,

we use the QoS of the reporter to ascertain the score of the co-located

application.

6.1.2 Large-Scale WSC Workloads

In this section, we present the large-scale WSC application workloads used

in this work, and characterize their susceptibility to performance interfer-

ence due to contention for the shared memory sybsystem resources. We also

introduce SmashBench, our in house benchmark suite for the characteri-

zation of performance interference.

Large-Scale Data Intensive Workloads

While a large portion of the world’s computation is housed in the cloud,

little is known about the application workloads that live in this comput-

ing domain. The characteristics of the tasks that compose a large scale
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workload description type metric

bigtable A distributed storage system for man-
aging petabytes of structured data

latency-
sensitive

user time (secs)

ads-servlet Ads sever responsible for selecting and
placing targeted ads on syndication
partners sites

latency-
sensitive

cpu latency
(ms)

maps-detect-face Face detection for streetview auto-
matic face blurring

batch user time (secs)

maps-detect-lp OCR and text extraction from
streetview

batch user time (secs)

maps-stitch Image stitching for streetview batch user time (secs)
search-render Web-search frontend server, collect re-

sults from many backends and assem-
bles html for user.

latency-
sensitive

user time (secs)

search-scoring Web-search scoring and retrieval (tra-
ditional)

latency-
sensitive

queries per sec

nlp-mt-train Language translation latency-
sensitive

user time (secs)

openssl Secure Sockets Layer performance
stress test.

latency-
sensitive

user time (secs)

protobuf Protocol Buffer, a mechanism for
describing extensible communication
protocols and on-disk structures. One
of the most commonly-used program-
ming abstractions at Google.

latency-
sensitive

aggregated

docs-analyzer Unsupervised Bayesian clustering tool
to take keywords or text documents
and ”explain” them with meaningful
clusters.

both throughput

docs-keywords Unsupervised Bayesian clustering tool
to take keywords or text documents
and ”explain” them with meaningful
clusters.

both throughput

rpc-bench Google rpc call benchmark both throughput
saw-countw Sawzall scripting language interpreter

benchmark
both user time (secs)

goog-retrieval Web indexing batch ms per query
youtube-x264yt x264yt video encoding. batch user time (secs)
zippy-test A lightweight compression engine de-

signed for speed over space.
both user time (secs)

Table 6.1: Production WSC Applications

web-service vary significantly. In addition to data retrieval tasks, there are

compute-intensive tasks for the analysis, organization, scoring, and prepa-

ration of information for applications such as search, maps, ad serving, etc.

Table 6.1 presents a number of key application tasks housed in Google’s

production WSCs. These application tasks comprise a majority of the CPU

cycles in arguably the largest WSC infrastructure in the world. In addition

to each application task’s name, Table 6.1 shows the description, priority

class, and key optimization metric for each workload. Each application task
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Figure 6.7: The performance degradation suffered by search-render when co-located
with each of the other WSC applications on Xeon and Opteron

corresponds to an actual binary that is run in the WSC. Application tasks

that are user-facing, both directly and indirectly, are classified as latency-

sensitive as the response time is paramount. Throughput oriented tasks

that are not user-facing are classified as batch. Notice that some tasks may

be used in both roles, and are denoted as Both in the table. The column

marked metric shows the key metric for each application. In the context of

this work, each task’s QoS is defined to be its performance along this metric.

We have highlighted search-render in Table 6.1. This task is respon-

sible for assembling the final view of the search process for the user, which

includes assembling scored search results (including web, image, and video),

relevent ads from the ads-servlet, etc. This task is highly latency-sensitive

and presents a compelling case that we use throughout this work to illustrate

the necessity and value of Bubble-Up.

Figure 6.7 shows the performance degradation of search-render when

co-located with the other application tasks shown in Table 6.1. This figure
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kernel access pattern stress point w.s. size type

blockie-small Dense 3D Matrix Transforma-
tions

cpu-bound 7KB streaming

blockie-
medium

Dense 3D Matrix Transforma-
tions

cache 10MB streaming

blockie-large Dense 3D Matrix Transforma-
tions

bandwidth 46MB streaming

bst-small Binary Search Tree Traversal cache (partial) 4MB structured
bst-medium Binary Search Tree Traversal cache 8MB structured
bst-large Binary Search Tree Traversal bandwidth 50MB structured
lfsr-small Linear Shift Feedback Register

Random Access
cache (partial) 4MB random

lfsr-medium Linear Shift Feedback Register
Random Access

cache 8MB random

lfsr-large Linear Shift Feedback Register
Random Access

bandwidth 50MB random

naive-small STL Random Access cache (partial) 4MB random
naive-medium STL Random Access cache 8MB random
naive-large STL Random Access bandwidth 50MB random
sledge1 Streaming Sparse Matrix Op-

erations
cache 7MB streaming

sledge2 Streaming Sparse Matrix Op-
erations

bandwidth 42MB streaming

sledge3 Streaming Sparse Matrix Op-
erations

bandwidth 399MB streaming

Table 6.2: SmashBench Suite (stress point assumes a last level cache size of 6MB to
12MB)

shows this performance interference on a production six-core Nehalem-based

Xeon and a production six-core K10-based Opteron respectively. Each task

in the co-location is configured to use three out of the six cores on the

same socket of each platform. Note that docs-analyzer, docs-keywords

and goog-retrieval do not have a data point for the Opteron. These

particular workloads must be run on the Xeon platform as they have been

specially configured for this platform. As shown in the figure, we observe

a significant amount of cross-core interference. This has led to a policy

to disallow the co-location of search-render and other tasks on the same

machine. However, some co-locations result in minimal to no interference.

With the ability to precisely predict the performance interference suffered,

those co-locations can be identified as safe, and the utilization of idle cores

can be reclaimed.
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SmashBench: Performance Interference Benchmark Suite

It is also important to note that various applications generate contention

with various access patterns and working set sizes, which results in differing

amounts of pressure across shared resources such as on-chip caches and buses

to main memory. To characterize the sensitivity of our large-scale WSC

workloads to a spectrum of contention types, and to properly evaluate the

effectiveness of Bubble-Up for predicting the performance interference that

results from these various types of contention, we have created an in-house

benchmark suite of contentious kernels, which we call SmashBench.

Table 6.2 shows the various kernels in our SmashBench suite. This suite

of contentious workloads were designed specifically to exercise the resources

that lie between the cores of a multicore processor and main memory in a

spectrum of access patterns and working set sizes. As shown in the figure,

SmashBench spans five access patterns. Each pattern continuously performs

memory operation on a chunk of memory, which is of the size denoted w.s.

size. The stress point of each application is either the shared on-chip caches

or the bandwidth to memory, which is primarily a function of its working

set size. Note that this instance of the suite assumes a last level cache size of

approximately 6MB to 12MB. Current production WSC deployments house

processors with these specifications. It is important to note that while this

version of the suite was designed for the platforms used in current production

WSCs, it can be easily extended for future processor designs by modifying

the working set size.

A good characterization methodology for the precise prediction of per-

formance interference must be sensitive to various types of contention. To

highlight this point we perform a simple experiment. Figures 6.8 and 6.9

illustrates the effect of only changing the access pattern while keeping the

working set constant, and only changing the working set while keeping the
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Figure 6.8: For a given working set size, we observe a different amount of interference
when varying access pattern.
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access pattern constant. In Figure 6.8, each of our WSC applications are co-

located with our SmashBench benchmarks with a working set size of 50MB.

As shown in the figure, even a slight change in the random number gener-

ator used (when comparing lfsr-naive with naive) can result in a large

impact on the contentiousness of an application. In addition, as Figure 6.9

shows, changing the working set size when keeping the access pattern the

same results in also varing amounts of performance interference.

6.1.3 The Effectiveness of Bubble-Up

In this section, we evaluate the accuracy of Bubble-Up in precisely predicting

performance degradations due to interference.

The primary platform used in our evaluation is a six-core Nehalem-based

Xeon. The performance metric used to describe the QoS of each Google ap-

plication is the internal metric as presented in Table 6.1. Each application

task is configured to use three cores on the six-core machines and two cores

on the quad-core machines. As previously described, during the characteri-

zation phase, the bubble runs on the remaining cores.

Sensitivity Curves of WSC Workloads

We first present the sensitivity curves for Google benchmarks generated by

our Bubble-Up methodology. The goal is to 1) examine our Bubble-Up

design through analyzing the resulted sensitivity curves and 2) to further

improve our understanding of how pressure in the shared resources affects

the QoS of Google’s applications. To generate sensitivity curves, we adjust

the pressure Bubble-Up generates and measure an application’s QoS under

each given pressure. Figures 6.10a to 6.10i present the sensitivity curve

of each Google application. For each figure, the x-axis shows the pressure

on the shared memory system generated using Bubble-Up’s bubble. The
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Figure 6.10: Bubble-Up Sensitivity Curves for 9 Highly Sensitive Google Workloads.

y-axis shows the QoS performance of each application, normalized by its

performance when it is running alone on the platform.
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Bubble Design Figures 6.10a to 6.10i illustrate that our bubble design

does indeed have the three properties described in Section 6.1.1. We ob-

serve Monotonic Curves. In general, each application’s QoS is decreasing

as the pressure increases. This confirms our hypothesis that we can create

an aggregate pressure “dial” in software that negatively and monotonically

impacts an application’s QoS. We also observe Wide Dial Range. The sen-

sitivity curves generally flatten after the Bubble-Up pressure goes beyond

20MB. At this point, the pressure on the shared cache and memory band-

width saturates and further increase of the pressure would not have much

more impact on an application’s QoS. Finally, we observe Broad Impact.

The monotonic trend beyond 12MB shows that we are not only saturating

the cache, but also the bandwidth to memory. The pressure generated by

the bubble stresses the caches, bandwidth and prefetchers (due to streaming

behavior described in Section 6.1.1).

Workload Characteristics Some curves (e.g., search-render) are de-

creasing more sharply than others (e.g., protobuf). Also, at a given pressure

point, each application suffers a different amount of QoS degradation. For

example, at pressure point 10, search-render’s normalized QoS is only 0.7,

while protobuf’s QoS is still around 0.95. When the curve flattens, each

application’s plateau QoS is also different, ranging from 0.6 to 0.85. This

shows that Google applications’ QoS have different levels of sensitivity to

the pressure in the shared resources. Also, each application’s sensitivity

to various resources may be different. Since the experimental platform has

a 12MB last level cache, the pressure before 12MB is only applied on the

shared cache, and after 12MB, the pressure is applied on both shared cache

and memory bandwidth. Comparing the gradients of an application’s curve

before and after 12 MB can help gain insights on its sensitivity to various
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resources. For example, protobuf’s curve is fairly flat before 12 MB but has

a steep dip after 12MB. This indicates that protobuf’s QoS may be more

sensitive to the pressure on the memory bandwidth than the shared cache.

Bubble Up Prediction Accuracy

In this section, we evaluate Bubble-Up’s accuracy when predicting the QoS

degradation of the applications due to performance interference.

Co-locating Google with SmashBench We first evaluate the effective-

ness of Bubble-Up in predicting the impact of our SmashBench workloads on

Google’s applications. In this experiment, we apply step one of our method-

ology to 9 memory intensive Google applications, and step two to our 15

SmashBench workloads. As previously mentioned, step one needs only to

be applied to applications whose QoS needs to be enforce. Step two only

needs to be applied to the applications that may threaten an application’s

QoS. Figure 6.11a to 6.11c present the results for each of the 9 Google ap-

plications. For each figure, the x-axis shows each of the 15 SmashBench

benchmarks. The y-axis shows the Google application’s QoS degradation.

For each benchmark on the x-axis, the first bar shows the Google applica-

tion’s predicted degradation when co-located with the benchmark; the sec-

ond bar is its measured degradation. The closer the two bars are, the more

accurate the Bubble-Up prediction is. Each figure’s caption also documents

the average prediction error for each Google application, calculated using

the absolute difference between the prediction and the measured value. In

general, Bubble-Up’s prediction error is quite small. For the nine Google ap-

plications, the prediction error is 2.2% or less. SmashBench exhibits a wide

range of memory access patterns, stress points and working set sizes. The

fact that a single Bubble-Up design can predict accurately the QoS degrada-
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Figure 6.11: The Accuracy of Bubble-Up in Predicting QoS Impact for 9 Highly Sensitive
Google Workloads.

tion caused by SmashBench demonstrates the generality of the Bubble-Up

methodology.
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Figure 6.12: Bubble-Up’s predication accuracy for pairwise co-locations of Google ap-
plications.

Pairwise Google Co-location Figure 6.12 summarizes the prediction

accuracy of Bubble-Up for pairwise co-locations with nine of the most sensi-

tive Google applications with the complete set of Google applications (shown

in the x-axis). Each bar shows the error (delta) between the performance

degradation predicted by Bubble-Up and the actual measured performance

degradation in the co-location. Errors in the negative direction imply that

the actual QoS degradation is worse (more) than predicted; errors in the

positive direction implies that the actual QoS degradation is better (less)

than predicted. Only errors in the negative direction can result in a viola-

tion of a QoS policy. As the figure shows, Bubble-Up’s prediction error is

fairly small across all Google pairwise co-locations.
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6.2 Improving WSC Utilization with Bubble-Up

In this section, we present an investigation of how Bubble-Up’s QoS predic-

tion can be leveraged to steer the cluster manager to increase co-locations

in a WSC environment, and ultimately improve utilization.

6.2.1 Applying Bubble-Up in WSCs

To predict the performance degradation on an application, A, when co-

located with a corruner, B, we use B’s bubble score to index into A’s sen-

sitivity curve. To improve machine utilization, we allow latency-sensitive

applications to have a small amount of QoS degradation. The tolerable

degradation threshold is specified in a QoS policy as described in Chapter 2.

Using Bubble-Up, we can predict the QoS degradation and allow co-location

of latency-sensitive applications with other applications when the predicted

QoS degradation is within the specified threshold. To evaluate the effec-

tiveness of Bubble-Up, we constructed a scenario where we evaluate 1) the

machine utilization improvement when using Bubble-Up; and 2) the success

of Bubble-Up’s prediction in satisfying a QoS policy without violating the

specified QoS threshold.

For the production scenario presented in this section, we conducted our

evaluation using a cluster that is composed of 500 machines, described in

Section 6.1.3. In this experiment, we focused on search-render as our main

latency-sensitive application whose QoS degradation must be limited within

a small amount. In this cluster, there are 500 instances of search-render,

each placed on a single machine. There are 500 other Google applications,

evenly distributed across 15 application types shown in Table 6.1. Every ap-

plication uses three cores. Our evaluation baseline is the currently deployed

cluster management that disallows co-location of search-render with any
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Figure 6.14: Number of Bubble-Up co-locations under each QoS policy.

other applications. In this experiment, we investigated the potential co-

location and utilization gained using Bubble-Up predictions under varying

QoS policies.

Figure 6.13 presents the cluster’s utilization achieved by Bubble-Up pre-

diction under various QoS policies. The baseline is the utilization of the

cluster when co-location is disallowed and each instance of search-render

is occupying three out of the six cores on a single machine, and thus at

50% cluster utilization. The max utilization is achieved by allowing all co-

locations; placing each of all 500 other Google applications to co-run with

a search-render on every machine, regardless of search-render’s QoS
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Figure 6.15: Reduction in QoS violations when applying a tolerance to each QoS policy.
Having a tolerance of just a few percent results in no violations.

degradation. The max utilization is not 100% because we define a machine’s

utilization as the aggregate performance of all applications running on the

machine, normalized by their solo performance. For example, application A

and B are co-locating and occupying all six cores on a machine, but due to

cross-core interference, their performance is only 90% of that when running

alone occupying three cores on a machine. Then the machine utilization

when co-located is only 90% instead of 100%.

As Figure 6.13 demonstrates, Bubble-Up prediction greatly improves

machine utilization. Even under 99% of QoS policy (when the tolerable

QoS degradation is only 1%), the utilization is improved from 50% to close

to 70%. Allowing a more relaxed QoS policy improves the utilization even

more. Under 80% QoS policy, the utilization improvement is close to 80%,

showing great potential benefit of adopting Bubble-Up in WSCs.

Figure 6.14 presents the total number of co-locations allowed by the

cluster manager according to Bubble-Up prediction under each QoS policy.

Similar to utilization, the number of co-location increases as the allowed

QoS degradation increases. The baseline co-location is 0. With 99% QoS
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under each QoS policy. (Random Assignment)

policy, the co-location is close to 200. With 80% QoS policy, the allowed

co-locations increase to 400. However, because of Bubble-Up’s prediction

error, there may be co-locations that violate the QoS threshold specified

in the policy. Both the number of co-locations that satisfy the QoS policy

and the number of violations are presented in stack bars. The violations

are broken down into three categories: violations that cause less than 1%

extra degradation beyond the QoS policy, 1-2% extra degradation and 2-3%

degradation. For example, as shown in the figure, under 99% QoS policy,

around 10% of the co-locations violate the policy. However, all of these

violations only cause less than 1% extra QoS degradation beyond the policy,

meaning their QoS is within a 98% QoS policy. Figure 6.15 shows the effect

of updating the QoS policy to include an error tolerance. As shown in the

figure, increasing error tolerance at each QoS policy reduces the number of

violations. Note that most of the violations cause only less than 2% of extra

QoS degradation beyond the QoS policy.

Figure 6.16 shows the percentage of violating co-locations when allowing

all co-locations for each QoS policy.



Chapter 6. Mitigating Interference in WSCs with Precision 133

max

C
lu

st
er

 U
ti

li
za

ti
o
n

QoS Policy

WSC Utilization Improvement

AMD K10

Intel Core 2

  10%

  20%

  30%

  40%

  50%

  60%

  70%

  80%

  90%

  100%

baseline 99% 98% 95% 90% 85% 80%

Figure 6.17: Improved utilization in a clusters composed of AMD K10 Opteron servers
and Intel Core 2 Xeon servers.

QoS Enforced

  0

  100

  200

  300

  400

  500

99% 98% 95% 90% 85% 80% 99% 98% 95% 90% 85% 80%

C
o
−

lo
ca

ti
o
n
s

QoS Policy

Increase in Co−locations

AMD K10 Opterons Intel Core 2 Xeons

QoS Violated 2%−3% 

QoS Violated 1%−2% 

QoS Violated <1%

Figure 6.18: Co-locations allowed in Opteron and Xeon clusters.

6.2.2 Impact of Varying Architecture

To evaluate the generality of our Bubble-Up across microarchitectures, we

conducted similar experiments on two additional platforms (a six-core K10-

based Opteron and a four-core Core2-based Xeon) with the same bubble and

reporter used on the Nehalem processor. The experimental setup is similar

as Section 6.2.1.

Figure 6.17 demonstrates the utilization improvement for the cluster

when using Bubble-Up prediction for a cluster composed of Opteron and a

cluster composed of Core2-based Xeons.

As Figure 6.18 shows, Bubble-Up can effectively increase the number of
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co-locations with a small amount of error on both platforms. The platforms

presented here both have a smaller shared cache sizes and lower bandwidth

than the Nehalem processor. This leads to a higher degree of contention on

these processors. As a result, we observe fewer co-locations at higher QoS

policy thresholds. At the 90% threshold the number of co-locations allowed

increases dramatically.

6.3 Directly Quantifying CCI Sensitivity

While prior work has demonstrated the importance of characterizing an

application’s cross-core interference sensitivity, current techniques use in-

direct methods [19, 37, 63, 125, 132]. An indirect analysis is one that infers

an application’s cross core interference sensitivity. An example of an in-

direct analysis is the usage of an application’s last level cache missrate to

predict its cross-core interference sensitivity [63]. A direct analysis on the

other hand, is one that characterizes the impact on application performance

when contention is actually occurring in comparison to when no contention

is present.

In this section, we present the Cross-core interference Profiling

Environment, CiPE, the first direct methodology and framework for the

characterization of an application’s sensitivity to cross-core performance

interference. This approach is also the first to identify and characterize

contentious phases of execution and regions of source code, in contrast to

Bubble-Up’s sensitivity curves that only characterizes the entire application.

The key insight and observation motivating the design of our cross-

core profiling methodology is the fact that contention for shared cache and

memory resources is an intrinsically dynamic property of the application’s

memory behavior, coupled with the intricacies of the particular microar-
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Figure 6.19: Performance impact due to contention from co-location with LBM.

chitectural and memory subsystem design. Therefore, we employ a direct,

empirical, online characterization approach.

As an application executes on our CiPE environment, a carefully de-

signed contention synthesis engine is spawned on a neighboring core to run

alongside the application. This contention synthesis engine is dynamically

manipulated by CiPE, and the resulting impact on the host application is

analyzed.

6.3.1 Revisiting the Problem of Cross-Core Interference

Two representative examples of the state of the art multicore chip designs

are the Intel Core i7 Quad Core chip and AMD’s Phenom X4 Quad Core. In-

tel’s Core i7 has four processing cores sharing a large 8mb L3 cache. AMD’s

Phenom X4 also has four cores and shares a 6mb L3 cache. These chips were

designed to accommodate 4 simultaneous streams of execution. However, as

we have seen through experimentation, their shared caches and memory sub-

system often cannot efficiently accommodate even 2 co-running processes.

Figure 6.19 compares the potential cross-core interference that can occur
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when multiple co-running applications are executing on the Core i7 with the

Phenom X4 architectures described above. Similar to Section 5.3, in this

experiment we study the cross-core performance interference suffered by

each of the SPEC2006 benchmarks when co-running with lbm, one of the

SPEC2006 benchmarks known be an especially heavy user of the on-chip

memory subsystem. Figure 6.19 shows the slowdown of each benchmark due

to the cross-core interference from lbm. Each application was executed to

completion on their ref inputs. On the y-axis we show the execution time of

the application while co-running with lbm normalized to the execution-time

of the application running alone on the system. The first bar in Figure 6.19

presents this data for the Core i7 architecture and the second bar for the

Phenom X4. As this graph shows, on both architectures, there are severe

performance degradations due to cross-core interference for many of the Spec

benchmarks. The large last level on-chip caches of these two architectures do

little to accommodate many of these co-running applications. On a number

of benchmarks including lbm, mcf, omnetpp, and sphinx, this degradation

approaches 35%. However, not all applications are effected by the contention

properties of their co-runners. Applications such as hmmer, namd, and povray

appear to be immune to lbm’s cross core interference, demonstrating that

cross-core interference sensitivity varies substantially across applications.

It is clear from Figures 6.19 that knowledge of an application’s sensitivity

to cross-core performance interference is critical to understanding the dy-

namic interaction and the resulting performance implications of co-running

applications on current commodity multicore architecture. In this work, we

aim to characterize this sensitivity at three levels: entire applications, their

individual phases, and their source level code regions.
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6.3.2 Overview of CiPE

CiPE is a profiling analysis approach capable of characterizing an applica-

tions cross-core interference sensitivity. To perform this characterization,

an application is run only once on our CiPE framework. This characteri-

zation produces application-level, phase-level, and source-level information

that can be subsequently used for a range of purposes such as contention-

conscious scheduling, performance analysis and debugging, server consoli-

dation in the WSC, and a host of other uses.

It is important to remember, however, that since the design of the un-

derlying architecture and memory subsystem determine the potential for

cross-core interference, each CiPE profile represents the application’s cross-

core interference sensitivity on the underlying architecture on which the

profile was collected. For example a multicore chip with core-private L1

caches big enough to contain the working set of lbm could run multiple in-

stances of lbm with no cross-core interference. On this architecture lbm is

not sensitive to cross-core interference. This is not the case on other chips

whose core-private caches cannot accommodate lbm, such as the Core i7 or

Phenom X4. This insight about the nature of cross-core interference further

motivates having a general and portable direct approach like CiPE. While

the profiles produced by CiPE are representative of a particular underlying

architecture and those that are similar, the characterization methodology,

and CiPE itself, is portable from chip generation to chip generation.

Profiling Environment

Figure 6.20 provides an overview of CiPE running on a multicore architec-

ture with two separate cores sharing an on-chip cache and memory subsys-

tem. The shaded boxes represent our CiPE profiling framework, which is

composed of the CiPE runtime and a contention synthesis engine (CSE).
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Figure 6.20: The CiPE Framework

As shown on the left side of Figure 6.20, the host application is monitored

throughout its execution by the CiPE runtime. Before the execution of

the host application, the CiPE runtime spawns the CSE on a neighboring

core, as shown to the right of the figure. This CSE shares the cache and

memory subsystem of the host application. As the application executes,

the CSE aggressively accesses memory causing as much cross-core interfer-

ence as possible. The CiPE runtime manipulates the execution of the CSE

allowing bursts of execution to occur by turning the CSE on and off. Slow-

downs in the application’s instruction retirement rate that result from this

bursty execution are monitored using the hardware performance monitoring

(HPM) information [53] and are used to characterize its sensitivity. This

intermittent control of the CSE and monitoring of the HPM are achieved

using a periodic probing approach [77]. A timer interrupt is used to period-

ically execute the monitoring and profiling directives. Periodic probing has

been shown to be a very low overhead approach for the dynamic monitoring

and analysis of applications.

The core algorithm of our CiPE runtime is presented in Algorithm 6. In

this algorithm, CSE Status (line 3) is a flag used to denote whether the CSE

engine is executing (active) or sleeping (dormant). CSE active ir (line 7)
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Algorithm 6: CiPE Core Algorithm

Description: This main loop is executed throughout the lifetime of
the host application.

1 Initialize CSE();
2 CSE Off();
3 CSE Satus← dormant;
4 while application running do
5 Let App Run(probe time);
6 if CSE Status equals active then
7 CSE active ir ← Read PMU(instructions retired);
8 Characterize CIS(CSE dormant ir,CSE active ir);
9 Record Profile();

10 CSE Satus← dormant;
11 CSE Off();

12 end
13 else if CSE Status equals dormant then
14 CSE dormant ir ← Read PMU(instructions retired);
15 CSE Satus← active;
16 CSE On();

17 end

18 end

and CSE dormant ir (line 14) records the value of the instructions retired

performance counter available in most current microarchitectures. The pe-

riodic probing interval is set with probe time. CSEOn() and CSEOff() (lines

11 and 16) turn the contention synthesis engine on and off (described in

Section 6.3.4). Characterize_CIS() calculates a cross-core interference

sensitivity score (described in Section 6.3.3). Our CiPE Algorithm runs

continuously for the duration of the host application’s execution.

As the algorithm shows, the performance monitors are read at every

probe time interval. A sample of the instructions retired is collected when

the CSE is active, and another is collected when the CSE is dormant. Both

samples are passed as input to the cross-core sensitivity characterization

routine Characterize_CIS(), and finally recorded by Record_Profile().
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Figure 6.21: IPC Curves

6.3.3 Quantifying Sensitivity

In this section, we present the metrics and measurements used to quantify

cross-core interference sensitivity (CIS). This analytical model is used for

the Characterize CIS() function presented in Algorithm 6.

Defining Sensitivity (CIS)

We define an application’s cross-core interference sensitivity in terms of

performance degradation. Our direct metric to characterize an application’s

cross-core interference sensitivity is the normalized difference between an

application’s IPC (instruction per cycle) in the presence of contention and

its IPC when it is running alone.

CIS can be studied at a fine granularity continuously during an applica-

tion’s execution. The resulting CIS report would reveal dynamic phases of

the application’s sensitivity characteristics. We use the following formula to

define CIS at any time point ti during an execution:

CISti =
IPCno c,ti − IPCc,ti

IPCno c,ti

(6.5)

where IPCno c,ti is the application’s IPC with no contention at time ti, and

IPCc,ti is the application’s IPC in the presence of contention at time ti. The

intuition of the formula is shown in Figure 6.21. Here we present an illustra-
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tive diagram of an application’s two IPC curves of its two executions, with

and without contention respectively. At time ti, CIS is represented by the

distance between two points at ti on two IPC curves, IPCno c,ti and IPCc,ti ,

then normalized by the IPC with no contention IPCno c,ti . Compared to

using other metrics such as cache misses to indirectly infer the applica-

tion’s sensitivity, CIS directly measures sensitivity using the percentage of

an application’s performance (IPC) that is lost due to cross-core interfer-

ence. Notice that executions with and without contention may vary in time

to finish so one IPC curve may need to be normalized for the sake of the

calculation.

CIS can also be studied at an application level to characterize the appli-

cation’s general intrinsic sensitivity to cross-core interference. This metric

can be viewed as the average distance between two curves, and can be graph-

ically interpreted as the area between the two curves normalized to the area

under the curve for IPC with no contention as shown in Figure 6.21 and the

formula:

CISavg =

∫ te
ts

IPCno c −
∫ te
ts

IPCc∫ te
ts

IPCno c × (te − ts)
(6.6)

= (IPCno c − IPCc)avg (6.7)

where ts and te is the start and end point of the time period we are charac-

terizing. This can also be calculated simply as the average CIS throughout

the execution, as shown in the formula.

CIS Sampling Methodology

Given the above CIS definition, our CiPE system provides an approach to

calculate, monitor and profile CIS through execution. The CiPE system

invokes the contention synthesis engine to inject cross-core interference at
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regular frequent intervals, which facilitates direct measurement and profil-

ing of contention’s impact on an application’s performance. To measure the

difference between IPCs with and without contention, CiPE system uses a

bursty sampling methodology. The CiPE system first turns off the synthe-

sis engine for a sample interval, collects the host application’s IPC without

contention, then in the immediately-following sample interval, turns on the

synthesis engine to collect the application’s IPC under the synthesized con-

tention. CiPE uses these two adjacent samples to approximate Formula 6.5

by approximating IPCno c,ti using IPCno c,ti+1 , as shown in the following

formula:

CISti ≈
IPCno c,ti+1 − IPCc,ti

IPCno c,ti+1

(6.8)

where ti+1 − ti is the sample interval. Notice that the interval from ti−1

to ti is when CiPE has the synthesis engine on to generate contention, and

at ti, IPCc,ti is collected. From ti to ti+1 the synthesis engine is off and

IPCno c,ti+1 is sampled at ti+1. We call the characterization using this for-

mula, the CIS score.

The above formula is used to generate CIS score at every sample interval

along the application’s execution. Also, we can define the application’s

average CIS score using the following formula to calculate the average of all

CIS scores during the execution to approximate formula 6.6 where n is the

number of samples.

CISavg ≈

∑n
i=0CISti

n
(6.9)

6.3.4 Contention Synthesis

In this section, we discuss the challenge and task of synthesizing contention.
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Challenge of Contention Synthesis

The type of data access pattern and the way that data is mapped into the

cache is very important to consider when constructing the CSE. Structures

such as hardware cache prefetchers and victim caches can avert poor and

contentious cache behavior even when the working set of the application is

very large. The features and functionality of these hardware techniques are

difficult to anticipate as vendors keep these details closely guarded.

With these advances in microarchitectural design, simply accessing a

large amount of data does not necessarily cause high pressure on cache and

memory performance. For example, access patterns that exhibit a large

amount of spatial or temporal locality can easily be prefetched into the ear-

lier and later levels of cache, and prefetch buffers can be used. An important

question that arises is, on sophisticated modern architectures, whether an

application’s sensitivity to contention depends on the manner in which the

contention is synthesized.

Designing Contention Synthesis Kernels

To design our contention synthesis engine we explored and experimented

with a number of common data access patterns. These designs consist of

the random access of elements in a large array, the random traversal of large

linked data structures, data movement in 3d object space commonly found

in simulations and scientific computing, a real world fluid dynamics appli-

cation (the lbm SPEC2006 benchmark) and finally, we reverse engineered

lbm, found its most contentious code, and further tweaked it to construct a

highly contentious synthesis engine which we call “The Sledgehammer.” We

present the core of each algorithm and provide full details in Appendix B.
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Algorithm 7: Naive Contention Synthesis Kernel
Description: This kernel is executed throughout the lifetime of the host

application.

1 data← allocate size of LLC() bytes;
2 foreach byte in data do
3 byte← random value;
4 end

5 while not paused and application running do
6 foreach byte in data do
7 byte← random byte in data;
8 end

9 end

Naive The core algorithm for our naive contention synthesis kernel is pre-

sented in Algorithm 7. This kernel is designed to simply access a large array

of memory (matching the size of the L3 cache) performing both loads and

stores, while minimizing the computation and instruction level parallelism

within the kernel. Our earliest designs traversed an array of memory match-

ing the size of last level of on-chip cache in a number of clever ways that

avoided calculating future indices within the kernel. However, the hardware

prefetchers on both the Intel and AMD chips were able to cleverly prefetch

these indices to early levels of cache. One example of an approach subverted

by the hardware prefetchers was the caching of 10,000 random numbers to

be used to access the elements of a large array. Although accesses to the

data were random, the lookup for the random index is predictable, and

modern prefetchers are clever enough to identify the lookup-access pattern.

Ultimately, our naive design evolved to simply calculating the random in-

dex on the fly as shown in Algorithm 7. While the hardware prefetcher was

unable to anticipate these memory accesses, the drawback of this approach,

however, is the fact that each memory access is interleaved with the logic to

calculate the random number, allowing for a high degree of instruction level

parallelism.



Chapter 6. Mitigating Interference in WSCs with Precision 145

Algorithm 8: Linked Data Structure (BST) Trample Function

Input: A tree node bst node

1 return value← 0;
2 if bst node 6= null then
3 if bst.id mod 2 then
4 if bst node.left 6= null then
5 return value← trample(bst node.left);
6 end
7 if bst node.right 6= null then
8 return value← trample(bst node.right);
9 end

10 return value← return value+ bst node.data[bst node.id mod data size]
;

11 bst node.id← bst node.id+ return value;
12 bst node.data[bst node.id mod data size]← bst node.id mod 256;

13 else
14 if bst node.right 6= null then
15 return value← trample(bst node.right);
16 end
17 if bst node.left 6= null then
18 return value← trample(bst node.left);
19 end
20 return value← return value− bst node.data[bst node.id mod data size]

;
21 bst node.id← bst node.id+ return value;
22 bst node.data[bst node.id mod data size]← bst node.id mod 256;

23 end
24 return ret;

25 end

Algorithm 9: Linked Data Structure (BST) Contention Synthesis
Kernel
Description: This kernel is executed throughout the lifetime of the host

application.

1 bst← new binary search tree;
2 while size of bst < size of LLC do
3 bst node.id← random id;
4 bst node.data← allocate 128 bytes;
5 for i=1 to 128 do
6 bst node.data← random value;
7 end
8 insert bst node into bst;

9 end

10 while not paused and application running do
11 trample(bst.root)

12 end
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Linked Data Structure The core algorithms for our linked data traver-

sal contention synthesis kernel is presented in Algorithms 8 and 9. This

design for this contention synthesis kernel consists of the random construc-

tion and traversal of a binary search tree. There were also a number of steps

taken to reverse optimize (optimize for high contention) this linked struc-

ture contention synthesis approach. For example, the trample function is

a specialized traversal that recursively picks whether the left or right sub-

tree is to be trampled first as shown in Algorithm 8. In the final design of

this contention synthesis kernel, each tree node consists of an id and data

payload. The payload consists of a 128 random bytes to have each node

map into its own cache line. The contentious kernel of this approach uses

the trample function to performed a random depth first search through the

tree touching and changing the data alone the way by using the randomized

id to permute both the id and the data payload of each node.

3D Data Movement The core algorithm for our 3D data movement con-

tention synthesis kernel is presented in Algorithm 10. This 3D data move-

ment micro benchmark consists of a number of large 3D arrays of double

precision values that represent solid virtual cubes. We use the dimension-

ality of 30x30x30 for these cubes as this produces a total memory footprint

of about 10mb which can fill most modern last level cache sizes. This con-

tention synthesis kernel transposes the cells of each cube into the space of

another cube. The cells of one cube is continuously copied to another.

LBM from SPEC2006 The implementation of the LBM benchmark can

be found in the official SPEC2006 benchmarks suite [47]. LBM is an im-

plementation of the “Lattice Boltzmann Method” (LBM). The Boltzmann

Method is used to simulate incompressible fluids. We selected this bench-

mark as one of our synthesis mechanisms, as it proved to be one of the most
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Algorithm 10: 3D Data Movement Contention Synthesis Kernel
Description: This kernel is executed throughout the lifetime of the host

application.

1 nugget size← 128;
2 dim← 30;
3 nugget← bytes[nugget size];
4 block1← nugget[dim][dim][dim];
5 block2← nugget[dim][dim][dim];
6 block3← nugget[dim][dim][dim];

7 for i=1 to dim do
8 for j=1 to dim do
9 for k=1 to dim do

10 for l=1 to nugget size do
11 block1[i][j][k][l]← random value;
12 block2[i][j][k][l]← random value;
13 block3[i][j][k][l]← random value;

14 end

15 end

16 end

17 end

18 while not paused and application running do
19 for i=1 to dim do
20 for j=1 to dim do
21 for k=1 to dim do
22 for l=1 to nugget size do
23 block1[i][j][k][l]← block2[j][k][i][l];
24 end
25 for l=1 to nugget size do
26 block2[j][k][i][l]← block3[i][j][k][l];
27 end

28 end

29 end

30 end

31 end
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contentious of the SPEC2006 benchmark suite. For a complete description

of LBM please refer to [47].

Algorithm 11: The Sledgehammer Contention Synthesis Kernel
Description: This kernel is executed throughout the lifetime of the host

application.

1 margin← 400× 1000;
2 src data← allocate (2×margin+ 26× 1000000× size ofdouble);
3 dest data← allocate (2×margin+ 26× 1000000× size ofdouble);

4 while not paused and application running do
5 for i=margin to 26× 1000000 +margin do
6 dest data[i] = src data[i];
7 dest data[i− 1998] = src data[(1) + i];
8 dest data[i+ 2001] = src data[(2) + i];
9 dest data[i− 16] = src data[(3) + i];

10 dest data[i+ 23] = src data[(4) + i];
11 dest data[i− 199994] = src data[(5) + i];
12 dest data[i+ 200005] = src data[(6) + i];
13 dest data[i− 2010] = src data[(7) + i];
14 dest data[i− 1971] = src data[(8) + i];
15 dest data[i+ 1988] = src data[(9) + i];
16 dest data[i+ 2027] = src data[(10) + i];
17 dest data[i− 201986] = src data[(11) + i];
18 dest data[i+ 198013] = src data[(12) + i];
19 dest data[i− 197988] = src data[(13) + i];
20 dest data[i+ 202011] = src data[(14) + i];
21 dest data[i− 200002] = src data[(15) + i];
22 dest data[i+ 199997] = src data[(16) + i];
23 dest data[i− 199964] = src data[(17) + i];
24 dest data[i+ 200035] = src data[(18) + i];

25 end

26 end

“The Sledgehammer” The core algorithm for our sledgehammer con-

tention synthesis kernel is presented in Algorithm 11. This design is the

result of reverse engineering and investigating lbm to learn its contentious

core nature. The name of this kernel is motivated by the fact that its be-

havior can be visualized as touching an element in a 1D or 2D array, and

a number of sparsely surrounding elements are also effected. As shown in

Algorithm 11, this contention synthesis kernel first allocates two large arrays

and enters its contentious kernel which continuously copies data back and

forth.
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Figure 6.22: Slowdown caused by contention synthesis on Intel Core i7.
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Figure 6.23: Slowdown caused by contention synthesis on AMD Phenom X4.

Kernel Performance Analysis

Goals of Experiment We seek to answer two questions with our evalu-

ation of contention synthesis designs. The first is whether there is a drastic

difference between the interactions of different applications to the different

contention synthesis designs. We hypothesize that contention is agnostic to

the nature of memory access. We seek to evaluate this very question. The

other goal of this evaluation is to learn whether there exists a synthesis en-

gine that consistently generates more contention than all others, and if so,

identify it.
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Experiments with 4 Designs Figures 6.22 and 6.23 show the perfor-

mance impact of co-running each of the contention synthesis designs with

each of the SPEC2006 benchmarks (C/C++ only) run to completion on ref

inputs. Figure 6.22 shows the results when performing this co-location on

Intel’s Core i7 Quad architecture, and Figure 6.23 shows these results on

AMD’s Phenom X4 Quad. The bars show the slowdown when co-located

with naive random access (naive), binary search tree (BST), the lbm bench-

mark (LBM Core), the 3d block data movement (Blockie), and our sledge-

hammer technique (Sledge), in that order. The lbm benchmark is used as a

baseline to compare the synthetic engines. It is clear from the graphs that

the Naive and BST approaches produce the smallest amount of contention.

However note that they do an adequate job of identifying the applications

that are most sensitive to cross-core interference. The contention produced

by Naive and BST is low as there is computation performed between single

memory accesses. Blockie and Sledge touch large amounts of data in a

single pass and with less computation. Note that our Blockie and Sledge

techniques are more effective than using the most contentious of the SPEC

benchmarks.

Across the two architectures the general trend is similar, although we

do see some differences. We see that applications that tend to be sensitive

to contention tend to be uniformly so across these two representative ar-

chitectures. We also see that the varying contention synthesis designs rank

similarly on both architectures. This general trend supports our hypothesis

that contention is agnostic across this class of commodity multicore archi-

tectures.

Although the general trend is the same, there are some clear differences.

For example, the benchmark most sensitive to cross-core interference on the

two architectures differs. On Intel’s architecture mcf shows the most signif-
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icant degradation in performance, while on AMD’s architecture lbm has the

most significant degradation. These variations are due to the idiosyncrasies

of the microarchitectural design.

The key observation is the effectiveness of the contention synthesis de-

signs are mostly uniform across the different benchmark workloads. This

trend supports our hypothesis that in addition to being generally agnostic

across this class of commodity multicore architectures, it is also agnostic

across the varying workloads and memory access patterns present in SPEC.

For our CiPE framework we finalized the design of our main CSE with

a implementation based on Sledge as it most vividly illustrates contention.

6.3.5 Applying the CiPE Methodology

In this section we first present the results of our CIS analysis. We then

demonstrate the practicality and usefulness of CiPE by using it to address

two problems. The first problem is the selection of contention-conscious co-

schedules for a batch of jobs to dynamically minimize cross-core performance

interference and maximize overall throughput and performance. The second

problem is to-locate regions of code that, when executed dynamically, are

highly sensitive to cross-core performance interference. We address this

problem by designing a novel performance analysis and debugging tool using

CiPE.

Characterizing Application Phase

Figures 6.24 to 6.29 show phase-level CIS scores calculated using our CiPE

system for a representative selection of the SPEC 2006 benchmarks. CIS

scores are calculated using samples collected at 1 ms interval along the ap-

plication’s complete execution on ref input. For each benchmark, the two

lines in the graph indicate the CIS scores on the two different architectures
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Intel Core i7 and AMD Phenom X4. Both lines represent a complete ex-

ecution and is smoothed to 500 data points. We selected representative

key benchmarks from the SPEC2006 suite. The higher the CIS score is,

the more sensitive the application is to cross-core interference. One im-

portant observation is that there are interesting clear phases in both some

of the highly sensitive benchmarks (milc, mcf, sphinx) and in relatively

insensitive benchmarks (bzip). There are also benchmarks that do not ex-

hibit clear phases including both sensitive benchmarks (lbm) and insensitive

benchmarks.

Profiling and discovering phase level characteristics of sensitivity is valu-

able for dynamic co-scheduling, whether the scheduling is done through a

runtime system or OS. For example, as shown in Figure 6.28, sphinx is

highly sensitive during the first half of the execution but later its sensitivity

drops. Thus an intelligent dynamic scheduler equipped with phase informa-

tion can foresee peaks of contention sensitivity and schedule the application

wisely according to the phase. In addition, as shown later in this section,

we have designed a performance analysis and debugging tool that associates

these phases to source code regions. Using this, users can identify code

regions that are highly sensitive and optimize accordingly.

Characterizing Whole Execution

Figures 6.30 and 6.31 show the average CIS scores calculated using For-

mula 6.9 for all C/C++ benchmarks in SPEC2006, compared against the

performance degradation when each benchmark is co-running with lbm, on

both Intel Core i7 and AMD Phenom X4. We also compare our CIS ap-

proach with average last level cache (LLC) miss rates, as this approach is

currently believed to be one of the best known indicators of contention sen-

sitivity [63, 132]. In Figures 6.30 and 6.31 we present the cache miss rate
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using a line graph for each benchmark.

Our results show that generally, an application’s average CIS score has

a strong correlation with its performance degradation (e.g., a lower CIS

scores indicate smaller degradations and vice versa). Although in a few

cases our CIS scores is less representative of the actual degradation (sphinx,

xalan and astar), we see that in general our CIS scores match the actual

performance degradation much more closely than cache miss rates. These

three benchmarks have more sporadic phases that we believe increased the

inaccuracy on its average. However, notice that even in these cases, the CIS

score significantly outperforms using last level cache miss rates. In addition,

studying the phase level CIS scores for these types of applications would

give more insight about their dynamic sensitivity.

Identifying Code Regions

We also applied our CiPE framework to identify contentious code regions.

This source level information is also critical for emerging compiler technology

that requires the identification of contentious code regions [116]. Software

developers and system analyzers can also use this information for perfor-

mance analysis, performance debugging, and to detect the most contention

sensitive application phases and identify regions of source code responsible

for this contention. We have developed a performance debugger using CiPE

that points to contentious regions of code.

Our performance debugger functions as a post processor of the profiles

generated by our CiPE profiling environment. For each CIS sample gen-

erated by the CiPE profiling framework while executing an application, a

record of the number of instructions executed since the previous sample is

recorded. This record represents a region of executed instructions. This dy-

namic instruction trace can then easily be linked back to source level code



Chapter 6. Mitigating Interference in WSCs with Precision 157

h
m

m
er

lb
m

li
b

q
u

an
tu

m

m
cf

m
il

c

n
am

d

o
m

n
et

p
p

p
er

lb
en

ch

p
o

v
ra

y

sj
en

g

so
p

le
x

sp
h

in
x

3

x
al

an
cb

m
k

E
x

ec
u

ti
o

n
 T

im
e

Running Alone

 Contending w/ LBM

 Running on CiPE

  0x

  0.2x

  0.4x

  0.6x

  0.8x

  1x

  1.2x

  1.4x

  1.6x

  1.8x

as
ta

r

b
zi

p
2

d
ea

lI
I

g
cc

g
o

b
m

k

h
2

6
4

re
f

Figure 6.32: CiPE Overhead

using the standard elf debugging information.

More details on identifying code regions with CiPE and a case study

showing our performance debugger in action can be found in Appendix D.

Profiling Overhead

Although CiPE profiles only need to be collected once, one nice attribute of

our CiPE profiling approach is that it is highly efficient. Figure 6.32 shows

the overhead of collecting CiPE profiles. CiPE requires only one pass of the

application’s execution. In this figure, for each benchmark, the execution

time when it is running on top of our profiling system (the second bar) is

normalized against the execution time when it is contending with lbm (the

first bar). For the sake of comparison we also include the execution time

when the application is running alone (the third bar), also normalized to the

contending cases. For half of the benchmarks our profiling system’s overhead

is even smaller than the degradation caused by contention generated by

lbm. For remaining benchmarks the overhead is less than 5% more than

the degradation. Notice that the synthesis engine generally causes more

degradation than our baseline contending case lbm. Therefore the overhead

introduced by the profiling technique alone is fairly low.
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Solving Real World Problems

We demonstrate the application of our CiPE methodology to two real world

problems in Appendicies C and D.
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As the landscape of computing evolves, and much of our computation

moves into the cloud, developing highly efficient WSC architectures becomes

vitally important. This dissertation argues that a WSC design that is aware

of, and exploits, the diversity of execution environments is critical in arriv-

ing at a highly efficient design. In this dissertation, we have shown how

this diversity manifests itself statically, through the diverse machine config-

urations and microarchitectural designs housed in a WSC, and dynamically,

through the various co-running tasks that a machine my host at any given

time. We have illustrated three design problems that stem from remaining

oblivious to the diversity in execution environments: the homogeneous as-

sumption where all machines and cores in a WSC are assumed equal when

they are in fact quite diverse, the rigidness of applications where application

binaries can not adapt to changes across and within execution environments,

and the oblivion of interference where interference between tasks within an

execution environment can not be measured or managed.

159
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This dissertation addresses each of these three issues to incorporate an

awareness of execution environment diversity, and demonstrate a significant

opportunity for improving efficiency. At the cluster level, we address the

homogeneous assumption by enabling the WSC to continuously learn the

execution environments tasks prefer, and map jobs accordingly. At the ma-

chine level, we address the rigidness of applications by providing a novel

mechanism to allow applications to adapt to their execution environment,

and leverage this mechanism to solve pressing problems in WSCs. At the

cluster and machine levels, we address the oblivion of interference by provid-

ing novel metrics and techniques for measuring and managing interference

to improve the utilization of WSCs.

With the work presented in this dissertation, we take a major leap for-

ward in understanding how to build a highly efficient WSC, which has im-

plications on reducing not only the cost of these systems, but also their

environmental footprint.

7.1 Summary of Themes and Results

[EE Diversity is Rampant and Impactful] Through our comprehensive

study of the performance impact of diversity in execution environments,

we find that diverse execution environments are rampant, and significantly

impacts the performance of tasks within a WSC.

• When studying the performance impact of the diversity in machine

configurations across machines from Google’s production fleet, we find

a variability between 5% and 3.5x on Google’s large-scale commercial

WSC workloads.

• When performing the same study on the diversity in co-running tasks

we find a variability in performance degradations of 0% to over 30%.
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• We find these results also apply to benchmark workloads in a test

suite.

• Using the novel metric, opportunity factor, we are able to quantify the

sensitivity of an application to diversity in machine configuration and

application co-runners.

[Intelligent Job Mapping is Critical for Efficiency] Using an intel-

ligent mapping approach, tasks in the WSC are placed in execution environ-

ments where they run best, exploiting the significant performance potential

that remains unrealized in current WSC systems.

• By extending current WSC systems to exploit the EE diversity us-

ing SmartyMap, we improve the overall performance of a production

cluster environment by 12% to 16%.

• Web-service applications that are particularly sensitive to EE diversity,

such as docs-analyzer, can be improved improved by up to 82%.

• Varying either the machine mix or the application mix has a significant

impact on the performance opportunity given by EE diversity.

• When using an intelligent mapping approach such as SmartyMap, a

cheaper WSC composed of an even mix of newer (faster) and older

(slower) machines can achieve more than 95% of the performance as a

more expensive WSC composed only of the newer machines.

[Application Adaptation is Critical for Efficiency] By providing

a novel mechanism that allows tasks to dynamically adapt to the execution

environment in which they run, two important problems facing WSCs can

be addressed.

• Through the design of the Lightweight Online Adaptation Framework

(Loaf), native binaries can employ adaptation approaches that allows



Chapter 7. Conclusion and Future Directions 162

the application to adapt to its environment using scenario based mul-

tiversioning, and allow the co-runners in the environment to adapt to

an application using cross core application cooperation.

• This mechanism for adaptation is extremely low overhead, incurring a

performance impact of less than 1%.

• Using this framework, we provide an approach that enables applica-

tions to self-select compiler optimizations based on the execution en-

vironment in which it runs improving the performance of applications

by 4% to 15%.

• Using this framework to design the Contention Aware Execution Run-

time (CAER) environment, we provide the capability of instantaneous

contention detection and response on real commodity machines. While

reducing the performance degradation from 17% to 4% on average, we

are able to increase the utilization of the neighboring core by 60% on

average.

[Mitigating Interferece is Critical for Efficiency] Through provid-

ing novel capabilities in measuring and managing interference between tasks

within the execution environment at both the cluster and machine levels,

we are able to significantly increase the amount of co-locations in the WSC

and improve utilization.

• Using the general characterization methodology Bubble-Up, we enable

the precise prediction of the performance degradation that results from

contention for shared resources in the memory subsystem with an error

of often less than 1% and never exceeding 2.2%.

• In a cluster scenario composed of 17 production Google workloads on

production machines we demonstrate that using Bubble-Up to steer
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co-location decisions can significantly improve the utilization of WSCs

from 50% to over 80% when using a 95% QoS policy.

• By slightly modifying how service level agreements are defined we can

eliminate the already slight violations that is produced by prediction

errors to 0.

• Using our general direct measurement technique for quantifying cross-

core interference sensitivity, CiPE, we are able to not only characterize

the sensitivity of entire applications, but also their phases of execution,

and source code regions.

7.2 Future Directions

The architecture of modern WSCs remains in its infancy. Beyond the chal-

lenges addressed in this dissertation, there are a number of future directions

for innovation with the design of WSCs to improve efficiency and reduce

their environmental footprint. This section outlines just a few of these di-

rections.

Architecting a Heterogeneous WSC

Currently, WSCs have been designed and constructed to be as homogenous

as possible, in that the aim is to have all machine configurations be identi-

cal. The advantages of this homogeneous approach is that it simplifies the

software stack and how operators interface the cloud. However, this may

not be the right way to construct WSCs. Within the community there is

currently a debate as to whether it is best to use many “wimpy” cores, or a

few “brawny” cores in the machines that comprise large-scale datacenters.

Both camps may be correct. Across the diverse set of workloads residing

in the cloud, some work best on wimpy cores, while others depend heavily
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on brawny cores for performance. Instead of choosing one design, why not

break the homogenous assumption and use as many of each type of configu-

ration as needed by the diverse set of workloads residing in the target cloud

environment. This goes far beyond just “wimpy” and “brawny” cores, to an

arbitrary set of configurations of machines specialized for various classes of

workload types.

The Accelerated WSC

Beyond embracing a heterogeneous cloud, it would be highly advantageous

to leverage acceleration units in WSCs. Web-service companies can design

a SoC with specialized acceleration components for common algorithms and

functions executed continuously in the cloud. While this type of system level

integration has been prevalent in the embedded space, current WSCs and

other general purpose domains do not leverage this potential. WSCs are

particularly well suited for system level integration especially as it relates

to acceleration units as the same set of workloads are executed for days and

months at a massive scale. Accelerating the common processing tasks at the

scale of millions of machines that are always running can result in massive

economic and environmental savings.

A Language to Express Adaptation Policies

There is currently a lack of a general interface to specify behaviors and ex-

ecution policies concerning the performance and efficiency of how jobs are

executed in the cloud. For this research direction, the goal is to design a

language to describe how the software platform in the cloud should react

to various events and situations, and redesign the software stack to support

this language. A natural language example of a policy for which we would

like to express in this language include: “when we detect a nasty co-runner
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C on machine M increases the latency of an important job J, also on ma-

chine M, let’s throttle down, migrate, or kill C depending on the category

and importance of job C.” At the scale of 10s of webservices composed of

hundreds of various job types, the challenge of enabling these policies by

hand across the entire WSC proves prohibitive. In this direction, the goal is

to provide a unified interface with a simple language to allow a confluence

of policies to be expressed and enacted.
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We have implemented our compile-time SBO infrastructure as a new

pass in the GCC 4.3.1 compiler. The passes within GCC can be broken into

four parts. First, there are the parsing passes where the text of the source

code are processed. Second, we have the gimplification passes where GCC

generates its Gimple intermediate representation on which optimizations can

occur. Third, we have tree-SSA passes that optimize high level Gimple IR.

Finally, we have the RTL passes where low level optimizations and code

generation occurs.

Our new SBO pass has been placed right after GCC’s earliest IR is gen-

erated as the first inter-procedural pass. This allows for maximum flexibility

for compiler writers to design how the SBO function versions can be config-

ured. For example, a function can be annotated to disable or enable any of

the optimizations in later passes.

To specify which functions are to be multiversioned we have added a

new command-line option to GCC, -fmultiver_funcs=. For example, if

166
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the functions foo and bar are to be multiversioned, invoking gcc with the

command gcc -fmultiver_funcs=foo,bar test.c accomplishes this.

Internally GCC provides a function and call graph cloning routine that

is used or inter-procedural constant propagation. SBO uses this routine to

clone the internal function data structures as many times as needed. We take

the original function and rewrite its internals. This function now becomes

a trampoline that the SBO dynamic component can manipulate via shared

memory hooks. The way this new trampoline functions depends on whether

we are using the alternate scheme or the n-version scheme.

For the alternate scheme we simply inject basic blocks into the function’s

head using GCC’s internal basic block writing APIs. The logic of the injected

Gimple basic blocks first checks a global, if it is set the calling parameters

are then passed on to the alternate version and it is called using a direct

call. Any values returned from the alternate version are then passed on to

the original call site. If the global is not set we execute the default function

code. The dynamic component controls this trampoline via this global.

For the n-version scheme we always trampoline out of the original func-

tion similarly to the case where the global is set in the alternate version.

The primary difference is, with the n-version scheme, the function call is an

indirect. The dynamic component controls this trampoline by writing the

address of the target function in the address location the indirect call uses.

The global variable and tables that are required to provide the interface to

dynamic component are all injected into the binary through this SBO pass.

Finally, this pass injects one basic block into the head of the main func-

tion of the application. This basic block is composed of a single call to

init_sbo. This call initializes and launches the dynamic component. The

dynamic component is implemented as a library and contains the body to

the init_sbo call. Any application compiled with SBO enabled must be
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linked with SBO’s dynamic component.

The dynamic component is responsible for monitoring the execution con-

text of the application and detect when a scenario may have begun. If this

occurs the dynamic component is responsible for re-routing execution to

only include the code best suited for the detected scenario.

A.1 Performance Monitoring

We take advantage of performance monitoring hardware to continually iden-

tify the current execution context of our host application. By using perfor-

mance monitoring hardware we are able to collect this information about

the execution environment while incurring negligible overhead. There are a

number of APIs available for taking advantage of performance monitoring

hardware including OProfile, PAPI, and Perfmon among others.

We have chosen to use Perfmon2 [36] for the design and implementation

of our dynamic introspection engine. The goal of the Perfmon2 project is to

design and implement a general, standard Linux interface to architectural

performance monitoring hardware. In addition to the kernel work, Stephane

Eranian and the other Perfmon2 developers have also implemented user-level

libraries and tools to facilitate development with Perfmon2. Perfmon2 sup-

ports most major architectures including core/core2, amd64, itanium, and

powerpc. For these reasons we selected to build our dynamic infrastructure

on Perfmon2.

A.2 Periodic Probing

One thing to keep in mind is the dynamic component is modular and flexible.

SBO statically generates binaries with specialized versions of hot functions

and provides hooks for the dynamic component. The dynamic component
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// i n i t s b o i s c a l l e d a t a p p l i c a t i o n s t a r t u p
void i n i t s b o ( )
{

// i n i t i a l i z e per formance coun t e r s
s e t up pe r f o rmance counte r s ( ) ;

// l auch t h e coun t e r s
s t a r t c oun t i n g ( ) ;

// s t a r t t h e t imer i n t e r r u p t
l a u ch t ime r i n t e r r up t ( ) ;

}

//when the i n t e r r u p t i s thrown we hand l e i t here
void i n t e r r up t hand l e r ( )
{

// s t op t h e counter s , c o l l e c t t h e in f o rma t i on
s t op counte r s ( ) ;
r ead counte r s ( ) ;

//do the a n a l y s i s r e q u i r e d by
// th e s c ena r i o d e t e c t i o n h e u r i s t i c
do ana l y s i s ( ) ;

// sw i t c h t h e a c t i v e v e r s i o n s o f f u n c t i o n s in
// our a p p l i c a t i o n to match t h e d e t e c t e d s c ena r i o
r e r ou t e ex e cu t i on ( ) ;

// s t a r t t h e coun t e r s aga in a f t e r r e s e t i n g them
s t a r t c oun t e r s ( ) ;

// launch th e t imer
l a u ch t ime r i n t e r r up t ( ) ;

}

Figure A.1: This is pseudo code for the general dynamic introspection component of
SBO.

can then use any heuristic to reroute execution via control through these

hooks. How the dynamic component monitors execution is entirely up to

the optimization designer and can vary in any way.

That being said our SBO infrastructure has a default design for the

dynamic component. It is shown in Figure A.1. To detect whether a scenario

is occurring, SBO’s dynamic component uses a timer interrupt approach.

The dynamic component includes an init_sbo routine that is called once

when the host application begins. When the init_sbo routine is called,

performance counters are setup and the timer interrupt is started. When

the timer interrupt has triggered, the interrupt handler executes. As shown

in Figure A.1 the counters are then stopped and read. Next, the scenario

detection code executes. If a target scenario is detected, the dynamic engine

will reconfigure the executing binary to execute the function versions tuned

to that scenario. The counters are then reset and the timer launched again.
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void catch alarm ( int sig num )
{

int i ;
// s t op and read th e coun t e r s
pfm stop ( c t x f d ) ;
pfm read pmds ( ctx fd , pd , inp . p fp event count ) ;

// e x e cu t e t h e code f o r cu r r en t phase
//and move to t h e nex t phase
i f ( phase==0) {

phase=1;
v e r 1 s t a t=ve r 2 s t a t =0;

mv ve r s i on sw i t ch =0;
}
else i f ( phase==1) {

phase=2;
v e r 1 s t a t=pd [ 0 ] . r e g va lu e ;

mv ve r s i on sw i t ch =1;
}
else i f ( phase==2) {

phase=0;
v e r 2 s t a t=pd [ 0 ] . r e g va lu e ;
i f ( ve r1 s ta t>v e r 2 s t a t )

mv ve r s i on sw i t ch =0;
}

// c l e a r and r e s t a r t c oun t e r s
for ( i =0; i < inp . p fp event count ; i++) {

pd [ i ] . r e g va lu e =0;
}

pfm write pmds ( c tx fd , pd , inp . p fp event count ) ;
p fm star t ( c tx fd , NULL) ;

// launch th e t imer f o r nex t s i g n a l
i f ( phase==0) alarm ( 1 0 ) ;
else alarm ( 1 ) ;
// r en t e r e x e c u t i n g a p p l i c a t i o n

}

Figure A.2: This is the core three phase code to the dynamic component of the SBO
algorithm.

This interrupt driven periodic probing execution pattern executes con-

tinually as the application is running. The overhead of such a technique

is determined by the frequency of the probing. The amount of runtime

overhead incurred by our probing technique depends on two factors: the

frequency of interrupts, and the complexity of the analysis due to those in-

terrupts. These two factors are determined by the nature of the optimization

hosted by our SBO framework. Using our default design for the Dynamic

Introspection Engine, this overhead is negligible. For example the overhead

of the optimization presented in the next section causes a slowdown of less

than 0.5%.

Figure A.2 shows the pseudo code of our design.
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Here we present the C implementations of our four contention synthesis

kernels

B.1 Naive.c

#include <s t d i o . h>

#include <s t d l i b . h>

#include <time . h>

#include <uni s td . h>

char ∗data ;

main ( int argc , char ∗argv [ ] ) {

srand ( time (0)+ getp id ( ) ) ;

i f ( argc <2) e x i t ( 1 ) ;

int bytes=a to i ( argv [ 1 ] ) ∗ 1 0 2 4 ;

data=(char∗) mal loc ( bytes ) ;

for ( int i =0; i<bytes ; i++) data [ i ]=rand ()%256;

171
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while (1 ) {

for ( int j =0; j<bytes −2; j++) {

data [ rand()%bytes ]+=data [ rand()%bytes ] ;

}

}

p r i n t f ( ”%d\n” , ( int ) data [ rand()%bytes ] ) ;

}

B.2 BST.c

#include <iostream>

#include <c s td l i b>

#include <c s t r i ng>

using namespace std ;

const int pay l oad s i z e =128;

void gen name ( char ∗ r e t ) {

for ( int i =0; i<pay l oad s i z e ; i++) {

r e t [ i ]=(char ) rand ()%256;

}

}

struct t r e e node {

˜ t r ee node (){

i f ( l e f t ) delete l e f t ; i f ( r i gh t ) delete r i gh t ;

}

t r e e node ∗ l e f t ;

t r e e node ∗ r i gh t ;

int data ;

char t ext [ pay l oad s i z e ] ;

} ;

class BST {

private :

t r e e node ∗ root ;

public :

BST( ) {

root = NULL;

}

bool isEmpty ( ) const { return root==NULL; }

void i n s e r t ( int ) ;

void remove ( int ) ;

void c l e a r ( ){ i f ( root ){delete root ;} root=NULL;}

unsigned long trample ( ) ;

unsigned long trample ( t r e e node ∗p ) ;

} ;

. . . [ standard implementation o f i n s e r t and remove ]



Appendix B. Contention Synthesis Kernel Implementations 173

unsigned long BST : : trample ( ){ return trample ( root ) ;}

unsigned long BST : : trample ( t r ee node ∗p) {

unsigned long r e t =0;

i f (p != NULL) {

//Using random t r a v e r s a l + 5%

i f (p−>data%2) { //Using p−>data i n s t e a d o f rand + 2%

i f (p−> l e f t ) r e t+=trample (p−> l e f t ) ;

i f (p−>r i gh t ) r e t+=trample (p−>r i gh t ) ;

r e t+=(unsigned long )p−>t ext [ p−>data%pay l oad s i z e ] ;

p−>data+=re t ; //Moding data + 6%

p−>t ext [ p−>data%pay l oad s i z e ]=p−>data%256;

}

else {

i f (p−>r i gh t ) r e t+=trample (p−>r i gh t ) ;

i f (p−> l e f t ) r e t+=trample (p−> l e f t ) ;

ret−=(unsigned long )p−>t ext [ p−>data%pay l oad s i z e ] ;

p−>data+=re t ; //Moding data + 6%

p−>t ext [ p−>data%pay l oad s i z e ]=p−>data%256;

}

}

return r e t ;

}

int main ( int argc , char ∗argv [ ] ) {

int f o o t p r i n t =8192;

BST b ;

srand ( time (0)+ getp id ( ) ) ;

unsigned int node s i z e=s izeof ( t r e e node )+ s izeof (BST) ;

for ( int i =0; i<f o o t p r i n t ∗1024/ node s i z e ; i++) {

b . i n s e r t ( pay l oad s i z e+(rand()− pay l oad s i z e ) ) ;

}

unsigned long long sum=0;

while (1 )

sum+=b . trample ()+b . trample ( ) ;

}

B.3 Blockie.c

#include <iostream>

#include <c s td l i b>

using namespace std ;

const int nug s i z e =128;

class nugget {
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public :

char n [ nug s i z e ] ;

nugget ( ){

for ( int i =0; i<nug s i z e ; i++){n [ i ]=rand ()%256;}

}

} ;

class block {

public :

nugget ∗∗∗b ;

unsigned s i z e ;

b lock (unsigned sz ) ;

˜ block ( ) ;

} ;

b lock : : b lock (unsigned sz ) {

b=new nugget ∗∗ [ s z ] ;

for ( int i =0; i<sz ; i++) {

b [ i ]=new nugget ∗ [ s z ] ;

for ( int j =0; j<sz ; j++)

b [ i ] [ j ]=new nugget [ sz ] ;

}

s i z e=sz ;

}

block : : ˜ block ( ) {

for ( int i =0; i<s i z e ; i++) {

for ( int j =0; j<s i z e ; j++)

delete [ ] b [ i ] [ j ] ;

delete [ ] b [ i ] ;

}

delete [ ] b ;

}

int main ( ) {

const int s i z e =30;

b lock b1 ( s i z e ) ;

b lock b2 ( s i z e ) ;

b lock b3 ( s i z e ) ;

cout << ”smash” << endl ;

while (1 )

for ( int i =0; i<s i z e ; i++)

for ( int j =0; j<s i z e ; j++)

for ( int k=0; k<s i z e ; k++)

b1 . b [ i ] [ j ] [ k]=b2 . b [ j ] [ k ] [ i ]=b3 . b [ i ] [ j ] [ k ] ;

return 0 ;

}

B.4 Sledge.c



Appendix B. Contention Synthesis Kernel Implementations 175

#include <s t d l i b . h>

typedef double LBM Grid [ 2 6000000 ] ;

stat ic double ∗ srcGrid ,∗ dstGrid ;

int main ( )

{

const unsigned long margin = 400000 ,

s i z e = s izeof ( LBM Grid ) + 2∗margin∗ s izeof ( double ) ;

s rcGr id = malloc ( s i z e ) ;

dstGrid = malloc ( s i z e ) ;

s rcGr id += margin ;

dstGrid += margin ;

while (1 )

{

int i ;

for ( i = 0 ; i < 26000000; i += 20 ) {

dstGrid [ i ] = srcGr id [ i ] ;

dstGrid [ i −1998] = srcGr id [(1)+ i ] ;

dstGrid [ i +2001] = srcGr id [(2)+ i ] ;

dstGrid [ i −16] = srcGr id [(3)+ i ] ;

dstGrid [ i +23] = srcGr id [(4)+ i ]

dstGrid [ i −199994] = srcGr id [(5)+ i ] ;

dstGrid [ i +200005] = srcGr id [(6)+ i ] ;

dstGrid [ i −2010] = srcGr id [(7)+ i ] ;

dstGrid [ i −1971] = srcGr id [(8)+ i ] ;

dstGrid [ i +1988] = srcGr id [(9)+ i ] ;

dstGrid [ i +2027] = srcGr id [(10)+ i ] ;

dstGrid [ i −201986] = srcGr id [(11)+ i ] ;

dstGrid [ i +198013] = srcGr id [(12)+ i ] ;

dstGrid [ i −197988] = srcGr id [(13)+ i ] ;

dstGrid [ i +202011] = srcGr id [(14)+ i ] ;

dstGrid [ i −200002] = srcGr id [(15)+ i ] ;

dstGrid [ i +199997] = srcGr id [(16)+ i ] ;

dstGrid [ i −199964] = srcGr id [(17)+ i ] ;

dstGrid [ i +200035] = srcGr id [(18)+ i ] ;

}

}

return 0 ;

}



Appendix C

Contention Conscious Scheduling with

CiPE

When two applications are co-scheduled on current commodity multicore

architectures in a contention oblivious fashion, cross-core performance in-

terference occurs, and ultimately system utilization and throughput suffer.

This problem is especially worrisome in the data-center and cluster comput-

ing domains [?]. A CiPE based contention-conscious scheduling approach

is especially well suited in these domains as the set of applications running

on these systems are known, and system application scheduling plans and

policies can be created offline. For example, Google, Microsoft, and Yahoo

have a known set of applications that run in their data-centers, including

Search, Maps, Mail, Video etc. An understanding of each application’s sen-

sitivity to cross-core interference can prove critical to improving throughput,

responsiveness and even power and energy.

For our experimental setup we use the following scheduling model. We

have a single batch of jobs to execute and two processing cores available.

Jobs are selected to run concurrently with another job on the neighboring

core. If any core becomes free, a job from the job queue is selected to run.

For our experiment our queue consists of the 19 SPEC2006 benchmarks

176
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(C/C++). Each benchmark is run to completion on its ref inputs. We

performed this experimentation on both Intel’s Core i7 and AMD’s Phenom

X4 multicore architectures.

As a baseline we show the effects of cache oblivious scheduling. Our

contention oblivious scheduling is a random schedule where contentious ap-

plications are naively co-scheduled. Our CiPE based contention conscious

scheduling heuristically places applications with high sensitivity to cross-

core interference with applications with a low sensitivity. Every time a job

completes, the scheduler selects a job from the queue with either the highest

or lowest CIS score. If the currently running job is sensitive, a job with the

lowest CIS score is selected. If the currently running job is insensitive the

job with the highest CIS score is selected.

Figures C.1 and C.2 show the results of our experimentation. Figure C.1

shows a significant reduction in the performance degradation that occurs

due to cross-core performance interference. The bars show the execution

time of each application while being co-scheduled over running alone on

both the Core i7 and the Phenom X4. For each benchmark, the first and

second bars show performance degradation when scheduled in a contention

oblivious fashion and the third and forth bars show the degradation when

scheduled based on CIS scores. As shown in the figure, for most benchmarks,

the performance degradation dropped significantly using our CiPE-based

approach.

Figure C.2 summarizes the overall improvement in throughput when us-

ing CiPE to select contention-conscious co-locations. Using our approach we

were able to improve the performance of the contention sensitive SPEC2006

benchmarks by 12%, on average and up to 24% in the case of mcf. The re-

maining insensitive jobs only suffered a 1% performance impact from being

co-scheduled with sensitive jobs.
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Identifying Sensitive Code Regions with

CiPE

Contents

D.1 Contentious Code Regions of LBM and MILC . . . . 180

Figures D.1 and D.2 show examples of the output of our CiPE perfor-

mance debugging tool. In each figure the debuggers output from a single

CIS sample is shown. As our debugger replays execution, a stream of these

samples are printed to the screen or to a log file. For each CIS sample, our

performance debugger points to the source-level basic blocks which were re-

sponsible for that sample’s CIS score, and their dynamic coverage relative

to each other. The number of blocks shown is a parameter set by the user;

two or three is often covers more than 99% of the sample interval.

Our general CIS Analysis can be used for other performance debugger

designs. For example, instead of replaying CiPE profiles, branch informa-

CIS Score : 0 .21033
Rank : 1 Occupies : 68% F i l e : lbm . c Lines : 187 − 206
Rank : 2 Occupies : 32% F i l e : lbm . c Lines : 257 − 168

Figure D.1: lbm Profile Sample
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CIS Score : 0 .28453
Rank : 1 Occupies : 51% F i l e : su3 p ro j . c Lines : 42 − 47
Rank : 2 Occupies : 49% F i l e : s m a mat . c Lines : 16 − 17

Figure D.2: milc Profile Sample

186 SWEEP START( 0 , 0 , 0 , 0 , 0 , SIZE Z )
187 i f ( TEST FLAG SWEEP( srcGrid , OBSTACLE )) {
188 DST C ( dstGrid ) = SRC C ( srcGr id ) ;
189 DST S ( dstGrid ) = SRC N ( srcGr id ) ;
190 DST N ( dstGrid ) = SRC S ( srcGr id ) ;
191 DST W ( dstGrid ) = SRC E ( srcGr id ) ;
192 DST E ( dstGrid ) = SRC W ( srcGr id ) ;
193 DST B ( dstGrid ) = SRC T ( srcGr id ) ;
194 DST T ( dstGrid ) = SRC B ( srcGr id ) ;
195 DST SW( dstGrid ) = SRC NE( srcGr id ) ;
196 DST SE( dstGrid ) = SRC NW( srcGr id ) ;
197 DST NW( dstGrid ) = SRC SE( srcGr id ) ;
198 DST NE( dstGrid ) = SRC SW( srcGr id ) ;
199 DST SB( dstGrid ) = SRC NT( srcGr id ) ;
200 DST ST( dstGrid ) = SRC NB( srcGr id ) ;
201 DST NB( dstGrid ) = SRC ST( srcGr id ) ;
202 DST NT( dstGrid ) = SRC SB( srcGr id ) ;
203 DST WB( dstGrid ) = SRC ET( srcGr id ) ;
204 DST WT( dstGrid ) = SRC EB( srcGr id ) ;
205 DST EB( dstGrid ) = SRC WT( srcGr id ) ;
206 DST ET( dstGrid ) = SRC WB( srcGr id ) ;
207 continue ;
208 }

Figure D.3: Contention bottleneck in lbm.c

tion can be efficiently extracted online using structures such as Intel’s last

branch record (LBR), and then linked back to the source level during the

CiPE profile generation. Enabling these such modifications are matters of

engineering. However, once the CiPE profiles are gathered, our post process-

ing replay debugger provides the same functionality and suffers only 20%

overhead over native execution.

D.1 Contentious Code Regions of LBM and MILC

Figures D.3, D.5, and D.7 show the SPEC2006 code snippets that corre-

sponds to the regions detected in Figures D.1 and D.2. As these figures

show, for lbm and milc, the most contentious regions of code are composed

of dense array and memory operations. Figures D.4, D.6, and D.8 provide

a closer look at the architectural instruction stream seen by the processor.

As shown in Figure D.4, the most contentious bottleneck in lbm is densely
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690 : 31 d2 xor %edx ,%edx
692 : f 6 87 98 00 00 00 01 t e s tb $0x1 , 0 x98(%rd i )
699 : 0 f 84 e5 00 00 00 j e 784 <LBM performStreamCollide+0xf4>
69 f : 48 8b 07 mov (%rd i ) ,% rax
6a2 : 48 89 04 32 mov %rax ,(%rdx ,% r s i , 1 )
6a6 : 48 8b 47 08 mov 0x8(%rd i ) ,% rax
6aa : 48 89 84 32 90 c1 f f mov %rax ,−0x3e70(%rdx ,% r s i , 1 ) [ 6 b1 : f f ]
6b2 : 48 8b 47 10 mov 0x10(%rd i ) ,% rax
6b6 : 48 89 84 32 88 3e 00 mov %rax , 0 x3e88(%rdx ,% r s i , 1 ) [ 6 bd : 00 ]
6be : 48 8b 47 18 mov 0x18(%rd i ) ,% rax
6c2 : 48 89 44 32 80 mov %rax ,−0x80(%rdx ,% r s i , 1 )
6c7 : 48 8b 47 20 mov 0x20(%rd i ) ,% rax
6cb : 48 89 84 32 b8 00 00 mov %rax , 0 xb8(%rdx ,% r s i , 1 ) [ 6 d2 : 00 ]
6d3 : 48 8b 47 28 mov 0x28(%rd i ) ,% rax
6d7 : 48 89 84 32 30 96 e7 mov %rax ,−0x1869d0(%rdx ,% r s i , 1 ) [ 6 de : f f ]
6 df : 48 8b 47 30 mov 0x30(%rd i ) ,% rax
6e3 : 48 89 84 32 28 6a 18 mov %rax , 0 x186a28(%rdx ,% r s i , 1 ) [ 6 ea : 00 ]
6eb : 48 8b 47 38 mov 0x38(%rd i ) ,% rax
6 e f : 48 89 84 32 30 c1 f f mov %rax ,−0x3ed0(%rdx ,% r s i , 1 ) [ 6 f6 : f f ]
6 f7 : 48 8b 47 40 mov 0x40(%rd i ) ,% rax
6 fb : 48 89 84 32 68 c2 f f mov %rax ,−0x3d98(%rdx ,% r s i , 1 ) [ 7 0 2 : f f ]
703 : 48 8b 47 48 mov 0x48(%rd i ) ,% rax
707 : 48 89 84 32 20 3e 00 mov %rax , 0 x3e20(%rdx ,% r s i , 1 ) [ 70 e : 00 ]
70 f : 48 8b 47 50 mov 0x50(%rd i ) ,% rax
713 : 48 89 84 32 58 3 f 00 mov %rax , 0 x3f58(%rdx ,% r s i , 1 ) [ 71 a : 00 ]
71b : 48 8b 47 58 mov 0x58(%rd i ) ,% rax
71 f : 48 89 84 32 f0 57 e7 mov %rax ,−0x18a810(%rdx ,% r s i , 1 ) [ 7 2 6 : f f ]
727 : 48 8b 47 60 mov 0x60(%rd i ) ,% rax
72b : 48 89 84 32 e8 2b 18 mov %rax , 0 x182be8(%rdx ,% r s i , 1 ) [ 7 3 2 : 00 ]
733 : 48 8b 47 68 mov 0x68(%rd i ) ,% rax
737 : 48 89 84 32 e0 d4 e7 mov %rax ,−0x182b20(%rdx ,% r s i , 1 ) [ 73 e : f f ]
73 f : 48 8b 47 70 mov 0x70(%rd i ) ,% rax
743 : 48 89 84 32 d8 a8 18 mov %rax , 0 x18a8d8(%rdx ,% r s i , 1 ) [ 74 a : 00 ]
74b : 48 8b 47 78 mov 0x78(%rd i ) ,% rax
74 f : 48 89 84 32 f0 95 e7 mov %rax ,−0x186a10(%rdx ,% r s i , 1 ) [ 7 5 6 : f f ]
757 : 48 8b 87 80 00 00 00 mov 0x80(%rd i ) ,% rax
75 e : 48 89 84 32 e8 69 18 mov %rax , 0 x1869e8(%rdx ,% r s i , 1 ) [ 7 6 5 : 00 ]
766 : 48 8b 87 88 00 00 00 mov 0x88(%rd i ) ,% rax
76d : 48 89 84 32 20 97 e7 mov %rax ,−0x1868e0(%rdx ,% r s i , 1 ) [ 7 7 4 : f f ]
775 : 48 8b 87 90 00 00 00 mov 0x90(%rd i ) ,% rax
77 c : 48 89 84 32 18 6b 18 mov %rax , 0 x186b18(%rdx ,% r s i , 1 ) [ 7 8 3 : 00 ]
784 : 48 81 c2 a0 00 00 00 add $0xa0 ,%rdx
78b : 48 81 c7 a0 00 00 00 add $0xa0 ,% rd i
792 : 48 81 fa 00 d4 65 0c cmp $0xc65d400 ,%rdx
799 : 0 f 85 f3 f e f f f f jne 692 <LBM performStreamCollide+0x2>

Figure D.4: Architectural instructions for contention bottleneck in lbm.c

38 void s u 3 p r o j e c t o r ( su3 vec to r ∗a ,
su3 vec to r ∗b , su3 matr ix ∗c ){

39 register int i , j ;
40 register double tmp , tmp2 ;
41 for ( i =0; i <3; i++)for ( j =0; j <3; j++){
42 tmp2 = a−>c [ i ] . r e a l ∗ b−>c [ j ] . r e a l ;
43 tmp = a−>c [ i ] . imag ∗ b−>c [ j ] . imag ;
44 c−>e [ i ] [ j ] . r e a l = tmp + tmp2 ;
45 tmp2 = a−>c [ i ] . r e a l ∗ b−>c [ j ] . imag ;
46 tmp = a−>c [ i ] . imag ∗ b−>c [ j ] . r e a l ;
47 c−>e [ i ] [ j ] . imag = tmp − tmp2 ;
48 }
49 }

Figure D.5: Contention bottleneck in su3 proj.c
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0000000000000000 <su3 p ro j e c to r >:
0 : 31 c0 xor %eax ,%eax
2 : f 2 0 f 10 57 08 movsd 0x8(%rd i ) ,%xmm2
7 : f2 0 f 10 07 movsd (%rd i ) ,%xmm0
b : 66 0 f 28 ca movapd %xmm2,%xmm1
f : f 2 0 f 59 06 mulsd (% r s i ) ,%xmm0

13 : f2 0 f 59 4e 08 mulsd 0x8(% r s i ) ,%xmm1
18 : f2 0 f 58 c1 addsd %xmm1,%xmm0
1c : f 2 0 f 11 04 10 movsd %xmm0,(%rax ,%rdx , 1 )
21 : f 2 0 f 10 0 f movsd (%rd i ) ,%xmm1
25 : f2 0 f 59 16 mulsd (% r s i ) ,%xmm2
29 : 66 0 f 28 c1 movapd %xmm1,%xmm0
2d : f2 0 f 59 4e 10 mulsd 0x10(% r s i ) ,%xmm1
32 : f2 0 f 59 46 08 mulsd 0x8(% r s i ) ,%xmm0
37 : f2 0 f 5c d0 subsd %xmm0,%xmm2
3b : f2 0 f 11 54 10 08 movsd %xmm2,0 x8(%rax ,%rdx , 1 )
41 : f 2 0 f 10 57 08 movsd 0x8(%rd i ) ,%xmm2
46 : 66 0 f 28 c2 movapd %xmm2,%xmm0
4a : f2 0 f 59 46 18 mulsd 0x18(% r s i ) ,%xmm0
4 f : f 2 0 f 58 c8 addsd %xmm0,%xmm1
53 : f2 0 f 11 4c 10 10 movsd %xmm1,0 x10(%rax ,%rdx , 1 )
59 : f 2 0 f 10 0 f movsd (%rd i ) ,%xmm1
5d : f2 0 f 59 56 10 mulsd 0x10(% r s i ) ,%xmm2
62 : 66 0 f 28 c1 movapd %xmm1,%xmm0
66 : f2 0 f 59 4e 20 mulsd 0x20(% r s i ) ,%xmm1
6b : f2 0 f 59 46 18 mulsd 0x18(% r s i ) ,%xmm0
70 : f2 0 f 5c d0 subsd %xmm0,%xmm2
74 : f2 0 f 11 54 10 18 movsd %xmm2,0 x18(%rax ,%rdx , 1 )
7a : f 2 0 f 10 57 08 movsd 0x8(%rd i ) ,%xmm2
7 f : 66 0 f 28 c2 movapd %xmm2,%xmm0
83 : f2 0 f 59 46 28 mulsd 0x28(% r s i ) ,%xmm0
88 : f2 0 f 58 c8 addsd %xmm0,%xmm1
8c : f 2 0 f 11 4c 10 20 movsd %xmm1,0 x20(%rax ,%rdx , 1 )
92 : f 2 0 f 10 07 movsd (%rd i ) ,%xmm0
96 : 48 83 c7 10 add $0x10 ,% rd i
9a : f 2 0 f 59 56 20 mulsd 0x20(% r s i ) ,%xmm2
9 f : f 2 0 f 59 46 28 mulsd 0x28(% r s i ) ,%xmm0
a4 : f2 0 f 5c d0 subsd %xmm0,%xmm2
a8 : f2 0 f 11 54 10 28 movsd %xmm2,0 x28(%rax ,%rdx , 1 )
ae : 48 83 c0 30 add $0x30 ,%rax
b2 : 48 3d 90 00 00 00 cmp $0x90 ,%rax
b8 : 0 f 85 44 f f f f f f jne 2 <s u 3 p r o j e c t o r+0x2>
be : f 3 c3 repz re tq

Figure D.6: Architectural instructions for contention bottleneck in su3 proj.c

12 void s ca l a r mu l t add su3 mat r i x ( su3 matr ix ∗a , su3 matr ix ∗b , double s ,
13 su3 matr ix ∗c ){
14 register int i , j ;
15 for ( i =0; i <3; i++)for ( j =0; j <3; j++){
16 c−>e [ i ] [ j ] . r e a l = a−>e [ i ] [ j ] . r e a l + s∗b−>e [ i ] [ j ] . r e a l ;
17 c−>e [ i ] [ j ] . imag = a−>e [ i ] [ j ] . imag + s∗b−>e [ i ] [ j ] . imag ;
18 }
19 }

Figure D.7: Contention bottleneck in s m a mat.c
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0000000000000000 <s ca la r mul t add su3 matr ix >:
0 : 66 0 f 28 c8 movapd %xmm0,%xmm1
4 : 31 c0 xor %eax ,%eax
6 : 66 0 f 28 c1 movapd %xmm1,%xmm0
a : f2 0 f 59 04 30 mulsd (%rax ,% r s i ,1) ,%xmm0
f : f 2 0 f 58 04 38 addsd (%rax ,%rdi ,1) ,%xmm0

14 : f2 0 f 11 04 10 movsd %xmm0,(%rax ,%rdx , 1 )
19 : 66 0 f 28 c1 movapd %xmm1,%xmm0
1d : f2 0 f 59 44 30 08 mulsd 0x8(%rax ,% r s i ,1) ,%xmm0
23 : f2 0 f 58 44 38 08 addsd 0x8(%rax ,%rdi ,1) ,%xmm0
29 : f2 0 f 11 44 10 08 movsd %xmm0,0 x8(%rax ,%rdx , 1 )
2 f : 66 0 f 28 c1 movapd %xmm1,%xmm0
33 : f2 0 f 59 44 30 10 mulsd 0x10(%rax ,% r s i ,1) ,%xmm0
39 : f2 0 f 58 44 38 10 addsd 0x10(%rax ,%rdi ,1) ,%xmm0
3 f : f 2 0 f 11 44 10 10 movsd %xmm0,0 x10(%rax ,%rdx , 1 )
45 : 66 0 f 28 c1 movapd %xmm1,%xmm0
49 : f2 0 f 59 44 30 18 mulsd 0x18(%rax ,% r s i ,1) ,%xmm0
4 f : f 2 0 f 58 44 38 18 addsd 0x18(%rax ,%rdi ,1) ,%xmm0
55 : f2 0 f 11 44 10 18 movsd %xmm0,0 x18(%rax ,%rdx , 1 )
5b : 66 0 f 28 c1 movapd %xmm1,%xmm0
5 f : f 2 0 f 59 44 30 20 mulsd 0x20(%rax ,% r s i ,1) ,%xmm0
65 : f2 0 f 58 44 38 20 addsd 0x20(%rax ,%rdi ,1) ,%xmm0
6b : f2 0 f 11 44 10 20 movsd %xmm0,0 x20(%rax ,%rdx , 1 )
71 : 66 0 f 28 c1 movapd %xmm1,%xmm0
75 : f2 0 f 59 44 30 28 mulsd 0x28(%rax ,% r s i ,1) ,%xmm0
7b : f2 0 f 58 44 38 28 addsd 0x28(%rax ,%rdi ,1) ,%xmm0
81 : f2 0 f 11 44 10 28 movsd %xmm0,0 x28(%rax ,%rdx , 1 )
87 : 48 83 c0 30 add $0x30 ,%rax
8b : 48 3d 90 00 00 00 cmp $0x90 ,%rax
91 : 0 f 85 6 f f f f f f f jne 6 <s ca l a r mu l t add su3 mat r i x+0x6>
97 : f 3 c3 repz re tq

Figure D.8: Architectural instructions for contention bottleneck in s m a mat.c

packed with mov instructions. Each of the 37 consequtive mov instructions

are either moving data from memory into the %rax register, or from the

%rax register back to memory. This memory access pattern composes the

entire body of the loop less three logic operations. Each memory reference is

also sparsely distributed as can be seen from the various offsets throughout

the instruction stream. The lack of spacial locality in this memory access

pattern further exacerbates the contentiousness of this code region since

each memory reference that misses in the cache brings in an entire line.

The contentious code regions of the milc application is composed of

streaming singlie instruction, multiple data (SIMD) operations. These

SIMD operations use the xmm registers. These registers are 128 bits wide and

can simultaneously perform a logic operation on either, four 32-bit single-

precision floating point, two 64-bit double-precision floating point numbers,

four 32-bit integer numbers, two 64-bit integers, or sixteen 8-bit bytes or

characters. As Figures D.6 and D.8 shows, the contentious code regions of
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milc has a high concentration of moveapd and movesd instructions inter-

mixed with addsd, subsd, and mulsd instructions. These instructions are

specialized for SIMD operations. The moveapd instructions represent moves

of a double quadword containing two packed double-precision floating-point

values, and the movesd, addsd, subsd, and mulsd instructions apply to

the low double-precision floating-point value. Notice that in both of these

contentious code regions, many of the logic operations are also referencing

memory directly as well. This high concentration of memory intensive SIMD

operations explains the contentiousness of these code regions.

An important observation that arises from inspecting these regions of

code is that new low level optimizations and code transformations may be

helpful in reducing contentiousness of these regions. One area of future work

is to investigate the potential of compiler transformations that can either

reduce the rate of memory operations, or restructure/relayout data to reduce

the contentiousness of code regions that are densely packed with memory

operations.
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