
This paper is included in the Proceedings of USENIX ATC ’14:
2014 USENIX Annual Technical Conference.

June 19–20, 2014 • Philadelphia, PA

978-1-931971-10-2

Open access to the Proceedings of
USENIX ATC ’14: 2014 USENIX Annual Technical

Conference is sponsored by USENIX.

HaPPy: Hyperthread-aware Power
Profiling Dynamically

Yan Zhai, University of Wisconsin; Xiao Zhang and Stephane Eranian, Google Inc.;
Lingjia Tang and Jason Mars, University of Michigan

https://www.usenix.org/conference/atc14/technical-sessions/presentation/zhai

USENIX Association 2014 USENIX Annual Technical Conference 211

HaPPy: Hyperthread-aware Power Profiling Dynamically

Yan Zhai
University of Wisconsin

yanzhai@cs.wisc.edu

Xiao Zhang, Stephane Eranian
Google Inc.

{xiaozhang,eranian}@google.com

Lingjia Tang, Jason Mars
University of Michigan

{lingjia,profmars}@eesc.umich.edu

Abstract
Quantifying the power consumption of individual appli-
cations co-running on a single server is a critical compo-
nent for software-based power capping, scheduling, and
provisioning techniques in modern datacenters. How-
ever, with the proliferation of hyperthreading in the last
few generations of server-grade processor designs, the
challenge of accurately and dynamically performing this
power attribution to individual threads has been signifi-
cantly exacerbated. Due to the sharing of core-level re-
sources such as functional units, prior techniques are not
suitable to attribute the power consumption between hy-
perthreads sharing a physical core.

In this paper, we present a runtime mechanism that
quantifies and attributes power consumption to individ-
ual jobs at fine granularity. Specifically, we introduce
a hyperthread-aware power model that differentiates be-
tween the states when both hardware threads of a core are
in use, and when only one thread is in use. By capturing
these two different states, we are able to accurately at-
tribute power to each logical CPU in modern servers. We
conducted experiments with several Google production
workloads on an Intel Sandy Bridge server. Compared
to prior hyperthread-oblivious model, HaPPy is substan-
tially more accurate, reducing the prediction error from
20.5% to 7.5% on average and from 31.5% to 9.4% in
the worst case.

1 Introduction
As more of the world’s computation moves into large-
scale datacenter infrastructures, power management and
provisioning becomes increasingly important. In fact,
prior work [4] shows that the cost of powering the servers
housed in these infrastructures comprises about 30% of
the total cost of ownership (TCO) of modern datacen-
ter infrastructures. As we are reaching the limits of cur-
rent power delivery systems, many datacenter infrastruc-
tures house more machines than can be powered by the
supply infrastructure [17]. In tandem with these trends,
datacenter designers and operators have been investigat-
ing techniques to manage the available power resources
via software techniques such as power-capping [13, 11],
scheduling [12], and energy accounting/pricing [28],
among others. Software power capping and provision-
ing techniques ensure that servers do not use more than a

specified power threshold by suspending a subset of jobs.
Scheduling can also be used to limit processor utilization
to reach energy consumption goals. Beyond power bud-
geting, pricing the power consumed by jobs in datacen-
ters is also important in multi-tenant environments.

One capability that proves critical in enabling software
to monitor and manage power resources in large-scale
datacenter infrastructures is the attribution of power con-
sumption to the individual applications co-running on
a single server. This ability allows software to control
power consumption at the level of individual applications
on a single machine, as well as across entire clusters.
However, accurate attribution on real-world commodity
hardware has proven challenging for modern server de-
signs, particularly due to the fact that simultaneous multi-
threading, (or hyperthreading [14]) is now commonplace
in current server designs.

Processors that are hyperthreaded allow two or more
hardware thread contexts to share a single physical core.
Although the OS views each hardware thread context as a
logical CPU, a number of core-level resources are shared
across contexts such as functional units, alias register,
and cache resources, among others. Modern processors
do not provide specific power monitors for each hard-
ware thread context and thus attributing the power con-
sumption of individual processes and threads across log-
ical CPUs has proven particularly challenging.

In this work, we present HaPPy, a Hyperthread-aware
Power Profiling Dynamically. HaPPy is able to dy-
namically and near instantaneously attribute the power
consumed (in watts) to individual processes or threads.
To the best of our knowledge, this is the first such
hyperthread-aware power estimation approach. Central
to HaPPy is an estimation model that uses Intel Running
Average Power Limit (RAPL) power/performance mon-
itoring interface [14] that is widely available on current
commodity servers (Sandy Bridge/Ivy Bridge/etc). Al-
though RAPL provides no power monitoring information
of individual cores nor hardware thread contexts, HaPPy
uses a novel execution isolation technique implemented
on top of existing performance counter tool to predict the
power consumed by individual threads.

We evaluate HaPPy on six data-intensive Google pro-
duction workloads using real commodity server configu-
rations found in datacenters. Compared to prior work,

1

212 2014 USENIX Annual Technical Conference USENIX Association

HaPPy is substantially more accurate and reduces the
prediction error from 20.5% to 7.5% on average and from
31.5% to 9.4% in worse cases.

2 Background
The primary goal of this work is provide a technique to
enable the attribution of power consumption to individ-
ual threads. In this section, we first describe the need
for power estimation and the most related works. Then,
we describe the underlying hardware monitoring inter-
face that underpins our HaPPy approach.

2.1 Need for Power Estimation

Power estimation for individual jobs is critical for power
management systems in datacenters [13, 11, 17, 12, 28].
To lower the total cost of ownership, particularly the cost
of power infrastructures, modern datacenters are often
designed to house more servers than can be powered
by the underlying power supply infrastructure. At peak
time, the power demand of the datacenter may surpass
the supply of the power infrastructure, in which case
power capping techniques are applied to lower the de-
mand to under the provisioning threshold. There are var-
ious types of power capping techniques, including sus-
pending or limiting the processor utilization of certain
jobs. These approaches require accurate power estima-
tion for individual jobs. Power estimation allows us
to accurately identify the minimum amount of power-
hungry jobs the system needs to suspend given the tar-
get power demand threshold. A more conservative power
capping system without the power estimation might need
to suspend all low-priority jobs, which is much less cost-
effective. In addition to power capping, power estimation
is also critical for facilitating accurate pricing and ac-
counting in multi-tenant cloud infrastructures. Accurate
power usage estimation for individual applications on a
shared server allows us to design power-based billing and
pricing for cloud infrastructure users.

2.2 State of Power Estimation in Datacenters

Power constraints are well recognized as one of the pri-
mary limiting factors for datacenter design, and there is
a significant body of work [19, 13, 11, 26] targeting ad-
vanced power estimation and management in datacen-
ters. Two works emerge as most related. The work by
Fan et al. presents power provisioning designs for data-
centers [11]. The model presented in this paper focuses
on coarse-granularity prediction, which is suitable for its
goal. However, it is hyperthread-oblivious and incurs
high inaccuracy when directly applied to attributing total
server power to individual co-running tasks running on
hyperthreaded processors. The work by Shen et al. mod-
els CPU power at a fine-grained server requests level on
hyperthreading disabled servers [26]. Our work is com-
plementary to both of these important contributions as

our hyperthread aware CPU power modeling is applica-
ble to tasks concurrently running on a hyperthreaded ma-
chines.

2.3 The RAPL Interface

Recently Intel released the RAPL model specific regis-
ters (MSRs). These performance counters enable soft-
ware to read processor energy consumption at run time
on newer Intel processors such as Sandy Bridge and Ivy
Bridge. RAPL MSRs separate processor energy con-
sumption into three parts: pp0, package, and dram.
pp0 counts total energy consumed by all cores of a pro-
cessor (note that RAPL does not provide per-core mea-
surements on Sandy Bridge or Ivy Bridge); package

includes both cores and uncore (e.g. last-level-cache)
energy consumption; dram here means on-chip dram
channels, not the commonly referred off-chip memory
DIMM. Total processor energy consumption can be cal-
culated by aggregating package and dram readings. The
reported energy during a given time window can then be
converted to the average power.

The Linux kernel provides a powerful open-source
tool, called perf [1], to configure and monitor hardware
performance counters. We have extended this interface
to enable access to Intel’s RAPL counters. The extension
is implemented as a separate socket-level performance
monitoring unit (PMU). To monitor energy consumption
of a multi-socket system, it is only necessary to moni-
tor the RAPL events from one CPU on each socket. Our
perf patch has been open-sourced [2] and will appear in
upstream kernels (Linux 3.14 and newer).

3 Power Modeling
In this section, we first present a hyperthread-oblivious
model commonly used in prior work. We then dis-
cuss why it is insufficient and inaccurate on modern
servers with hyperthreading. Finally, we present our
hyperthread-aware model that can accurately attribute
power consumption across co-running tasks.

3.1 Hyperthread-oblivious Model

We first present a hyperthread-oblivious (HT-oblivious)
model, which is used in prior work for event-driven
power accounting [6, 26]. The model is based on the
hypothesis that the power consumption of a task is pro-
portional to the amount of computation CPUs perform
for that task, and one can estimate the amount of CPU
computation using hardware events, such as CPU cycles
and instructions.

Figure 1 presents the correlation between applica-
tions’ power consumption and their aggregated non-
halted CPU cycle1 counts (total cycle counts for all

1Non-halted means CPU is not executing the “halt” instruction in
x86 instruction set.

2

USENIX Association 2014 USENIX Annual Technical Conference 213

workload description characteristics
bigtable (BT) [8] Distributed storage system for managing structured data Memory-intensive
web-index (IDX) [5] Web indexing CPU-intensive
youtube-encoding(YTB) Youtube video encoding Floating point-intensive
warp-correction (IMG) Corrects warped images in scanned material CPU-intensive
mapreduce (MR) [10] Map-reduce benchmark written in Sawzall [24] script Memory-intensive
rpc-bench (RPC) Google rpc call benchmark CPU-intensive

Table 1: Brief description of Google’s internal applications used in this study. All applications are memory resident
and fully utilize server memory and CPUs.

0 20 40 60 80 100 120
50

60

70

80

90

100

110

120

130

Normalized Cycle Count

T
o

ta
l
P

o
w

e
r(

W
)

BT
IDX
YTB
IMG
MR
RPC

Figure 1: Correlation of power with non-halted CPU
cycle.

threads of an application). In these experiments, we use
several diverse real Google workloads (see description in
table 1) and an Intel Sandy Bridge server with the same
configuration found in production. We run N instances
of each application on N physical cores on a server. We
do not use hyperthreading in this experiment, so only 1
hyperthread of a physical core is used. During the exper-
iment, we collect the total processor power consumption
and aggregated non-halted CPU cycles using perf [1].
As demonstrated in Figure 1, the aggregated CPU cycles
are strongly correlated with the power consumption (lin-
ear correlation coefficient 0.99).

Besides non-halted CPU cycles, we also examined
other metrics including instruction count, last-level-
cache reference and miss, through a wide range of mi-
crobenchmarks, including a busy-loop benchmark (high
instruction issue rate), a pointer chasing benchmark
(high cache miss rate), a CPU and memory intensive
benchmark (to mimic power virus behavior), and a set of
bubble-up benchmarks that incur adjustable amounts of
pressure on the memory systems [27]. Our conclusion is
that non-halted cycle is the best to correlate power (lin-
ear correlation coefficient above 0.95). This finding is
consistent with prior work [11] which suggests a strong
correlation between the machine-level power consump-
tion and CPU utilization.

Based on the correlation between the power consump-
tion and the cycle count when hyperthreading is not in
use, the power consumption across all currently running

0 100 200 300 400
50

60

70

80

90

100

110

120

130

140

150

160

Normalized Cycle Count

P
o

w
e

r(
W

)

BT /w HT

IDX /w HT

YTB /w HT

IMG /w HT

MR /w HT

RPC /w HT

BT /wo HT

IDX /wo HT

YTB /wo HT

IMG /wo HT

MR /wo HT

RPC /wo HT

Figure 2: Correlation between power and cycle when
hyperthreads are enabled.

tasks can be attributed simply based on each task’s cycle
count. This HT-oblivious model for attributing power is
as follows:

Power(Taski) = Total Active Power× Cycle(Taski)

∑
m
j=1 Cycle(Task j)

(1)

3.2 Why is accounting hyperthreading important?

The HT-oblivious model assumes that the power con-
sumption of a task is strongly correlated with the ag-
gregated CPU cycles of the task. However, as we will
demonstrate in this section, this is no longer the case
when hyperthreads are used. Figure 2 presents the cor-
relation between the measured power consumption and
the aggregated cycle counts when tasks use hyperthreads
(2 tasks pinned to the two hyperthreads of each physical
core) versus when tasks do not use hyperthreads (only
1 task pinned to each physical core). As presented in
Figure 2, the aggregated CPU cycles of a task are not
strongly correlated with its power consumption when hy-
perthreading may be in use. For example, as shown in the
figure, when the normalized cycle count is around 200,
the power consumption can be wildly different ranging
between 85w and 120w, almost 40% difference.

To illustrate the reason behind this 40% discrepancy,
imagine when both hyperthreads (HT) of a physical core
are in use, the aggregated CPU cycles may double com-
paring to the scenario when only 1 HT per core is in use
(each HT is a logical CPU). However, the power con-

3

214 2014 USENIX Annual Technical Conference USENIX Association

sumption is not doubled. Actually, there is only a slight
power increase over the scenario when 1 HT/core is used.
This is because that two hyperthreads of a physical core
share many low-level hardware resources (such as func-
tional units), thus only incur slight power increase when
both are active. A basic hyperthreading-oblivious model
does not distinguish these two scenarios (with and with-
out hyperthreading), and therefore is inaccurate.

0 2 4 6 8 10
50

60

70

80

90

100

110

120

130

140

150

160

Number of Physical Core

P
o

w
e

r(
W

)

BT /w HT

IDX /w HT

YTB /w HT

IMG /w HT

MR /w HT

RPC /w HT

BT /wo HT

IDX /wo HT

YTB /wo HT

IMG /wo HT

MR /wo HT

RPC /wo HT

Figure 3: Power comparison when using only one or
both hyperthreads of a physical core.

Figure 3 further demonstrates the power consump-
tion difference between using no hyperthreading (1 task
pinned to only one logic CPU of a physical core) and
using hyperthreading (2 tasks pinned to the two hyper-
threads, logical CPUs, of a physical core). The x-axis
shows the number of physical cores used in each exper-
iment. For n physical cores, we execute n replica of
a task for w/o hyperthreading scenario and 2n replica
of the task for w/ hyperthreading scenario. The y-axis
shows the measured total CPU power. Again, as pre-
sented in Figure 3, accounting hyperthreading is critical
for the accuracy of a power model. For example, when
attributing power for 8 (single-threaded) tasks, it is im-
portant to differentiate whether 8 tasks are running on
eight cores (∼115w total and 14 w/task) or on four phys-
ical cores with 2 hyperthreads each core (∼90w total and
11 w/task, 30% less than 14 w/task) or the mix of both
scenarios. The Evaluation section (Section 4) will further
demonstrate the inaccuracy when one fails to acknowl-
edge the hyperthread configurations. Also note that, as
shown in Figure 3, the ratio between power consumption
when both hyperthreads are in use and that when only
one hyperthread is in use is about 1.1. We refer this ratio
as Rht for the rest of this paper.

3.3 Hyperthread-aware Model

In this section, we present a novel hyperthread-aware
(HT-aware) model that addresses the challenge of ac-
counting per task power consumption when tasks may
use hyperthreads. We first break down the total CPU
power consumption into static power and active power ,
and then focus on modeling the active power. To attribute

the active power across all co-running tasks, our model
first attributes the power consumption for each physical
core using a novel technique to account for how tasks are
taking advantage of hyperthreading of the core. We then
attribute the power consumption of each task based on
the cycles each task executes on each core.

3.3.1 Attributing active power among physical cores

Static Power - Processors often consume a small
amount of power just to be active, even when there is
not much computation activity. For example, linearly ex-
trapolating the data points in Figure 3 shows that when 0
core is in use, the power consumption is around 50 watt.
This means that there is around 50 watt of power con-
sumption even when there is minimum core activity. We
refer to this power consumption as the static power and
use linear extrapolation to estimate it. The static power
on our test machine is estimated to be 52.5 watts.

Thread1 Thread2

Cycle1

Cycle2

Time

CycletCycleoverlap

Figure 4: Illustration of how we capture the detailed uti-
lization of a physical core using three counters. Thread
1 and 2 are sibling hyperthreads of a physical core, and
their non-halted CPU cycles are respectively Cycle1 and
Cycle2. Cyclet represents non-halted cycles when at least
one of the two hyperthreads of a physical core is active.

Attributing the active power to each physical core -
We calculate the active power using the total CPU power
consumption minus the static power estimated as dis-
cussed above. To attribute the active power across phys-
ical cores, our model takes advantage of three hardware
counters. As illustrated in Figure 4, Cycle1and Cycle2
are non-halt CPU cycles respectively for thread 1 and 2.
Cyclet is CPU cycles when at least one of the two hyper-
threads of a physical core is running 2.

From these three counters, we can infer:

Cycleoverlap =Cycle1 +Cycle2 −Cyclet (2)

Cyclenonoverlap =Cyclet −Cycleoverlap (3)

Cycleoverlap is the portion of time when both hy-
perthreads of a physical core are running, while

2In perf tool, Cycle1 and Cycle2 are obtained by cpu event 0x3c
with umask=0x00, while Cyclet can be obtained by same event with
umask=0x00 and any=1.

4

USENIX Association 2014 USENIX Annual Technical Conference 215

Cyclenonoverlap is that when only one thread is running.
Using Cycleoverlap and Cyclenonoverlap, we define the
weighted cycle of a physical core as follows:

Cycleweighted(Core) = Rht ×Cycleoverlap +Cyclenonoverlap (4)

The intuition here is that when two hyperthreads are
both executing on a physical core, the power consump-
tion of the physical core is Rht times its power consump-
tion when only one hyperthread is executing on the core.
Rht is computed from the data in Figure 3 to be 1.1. So
by calculating the time period when two hyperthreads
are executing (Cycleoverlap) and that when only one is
executing (Cyclenonoverlap), we can calculate a weighted
core utilization (Cycleweighted) and use it to estimate each
core’s power consumption.

Now we can attribute the total active power of a
processor among individual cores proportional to each
core’s hyperthread-weighted Cycleweighted :

Active Power(Corei) =

Total Active Power×
Cycleweighted(Corei)

∑
n
j=1 Cycleweighted(Core j)

(5)

3.3.2 Attributing active core power to hyperthreads

Following the same principle of Equation 4, we can cal-
culate the weighted cycles for individual hyperthreads on
each core:

Cycleweighted(HTi) =

Rht ×
Cycleoverlap

2
+(Cyclei −Cycleoverlap) (6)

HTi is one of two hyperthreads of a physical core.
Recall that Cycleoverlap indicates the time when both
threads are running (Equation 2), in which case we at-
tribute the power to each individual hyperthread evenly.
Cyclei −Cycleoverlap represents the time thread i runs
alone, in which case the thread is attributed the total
power consumed by the core. Using Cycleweighted(HTi)
calculated by Equation 6 and Active Power(Corei) cal-
culated by Equation 5, we can proportionally attribute
the total active power of a core to each hyperthread on
that core using the following equation:

Active Power(HTi) =

Active Power(Core)×
Cycleweighted(HTi)

Cycleweighted(Core)
(7)

3.4 Mapping from hardware to applications

Reserving logical CPUs is a common practice in dat-
acenters to achieve better performance isolation [22].
With this technique, the process threads associated with
a job run on dedicated CPUs using containers and the
set affinity API [3]. Our approach attributes active
power to such jobs by calculating the power consumption

of the hyperthread contexts associated with each hosted
process as shown in Equation 7. Reserving CPUs is
often used for minimizing performance interference to
latency-critical jobs as well as in Infrastructure as a Ser-
vice (IaaS) type of multi-tenant cloud services. We use
this execution approach as the basis of our evaluation.

When CPUs are time-shared by multiple jobs, our
models can be used to capture the power consumption
change at each context switch using Equation 7. The cost
of reading the performance counters is typically hun-
dreds of nanoseconds while the remaining cost of a con-
text switch is on the order of microseconds [20]. It is
important to note that the OS scheduler only needs to
save threads’ co-run performance counter information at
every context switch, more complex calculations can be
deferred to a coarser scale (seconds) or on demand.

4 Evaluation

In this section, we evaluate the accuracy of our model us-
ing production Google applications listed in Table 1. We
also duplicate our experiment using SPEC benchmarks
for repeatability. Our Google configuration is a 2.6GHz
Intel Sandy Bridge machine, equipped with 2 processor
sockets. Each socket has 8 cores, each with two hyper-
threads. Only one socket is used in our experiments. The
testbed runs a customized Linux kernel with necessary
RAPL support. We collect energy readings via perf tool
every 10 seconds and report the average power during a
300-second application execution.

4.1 Methodology

In our experimental setup, we co-run two jobs on a pro-
cessor socket and pin them to disjoint sets of cores. The
first job spawns 2N processes on N cores, while the sec-
ond job spawns N processes on another N cores. We
scale up N from 1 to 4 in our experiments. With this
configuration, the first job makes full usage of all hy-
perthreads (2N hyperthreads on N cores), while the sec-
ond job uses half of the available hyperthreads (N hy-
perthreads on N cores). We first calculate total active
power consumed by both jobs as Powertotal (measured
total processor power minus static power). We then esti-
mate each job’s power consumption, Power1 and Power2,
using both HT-oblivious model (Equation 1) and our HT-
aware model (Equations 2 - 7).

To evaluate the accuracy for estimating per job power
consumption, we remove one job from the server and
measure the power consumption of the remaining job as
Power′total . The delta between Powertotal and Power′total
is the actual active power of the removed job. We refer
to this measured per task power as “Oracle”, and use it
as an evaluation baseline in the following section.

5

216 2014 USENIX Annual Technical Conference USENIX Association

Workload HT-oblivious HT-aware
Avg Error Max Error Avg Error Max Error

{bigtable (BT), warp-correction (IMG)} 5.8w(23.1%) 11.9w(28.5%) 1.8w(7.0%) 3.7w(8.6%)
{web-index (IDX), mapreduce (MR)} 5.1w(19.4%) 13.4w(31.0%) 2.4w(9.3%) 4.4w(10.2%)

{youtube-encoding(YTB), rpc-bench (RPC)} 4.8w(19.1%) 13.9w(34.5%) 1.5w(6.2%) 3.9w(9.6%)
Average 5.2w(20.5%) 13.1w(31.3%) 1.9w(7.5%) 4.0w(9.4%)

Table 2: Average and maximal errors for Google benchmarks, both in absolute watt and relative percentage, of two
models when using Oracle as baseline. Error in percent is calculated as |Oracleavg−Model|

Oracleavg
and |Oraclemax−Model|

Oraclemax
.

1 2 3 4
−15

−10

−5

0

5

10

15

of Physical Cores

E
s
ti
m

a
ti
o
n
 E

rr
o
r(

W
)

HT−Oblivious Model for BT

HT−Oblivious Model for IMG

HT−Aware Model for BT

HT−Aware Model for IMG

1 2 3 4
−15

−10

−5

0

5

10

15

of Physical Cores

E
s
ti
m

a
ti
o
n
 E

rr
o
r(

W
)

HT−Oblivious Model for IDX

HT−Oblivious Model for MR

HT−Aware Model for IDX

HT−Aware Model for MR

1 2 3 4
−15

−10

−5

0

5

10

15

of Physical Cores

E
s
ti
m

a
ti
o
n
 E

rr
o
r(

W
)

HT−Oblivious Model for YTB

HT−Oblivious Model for RPC

HT−Aware Model for YTB

HT−Aware Model for RPC

Figure 5: Results for three sets of workload {bigtable (BT), warp-correction (IMG)}, {web-index (IDX), mapreduce
(MR)}, and {youtube-encoding(YTB), rpc-bench (RPC)}

4.2 Results

We conduct the evaluation using three pairs of co-
running applications, chosen arbitrarily: {bigtable (BT),
warp-correction (IMG)}, {web-index (IDX), mapreduce
(MR)}, {youtube-encoding(YTB), rpc-bench (RPC)}
(applications are described in Table 1). As discussed in
Section 4.1, for each pair, we conduct four experiments
varying the number of physical cores N from 1 to 4. The
first job in a pair spawns 2N processes running on N
cores, while the second only spawns N processes on an-
other N cores. Each experiment runs three times. Both
the average values and standard deviations are reported.

BT−IMG IDX−MR TYB−RPC Average
0

5

10

15

E
s
ti
m

a
ti
o
n
 E

rr
o
r(

W
a
tt
s
)

0

5

10

15

perl−namd
bzip2−lbm

gcc−sphinx

astar−omnetpp

Gems−libquantum
Average

E
s
ti
m

a
ti
o
n
 E

rr
o
r(

W
a
tt
s
)

HT−Oblivious Avg Error

HT−Aware Avg Error

HT−Oblivious Max Error

HT−Aware Max Error

Figure 6: Improvement of power estimation for both
Google and SPECPU benchmarks.

Figure 5 presents our experimental results. It shows
the power attributing results for each co-run pair. As
shown in the figure, the prediction accuracy of our HT-
aware model outperforms the HT-oblivious model. Fig-
ure 5 shows that the HT-oblivious model tends to overes-
timate jobs with both hyperthreads running (i.e., bigtable
(BT), web-index (IDX), and youtube-encoding(YTB))
and underestimate jobs with only one hyperthread run-
ning (i.e., warp-correction (IMG), mapreduce (MR), and
rpc-bench (RPC)). These prediction errors are expected
since the HT-oblivious model solely depends on CPU cy-
cles. In contrast, our HT-aware model takes architec-
ture details into consideration and is more accurate in
all cases. As summarized in Table 2, it on average re-
duces error from 20.5% to 7.5% when compared to HT-
oblivious. The maximal error of HT-aware prediction is
significantly less than the HT-oblivious model, reducing
from ∼13 watts error (or 31.3%) for the HT-oblivious
model to ∼4 watts (or 9.4%) for our HT-aware model.

4.3 SPEC results

To demonstrate the repeatability of our experiments be-
yond Google applications, we duplicated the experi-
ments using SPEC CPU2006 benchmarks on another
Sandy Bridge machine. On this machine, each CPU
socket has six 1.9GHz physical cores. In these exper-
iments, we used 10 SPEC benchmarks and randomly
group them in 5 pairs. Figure 6 presents the power pre-
diction error achieved by HaPPy versus the hyperthread-
oblivious model. As shown in the figure, there is a

6

USENIX Association 2014 USENIX Annual Technical Conference 217

significant improvement in prediction accuracy for both
Google and SPEC workloads.

5 Related Work
Several techniques have been proposed to predict the
server power [6, 9, 18, 15, 21, 23]. For example, Bel-
losa proposed an event driven approach for power mod-
eling. Choi et al. discussed power prediction and cap-
ping in consolidated environment [9]. Lee et al. de-
signed a regression model for power prediction in hard-
ware simulators [18], whereas our model is applicable
for real machines. Isci et al. presented a framework
to collect and analyze power phases [15]. These work
either do not explicitly address hyperthreaded servers
or simply disable hyperthreading. Fine-grained power
profiling tools are also proposed [25]. Shen et al. de-
signed a power container to profile server request level
power [26]. Kansal et al. and Bertran et al. used system
events to model application level power [16, 7]. Again
these models are not aware of hyperthreads. Power man-
agement in data center has attracted much research at-
tention recently [19, 13, 11]. These power management
techniques require accurate power estimation.

6 Conclusion
In this paper, we present a simple and accurate
hyperthread-aware power model to attribute power con-
sumption of a server to individual co-running applica-
tions. By leveraging on-chip energy counters and perf
tool, we prototype our model as a lightweight runtime
task power profiler. Our evaluation using Google com-
mercial benchmarks shows that the prediction accuracy
of our model is significantly better than the state-of-the-
art hyperthread-oblivious model.

Acknowledgement
We would like to thank Keith Smith for his valuable feed-
back. This work was partially supported by NSF Awards
CCF-SHF-1302682, CNS-CSR-1321047 and a Google
Research Award.

References
[1] https://perf.wiki.kernel.org/.
[2] https://lkml.org/lkml/2013/10/7/359.
[3] G. Banga, P. Druschel, and J. C. Mogul. Resource containers: A new facil-

ity for resource management in server systems. In Proc. of the 3rd USENIX
Symp. on Operating Systems Design and Implementation (OSDI), 1999.

[4] L. A. Barroso, J. Clidaras, and U. Hölzle. The Datacenter As a Computer:
An Introduction to the Design of Warehouse-Scale Machines. Morgan &
Claypool Publishers, 2nd edition, 2013.

[5] L. A. Barroso, J. Dean, and U. Hölzle. Web search for a planet: The Google
cluster architecture. IEEE Micro, 23(2):22–28, Mar. 2003.

[6] F. Bellosa. The benefits of event-driven energy accounting in power-
sensitive systems. In Proc. of the SIGOPS European Workshop, Kolding,
Denmark, Sept 2000.

[7] R. Bertran, M. Gonzalez, X. Martorell, N. Navarro, and E. Ayguade. De-
composable and responsive power models for multicore processors using

performance counters. In Proc. of the 24th ACM International Conference
on Supercomputing (SC), pages 147–158, 2010.

[8] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. Gruber. Bigtable: A distributed storage sys-
tem for structured data. In Proc. of the 7th USENIX Symp. on Operating
Systems Design and Implementation (OSDI), pages 205–218, 2006.

[9] J. Choi, S. Govindan, B. Urgaonkar, and A. Sivasubramaniam. Profiling,
prediction, and capping of power consumption in consolidated environ-
ments. In Proc. of Modeling, Analysis and Simulation of Computers and
Telecommunication Systems (MASCOTS), pages 1–10, 2008.

[10] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large
clusters. In Proc. of the 6th USENIX Symp. on Operating Systems Design
and Implementation (OSDI), 2004.

[11] X. Fan, W. D. Weber, and L. A. Barroso. Power provisioning for a
warehouse-sized computer. In Proc. of the 34th annual International Sym-
posium on Computer Architecture (ISCA), pages 13–23, 2007.

[12] I. Goiri, W. Katsak, K. Le, T. D. Nguyen, and R. Bianchini. Parasol and
greenswitch: Managing datacenters powered by renewable energy. In Proc.
of 18th Int’l Conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 51–64, 2013.

[13] S. Govindan, J. Choi, B. Urgaonkar, A. Sivasubramaniam, and A. Baldini.
Statistical profiling-based techniques for effective power provisioning in
data centers. In Proc. of the 4th ACM European Conference on Computer
systems (EuroSys), pages 317–330, 2009.

[14] Intel Corporation. Intel 64 and IA-32 architectures software developer’s
manual, volume 3: System programming guide, 2013.

[15] C. Isci and M. Martonosi. Phase characterization for power: evaluating
control-flow-based and event-counter-based techniques. In Proc. of 12th
Int’l Symp. on High Performance Computer Architecture (HPCA), pages
121–132, 2006.

[16] A. Kansal and F. Zhao. Fine-grained energy profiling for power-aware
application design. ACM SIGMETRICS Performance Evaluation Review,
36(2):26–31, 2008.

[17] V. Kontorinis, L. E. Zhang, B. Aksanli, J. Sampson, H. Homayoun, E. Pet-
tis, D. M. Tullsen, and T. S. Rosing. Managing distributed UPS energy for
effective power capping in data centers. In Proc. of the 39th annual In-
ternational Symposium on Computer Architecture (ISCA), pages 488–499.
IEEE, 2012.

[18] B. C. Lee and D. M. Brooks. Accurate and efficient regression modeling
for microarchitectural performance and power prediction. In ACM SIGOPS
Operating Systems Review, volume 40, pages 185–194. ACM, 2006.

[19] C. Lefurgy, X. Wang, and M. Ware. Server-level power control. In Proc. of
the 4th International Conference on Autonomic Computing (ICAC), 2007.

[20] C. Li, C. Ding, and K. Shen. Quantifying the cost of context switch. In
Proc. of the Workshop on Experimental Computer Science (ExpCS), 2007.

[21] T. Li and L. K. John. Run-time modeling and estimation of operating sys-
tem power consumption. In Proc. of the ACM International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS), pages
160–171, 2003.

[22] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa. Bubble-Up: In-
creasing utilization in modern warehouse scale computers via sensible co-
locations. In Proc. of the 44th annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), New York, NY, USA, 2011. ACM.

[23] J. C. McCullough, Y. Agarwal, J. Chandrashekar, S. Kuppuswamy, A. C.
Snoeren, and R. K. Gupta. Evaluating the effectiveness of model-based
power characterization. In Proc. of the USENIX Annual Technical Confer-
ence (USENIX ATC), 2011.

[24] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the data:
Parallel analysis with Sawzall. Scientific Programming, Special Issue on
Grids and Worldwide Computing Programming Models and Infrastructure,
13(4):277–298, Oct. 2005.

[25] A. Roy, S. M. Rumble, R. Stutsman, P. Levis, D. Mazières, and N. Zel-
dovich. Energy management in mobile devices with the Cinder operating
system. In Proc. of the 6th ACM European Conference on Computer sys-
tems (EuroSys), pages 139–152, 2011.

[26] K. Shen, A. Shriraman, S. Dwarkadas, X. Zhang, and C. Zhuan. Power
containers: An OS facility for fine-grained power and energy management
on multicore servers. In Proc. of 18th Int’l Conf. on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), Houston,
Texas, Mar. 2013.

[27] H. Yang, A. Breslow, J. Mars, and L. Tang. Bubble-Flux: Precise online
QoS management for increased utilization in warehouse scale computers.
In Proc. of the 40th annual International Symposium on Computer Archi-
tecture (ISCA), 2013.

[28] Q. Zheng and B. Veeravalli. Utilization-based pricing for power manage-
ment and profit optimization in data centers. Journal of Parallel and Dis-
tributed Computing, 72(1):27–34, 2012.

7

