
(12) United States Patent
Mars et al.

US008578.355B1

(10) Patent No.: US 8,578,355 B1
(45) Date of Patent: Nov. 5, 2013

(54) SCENARIO BASED OPTIMIZATION

(75) Inventors: Jason Mars, Charlottesville, VA (US);
Robert Hundt, Palo Alto, CA (US)

(73) Assignee: Google Inc., Mountain View, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 622 days.

(21) Appl. No.: 12/728,099

(22) Filed: Mar 19, 2010

(51) Int. Cl.
G06F 9/45 (2006.01)

(52) U.S. Cl.
USPC .. T17/153

(58) Field of Classification Search
USPC .. 717/127, 151
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,673.408 A * 9/1997 Shebanow et al. T12/216
6,615,340 B1* 9/2003 Wilmot, II 712/209
7,543.285 B2* 6/2009 Cabillic et al. 717, 158

2007/0079294 A1* 4/2007 Knight et al. . 717, 130
2007/0214342 A1* 9, 2007 Newburn et al. ... 712,216
2009/00641 17 A1* 3/2009 Bashkansky et al. 717,154

OTHER PUBLICATIONS

Adl-Tabatabaiet al., “Prefetch injection based on hardware monitor
ing and object metadata.” Proceedings of the ACM SIGPLAN 2004
conference on Programming language design and implementation,
2004, New York, NY, USA: ACM, pp. 267-276, 10 pages.
Azimi et al., “Online performance analysis by statistical sampling of
microprocessor performance counters.” Proceedings of the 19th
annual international conference on Supercomputing, 2005, New
York, NY, USA: ACM, pp. 101-1 10, 10 pages.

Execution
Scenario Controler
Monitor

Bala et al., “Dynamo: a transparent dynamic optimization system.”
Proceedings of the ACM SIGPLAN 2000 conference on Program
ming language design and implementation, Jun. 2000, New York,
NY, USA: ACM, pp. 1-12, 12 pages.
Bruening et al., “An infrastructure for adaptive dynamic optimiza
tion.” Proceedings of the international Symposium on Code genera
tion and optimization, 2003, Washington, DC, USA: IEEE Computer
Society, pp. 265-275, 11 pages.
Callahan et al., “Interprocedural constant propagation.” SIGPLAN
Not... Jul. 1986, vol. 21, No. 7, pp. 162-175, 10 pages.
Carini et al., “Flow-sensitive interprocedural constant propagation.”
in PLDI '95: Proceedings of the ACM SIGPLAN 1995 conference on
Programming language design and implementation, 1995, NewYork,
NY, USA: ACM, pp. 23-31, 9 pages.
Cavazos et al., “Rapidly selecting good compiler optimizations using
performance counters.” in Proceedings of the International Sympo
sium on Code Generation and Optimization, Apr. 2007, Washington,
DC, USA: IEEE Computer Society, pp. 185-197. 13 pages.
Chang et al., “Using profile information to assist classic code opti
mizations.” Softw. Pract. Exper, 1991, vol. 21, No. 12, pp. 1301
1321, 33 pages.

(Continued)

Primary Examiner — Li B Zhen
Assistant Examiner — Hui-Wen Lin
(74) Attorney, Agent, or Firm — Honigman Miller Schwartz
and Cohn LLP

(57) ABSTRACT

Techniques and systems for scenario based optimization can
include generating multiple different versions of a program
segment based on different respective execution scenarios
associated with an execution of a program, the program oper
able to use the program segment versions. In another aspect,
techniques and systems can include executing a program
executable associated with multiple different versions of a
program segment, analyzing the execution for an indication
of at least one of the execution scenarios to select one of the
program segment versions based on the indication, and caus
ing the execution to use the selected program segment version
during at least a portion of the execution.

18 Claims, 7 Drawing Sheets

s

Segment One

20

Segment Two, Version One

22

Segment Two, Version Two

2

Segment Two, Version Three

is

Segment Three

US 8,578,355 B1
Page 2

(56) References Cited

OTHER PUBLICATIONS

Chen et al., “Dynamic trace selection using performance monitoring
hardware sampling.” Proceedings of the international Symposium on
Code generation and optimization, 2003, Washington, DC, USA:
IEEE Computer Society, pp. 79-90, 12 pages.
Chilimbi et al., “Dynamic hot data stream prefetching for general
purpose programs.” Proceedings of the ACM SIGPLAN 2002 Con
ference on Programming language design and implementation, 2002,
New York, NY, USA: ACM, pp. 199-209, 11 pages.
Cierniak et al., “Interprocedural array remapping.” Proceedings of
the 1997 International Conference on Parallel Architectures and
Compilation Techniques, Mar. 1997, Washington, DC, USA: IEEE
Computer Society, p. 146-155, 10 pages.
Dean et al., “Profileme: Hardware support for instruction-level pro
filing on out-of-order processors.” MICRO 30: Proceedings of the
30th annual ACM/IEEE international symposium on
Microarchitecture, Dec. 1997, Washington, DC, USA: IEEE Com
puter Society, pp. 292-302, 12 pages.
Fursin et al., “Practical run-time adaptation with procedure cloning to
enable continuous collective compilation.” Proceedings of the GCC
Developers' Summit, Jul. 2007, 10 pages.
Fursin et al., “Quick and practical run-time evaluation of multiple
program optimizations.” Trans. on High Performance Embedded
Architectures and Compilers, Jan. 2007, vol. 1, No. 1, pp. 13-31, 19
pageS.
Gupta et al., “Resource-sensitive profile-directed data flow analysis
for code optimization.” Proceedings of the 30th annual ACM/IEEE
international symposium on Microarchitecture, 1997, Washington,
DC, USA: IEEE Computer Society, pp. 358-368, 11 pages.
Hiser et al., “Evaluating indirect branch handling mechanisms in
Software dynamic translation systems.” Proceedings of the Interna
tional Symposium on Code Generation and Optimization, Apr. 2007.
Washington, DC, USA: IEEE Computer Society, pp. 61-73, 13 pages.
Lu et al., “Dynamic helper threaded prefetching on the Sun
UltraSPARCOR) processor.” Proceedings of the 38th annual IEEE/
ACM International Symposium on Microarchitecture, Dec. 2005,
Washington, DC, USA: IEEE Computer Society, pp. 93-104. 12
pageS.
Lu et al., “The performance of runtime data cache prefetching in a
dynamic optimization system.” Proceedings of the 36th annual IEEE/

ACM International Symposium on Microarchitecture, 2003, Wash
ington, DC, USA: IEEE Computer Society, 11 pages.
Luk et al., “Pin: building customized program analysis tools with
dynamic instrumentation.” Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and implementation.
New York, NY, USA: ACM, 2005, pp. 190-200.
Mars et al., “Multicore adaptive trace selection. Appeared at
STMCS 08: Third Workshop on Software Tools for MultiCore Sys
tems, Mar. 2008. Online). Available: http://www.cs.virginia.edu/
jom5x/papers/mats.pdf, 6 pages.
Mars et al., “Scenario Based Optimization: A Framework for Stati
cally Enabling Online Optimizations'. International Symposium on
Code Generation and Optimization, Mar. 22, 2009, 11 pages.
Nethercote et al., “Valgrind: a framework for heavyweight dynamic
binary instrumentation.” in Proceedings of the 2007 ACM SIGPLAN
conference on Programming language design and implementation,
2007, New York, NY, USA: ACM, pp. 89-100, 12 pages.
Pettis et al., “Profile guided code positioning.” Proceedings of the
ACM SIGPLAN 1990 conference on Programming language design
and implementation, 1990, New York, NY, USA: ACM, pp. 16-27, 12
pageS.
Rajagopalanet al., “Profile-directed optimization of event-based pro
grams.” Proceedings of the ACM SIGPLAN 2002 Conference on
Programming language design and implementation, 2002, NewYork,
NY, USA: ACM, pp. 106-116, 11 pages.
Schneider et al., “Online optimizations driven by hardware perfor
mance monitoring.” Proceedings of the 2007 ACM SIGPLAN con
ference on Programming language design and implementation, 2007.
New York, NY, USA: ACM, pp. 373-382, 10 pages.
Scott et al., “Retargetable and reconfigurable software dynamic
translation.” Proceedings of the international Symposium on Code
generation and optimization, 2003, Washington, DC, USA: IEEE
Computer Society, pp. 36-47. 12 pages.
Zhang et al., “An event-driven multithreaded dynamic optimization
framework.” Proceedings of the 14th International Conference on
Parallel Architectures and Compilation Techniques, Oct. 2005,
Washington, DC, USA: IEEE Computer Society, pp. 87-98, 12 pages.
Zhao et al., “An approach toward profit-driven optimization.” ACM
Trans. Archit. Code Optim., 2006, vol. 3, No. 3, pp. 231-262, 32
pageS.

* cited by examiner

US 8,578,355 B1 Sheet 1 of 7 Nov. 5, 2013 U.S. Patent

9 TT

ZZI

| colaes)

U.S. Patent Nov. 5, 2013 Sheet 2 of 7 US 8,578,355 B1

s

US 8,578,355 B1 Sheet 3 of 7 Nov. 5, 2013 U.S. Patent

• •·, , , , ,

US 8,578,355 B1 Sheet 4 of 7 Nov. 5, 2013 U.S. Patent

OO! O! || 20

US 8,578,355 B1

ur, I ·: (ZO(? 1)(LL) ?0.2 %4. Tº

Z U.S. Patent

U.S. Patent Nov. 5, 2013 Sheet 6 of 7 US 8,578,355 B1

Generate multiple different versions of a program 605
segment based on different respective execution

Scenarios associated with an execution of a
program

Generate a switching mechanism to associate
the program segment with the program segment 610

versions and to invoke one or more of the
program Segment versions during an execution
of the program based on an input associated
with at least one of the execution scenarios

Generate a Control mechanism to monitor an
execution of the program and to identify one or 615
more of the execution scenarios during an

execution of the program and to provide the input
to the switching mechanism based on an

identified execution scenario

Produce an output based at least on the program 620
segment versions, the switching mechanism, and

the Control mechanism

FIG. 6

U.S. Patent Nov. 5, 2013 Sheet 7 Of 7

Execute a program executable
associated with multiple different
versions of a program segment

Analyze the execution for an
indication of at least One of the

execution SCenarioS to Select One
of the program segment versions

based On the indication

Cause the execution to use the
Selected program segment

version during at least a portion
of the execution

FIG. 7

US 8,578,355 B1

705

710

715

US 8,578,355 B1
1.

SCENARIOBASED OPTIMIZATION

TECHNICAL FIELD

This document relates to compiling and executing com
puter programs.

BACKGROUND

Modern computer programs are typically written in a high
level programming language. A high-level programming lan
guage allows data structures and algorithms in a computer
program to be expressed in a form that can be easily read and
understood by a human programmer. A Software tool, called
a “compiler, can translate a computer program written in a
high-level programming language into a set of low-level
machine instructions that can be executed by a computers
microprocessor. In the context of this translation, the program
written in the high-level programming language is called the
“source code.” The set of low-level machine instructions is
called “object code. In practice, a program typically includes
multiple source code files from which a number of object files
can be derived. These multiple object files and various librar
ies that include standard routines can be linked by a “linker'
to create a single executable program. The executable pro
gram can then be executed on a computer.

SUMMARY

This document describes technologies relating to perform
ing scenario based optimizations of computer programs and
their execution.

Methods for Scenario based optimizations can include gen
erating multiple different versions of a program segment
based on different respective execution scenarios associated
with an execution of a program, the program operable to use
the program segment versions, generating a Switching
mechanism to associate the program segment with the pro
gram segment versions and to invoke one or more of the
program segment versions during an execution of the pro
gram based on an input associated with at least one of the
execution scenarios, generating a control mechanism to
monitor an execution of the program and to identify one or
more of the execution scenarios during an execution of the
program and to provide the input to the Switching mechanism
based on an identified execution scenario, and producing an
output based at least on the program segment versions, the
Switching mechanism, and the control mechanism. Other
implementations can include corresponding systems, appa
ratus, and computer programs, configured to perform the
actions of the methods, encoded on computer storage devices.

These and other implementations can include one or more
of the following features. Generating multiple different ver
sions of a program segment can include generating a first
program segment version associated with a first execution
scenario and generating a different, second program segment
version associated with a second execution scenario. The
second program segment version being based on one or more
optimization techniques. The first execution scenario can be
indicative of a contention of one or more execution resources
during an execution of the program. The second execution
scenario can be indicative of an execution environment Suit
able to execute processor instructions associated with the one
or more optimization techniques.

Generating the control mechanism can include generating
the control mechanism to monitor an instruction retirement
rate associated with an execution of the program and to pro

10

15

25

30

35

40

45

50

55

60

65

2
vide the input to the switching mechanism based on different
instruction retirement rate thresholds. Producing the output
can include producing a program executable corresponding
to the program. The program executable can include the pro
gram segment versions, the Switching mechanism, and the
control mechanism.
Methods for executing a program executable associated

with one or more scenario based optimizations can include
executing a program executable associated with multiple dif
ferent versions of a program segment, the program segment
versions being associated with different execution scenarios,
respectively; analyzing the execution for an indication of at
least one of the execution scenarios to select one of the pro
gram segment versions based on the indication; and causing
the execution to use the selected program segment version
during at least a portion of the execution. Other implementa
tions can include corresponding systems, apparatus, and
computer programs, configured to perform the actions of the
methods, encoded on computer storage devices.

These and other implementations can include one or more
of the following features. Analyzing the execution can
include monitoring the execution and selecting one of the
program segment versions associated with an execution sce
nario detected by the monitoring. Executing the program
executable can include first executing a first one of the pro
gram segment versions and second executing a second one of
the program segment versions. Analyzing the execution can
include comparing a first performance metric associated with
the first executing and a second performance metric associ
ated with the second executing. Analyzing the execution can
include selecting a program segment version based on an
output of the comparison. Monitoring the execution can
include accessing one or more event counters associated with
processor electronics.

Executing the program executable can include accessing
one or more of the program segment versions in the program
executable. The program segment versions can include dif
ferent program segment versions based on different optimi
Zations of the program segment. Executing the program
executable can include interfacing with a module that
includes the program segment versions. Executing the pro
gram executable can include the analyzing.

Particular embodiments of the subject matter described in
this document can be implemented so as to realize one or
more of the following advantages. A scenario based optimi
Zation framework allows compiler writers to take advantage
of the benefits of static compile-time optimizations and run
time advantages of varying program execution based on a
changing execution environment. For example, compiler
writers can develop additional optimizations based on a
hybrid static and dynamic collaborative scenario based opti
mization paradigm. Compilers can be updated to perform
scenario based optimizations. Executing scenario based opti
mized program executables can increase the run-time perfor
mance of the program.
The details of one or more embodiments of the subject

matter described in this specification are set forth in the
accompanying drawings and the description below. Other
features, aspects, and advantages of the Subject matter will
become apparent from the description, the drawings, and the
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an example of a scenario based execution
architecture to execute a program.

US 8,578,355 B1
3

FIG. 2 shows an example of a communication network
connected with processing devices.

FIG.3 shows an example of a Switching mechanism based
on alternate versioning.

FIG. 4 shows an example of a Switching mechanism based
on n-version versioning.

FIG. 5 shows an example of different execution phases
associated with performance based metrics.

FIG. 6 shows an example of a scenario based compiler
process.

FIG. 7 shows an example of a process to execute a multi
versioned program segment.

Like reference numbers and designations in the various
drawings indicate like elements.

DETAILED DESCRIPTION

Some compiler optimizations may be advantageous in
Some execution scenarios and disadvantageous in others. An
execution scenario describes a occurrence or set of occur
rences such as micro-architectural events, operating system
events, or input/output events in an execution environment of
a program. Detection of a specific scenario can indicate when
an optimization may yield improved performance. For
example, one scenario can be when cache misses are increas
ing as a result of multiple applications contending for a cache.
For Such a scenario, an optimization Such as cache prefetch
ing may degrade performance. However, in another scenario
when utilization of the cache is low, using cache prefetching
may significantly improve performance.

With the proliferation of multiple core architectures, mul
tiple programs can run simultaneously alongside each other
can impact overall performance. In some cases, such an
impact may result from an increased pressure on system
resources, e.g., memory, input/output, processor cores, of an
execution environment that is shared by multiple running
applications. Hence, a scenario can include resource thrash
ing between one or more applications. In some cases, during
an execution of a program, resource thrashing can occur when
another program is launched on a neighboring core that
causes thrashing between the two programs. In another
example, a scenario can include events that are indicative of
when an on-chip bus is oversubscribed. Some scenarios may
have an adverse impact on application performance and can
occur at anytime or not at all. In some implementations, a
default scenario can represent an execution environment with
minimal or no performance impacting events such as an idle
bus or idle processor core. In some cases, the impact of an
optimization is not fully known during compile-time. A cor
responding scenario can be when an execution of an opti
mized version of a function is performing worse than an
execution of an another version of the function oran expected
performance threshold.

This document includes descriptions of techniques and
systems for scenario based optimization (SBO). A SBO
framework can provide a hybrid static and dynamic approach
to optimization that includes compile-time and run-time com
ponents. The SBO framework can use benefits of static com
piler optimizations to generate multi-versioned program seg
ments and the adaptive nature of dynamic optimization
techniques to selectively execute one or more of the program
segment versions during an execution of a program. A com
piler can select one or more segments of a program for multi
versioning based on one or more selection criteria, Such as
frequency of execution of a segment.
A program Such as an application or an operation system

can include one or more program segments. Various examples

5

10

15

25

30

35

40

45

50

55

60

65

4
of a program segment include a function, a sequence of opera
tions, a group of functions, and a group of operations within
a function. In some implementations, an application can link
to a program segment via a library interface. A program
segment can be optimized differently for different scenarios.
Various optimizations include loop unrolling, cache prefetch
ing, multi-threading, instruction re-scheduling, function in
lining and different degrees thereof, for example. Other opti
mizations are possible, however. ASBO framework performs
multi-versioning to generate different program segment ver
sions for a specific program segment Such as a function, a
grouping of operations, or a grouping of functions. For
example, a version for a function can be statically generated
by a compiler and specialized to an anticipated Scenario.
During run-time, Scenarios can be identified by a control
mechanism Such as a dynamic engine that uses performance
monitoring hardware. When a scenario is identified, execu
tion is dynamically rerouted to execute an appropriate version
of the function.
An execution framework for SBO can interface with com

puter hardware to dynamically change execution pathways of
a program while the program is executing. For example,
various processor architectures include performance moni
toring hardware (PMH) structures. Performance monitoring
hardware can provide accurate descriptions of an execution
environment of an application or an entire system. An execu
tion framework can use PMH structures to count and monitor
events such as micro-architectural events of a chip in real
time. For example, Such a framework can use one or more
PMH structures to collect fine grain, accurate information
with low overhead to re-route an application’s execution
stream, e.g., selecting a different program segment version.

FIG. 1 shows an example of a scenario based execution
architecture to execute a program. In this example, a program
has multiple program segments 105,110, 115. In some imple
mentations, an executable version of the program can include
processor instructions indicative of the one or more program
segments 105,110, 115. In some implementations, an execut
able version of the program can link to a program segment
located within a module Such as a library.
A multi-versioned program segment, e.g., segment two

110, is associated with multiple versions 120, 122, 124 of a
program segment. Different versions can correspond to dif
ferent execution scenarios. In some implementations, a pro
gram executable can include multiple versions 120, 122, 124
of a program segment 110. In some implementations, a pro
gram executable can link to a library that includes multiple
versions 120, 122, 124 of a program segment 110.

During execution, control flow can Switch from one pro
gram segment to a different program segment. Switching to a
multi-versioned program segment can include changing con
trol flow to a switch 130 associated with the multi-versioned
program segment 110. The switch 130 can direct control flow
to one of the multiple versions 120, 122, 124.
A controller 135 can operate an execution scenario monitor

140 to detect one or more execution scenarios. The controller
135 can select one of the versions 120, 122, 124 based on a
detected execution scenario. In some implementations, the
controller 135 can write an address corresponding to a pro
gram segment version 120, 122, 124 to a memory location
that is accessible by the switch 130. The switch 130 can read
the memory location and direct control flow to the version
corresponding to the address stored at the memory location.

Running the program executable can include executing
instructions for the program segments 105,110, 115 with the
controller 135, execution scenario monitor 140, and switch
130 in the same thread. In some implementations, running a

US 8,578,355 B1
5

program executable can include running the program seg
ments 105, 110, 115 in one or more threads and running the
controller 135 in a separate thread. In some implementations,
running a program executable can include running the pro
gram segments 105,110, 115 in one or more processes using
inter-process communications and interfacing with a process
that performs monitoring.
A program executable can include processor instructions

for multiple different versions of a program segment based on
different execution scenarios. In some implementations, an
execution scenario is associated with an occurrence of one or
more specific events. In some implementations, an execution
scenario is associated with a lack of an occurrence of one or
more specific events.

In some implementations, a program executable can
include processor instructions for a Switching mechanism
that selects a version of multi-versioned program segment. In
Some implementations, a program executable can include
processor instructions for a Switching mechanism to associate
the program segment with the program segment versions and
to invoke one or more of the program segment versions during
an execution of the program based on an input associated with
at least one of the execution scenarios.

In some implementations, a program executable can
include processor instructions for a control mechanism to
monitor execution and to identify one or more of the execu
tion scenarios during an execution of the program. In some
implementations, the control mechanism can provide an input
to the Switching mechanism based on an identified execution
scenario.

FIG. 2 shows an example of a communication network
connected with processing devices. Processing devices such
as network endpoints 205, 210, 220, 225, 230, 235 can con
nect to a communication network 215 such as the Internet or
a Local Area Network (LAN). Various examples of endpoints
include processing devices such as a mobile phone, personal
computer 205, 220 or a computer such as a server 220, 225,
230, 235. An endpoint can include one or more processors
that can be programmed or configured to perform one or more
operations mentioned in this document. In some implemen
tations, a processor can include multiple processors or pro
cessor cores. A network endpoint can be identified as a client,
a server, or both, but in any case, a network endpoint neces
sarily includes some hardware since it includes a physical
device.

Endpoints 205, 210, 220, 225,230, 235 can establish con
nections with other endpoints 205, 210, 220, 225, 230, 235.
For example, a first server 220 can generate a program execut
able based on SBO and a second server 225 can retrieve the
program executable over a networked file system. The second
server 225 can execute the program executable, which can
cause the second server 225 to communicate with a computer
230, 235. In some implementations, a Transmission Control
Protocol (TCP) over the Internet Protocol (IP) can be used to
transport data Such as a program executable or output of a
program executable between network endpoints 205, 210,
220, 225, 230, 235.

In some implementations, compilers can statically predict
one or more possible run-time scenarios an application may
face. Compilers can use optimization techniques that take
advantage of static compile-time optimization techniques,
dynamic monitoring, execution routing to enact one or more
execution policies. Performance of optimized program seg
ments may depend on the execution environment. For
example, code optimizations can improve or degrade perfor
mance in different execution environments. An execution
environment can change during an execution of a program or

10

15

25

30

35

40

45

50

55

60

65

6
between Successive executions of the program due to sce
narios such as ones based on interrupts, tasks on neighboring
cores, or memory bus contention. Therefore, a SBO based
compiler can perform multi-versioning based on static opti
mization techniques in a way to achieve run-time flexibility.
A SBO based compiler can use a static scenario based

multi-versioning (SSBM) mechanism to generate compiler
output. Various SBO based compiler outputs such as object
code and program executables can include multiple program
segment versions. Compiler outputs can include or can link to
a dynamic engine that monitors one or more system compo
nents such as one or more processors, memory, input/output
channels, and operating system events. In some implementa
tions, a compiler can include inter-procedural code transfor
mation mechanisms such as function level multi-versioning.
A function level multi-versioning mechanism can generate
specialized versions of a function that target different sce
narios.

Switching mechanisms for SBO can provide an interface
between static function versions and a dynamic engine that
selects the versions during an execution. In some implemen
tations, a dynamic engine can use Sucha interface to hook into
an execution of a program executable and reroute the execu
tion via resetting the active versions of the functions. A
Switching mechanisms can use a mechanism Such as a tram
poline to multiplex between the program segment versions. A
trampoline can load a specific version based on one or more
inputs.
An alternate versioning Switching mechanism is based on

default and alternate function versions. Alternate versioning
implementations can use a global Switch to control which
version the application uses during execution. A dynamic
engine can write information to the a memory location that
stores the state of the global Switch. In some implementa
tions, a program executable based on alternate versioning can
either execute the default versions for one or more multi
versioned functions or their corresponding alternative ver
sions.
FIG.3 shows an example of a Switching mechanism based

on alternate versioning. In this example, a program execut
able such as an application binary 305 includes various seg
ments such as a main segment 310 and multi-versioned func
tions such as foo 315, bar 320 and corresponding alternate
versions such as foo alt 325 and bar alt 330. An application
binary 305 can include code to initialize SBO based mecha
nisms such as a Switching mechanism. An application binary
305 can access a memory region 307 such as a statically or
dynamically allocated memory region. For example, an appli
cation binary 305 can include a routine, e.g., init sbo 340, to
initialize a value 350 labeled use alt version 345, to be true
or false. Such a value 350 can be stored a specific memory
location in memory region 307.

Default versions of a function, e.g., foo 315, bar 320, can
include a trampoline mechanism to read the value 350 labeled
“use alt version'345 to make a determination as to whether
to use an alternate version of the function, e.g., foo alt 325,
bar alt 330. A compiler can inject code for a trampoline
mechanism at a beginning portion of a function’s default
version.
A control mechanism Such as a dynamic engine 360 can

write to the value 350 labeled “use alt version' 345 to con
trol a Switching mechanism to use the alternate versions. The
dynamic engine 360 can update the value 350 one or more
times during an execution of the application binary 305. In
Some implementations, an application binary 305 includes
code for, or links to a dynamic engine 360.

US 8,578,355 B1
7

An n-version versioning Switching mechanism can use
multiple versions for one or more specific functions. In an
n-version versioning technique, a call to a multi-versioned
function becomes an indirect call to a version indicated by a
mapping table entry. In some implementations, a mapping
table is maintained in memory for one or more multi-ver
Sioned functions. During execution, the target address of a
call is controlled by a dynamic engine.

N-Version versioning can be advantageous, for example,
when multiple scenarios can occur at the same time. In some
implementations, a dynamic engine can produce different
combinations of function versions to correspond to different
combinations of Scenarios.

FIG. 4 shows an example of a Switching mechanism based
on n-version versioning. In this example, a program execut
able Such as an application binary 405 includes various seg
ments such as a main segment 410 and multi-versioned func
tions such as foo Ver1415, foo ver2 420, bar Verl 425, and
bar ver2430. An application binary 405 can include code to
initialize SBO based mechanisms such as a Switching mecha
nism. An application binary 405 can access a memory region
407 such as a statically or dynamically allocated memory
region.
An application binary 405 can include a routine, e.g.,

init sbo 440, to initialize the memory region 407. For
example, init sbo 440 can write a version index table 450 and
an active table 455 to the memory region 407. In some imple
mentations, a version index table 450 can include memory
addresses, e.g., A1, A2, A3, and A4, for multiple versions of
one or more functions. A version index table 450 can provide
a mapping between a scenario and a specific version of a
function. An active table 455 can include addresses of respec
tive active function versions. In some implementations,
init sbo 440 can initialize the active table 455 based on initial
function version settings.
A program segment such as main 410 can include a call to

function foo. In some implementations, a SBO based com
piler can replace the call to function foo with instructions to
perform an indirect call to a version of function foo. An
indirect call can include loading a pointer to the active version
of foo from an active table 455 to a register and calling the
active version via the value in register. In some implementa
tions, a SBO based compiler can replace the call to function
foo with a call to a Switching function.
A dynamic engine 460 can access a version index table 450

to retrieve information about multi-versioned functions. The
dynamic engine 460 can update the active table 455 based on
monitoring an execution. In some implementations, the
dynamic engine 460 can write a pointer to a function version
to the active table 455 during execution. In some implemen
tations, the dynamic engine 460 can run as a separate thread.
A compiler can perform multiple passes, including one or

more SBO based passes. For example, a compiler can per
form one or more parsing passes where the text of a source
code associated with a program is processed. The compiler
can generate an intermediate representation (IR) based on the
parsing passes. The compiler can perform a SBO pass based
on an intermediate representation. In some implementations,
a SBO pass is performed after the pass where the earliest IR
is generated as the first inter-procedural pass. This can facili
tate increased flexibility for compiler writers to design how
SBO function versions can be configured. For example, a
function can be annotated to disable or enable one or more of
the optimizations in later passes. The compiler can provide a
compiler flag to specify a function for multi-versioning. The
compiler can perform tree Static Single Assignment (SSA)
passes to optimize the IR, which can include a SBO based IR.

10

15

25

30

35

40

45

50

55

60

65

8
The compiler can perform Register Transfer Language (RTL)
passes to perform low level optimizations and to generate
processor instructions.

In some implementations, a compiler can instrument a
program executable with a monitor to perform profiling and
later perform SBO based on the results of the profiling. Pro
filing can include determining the frequency of use of differ
ent functions within a program to ascertain which functions
are heavily used. A compiler can use profiling results to select
one or more functions for SBO. Being selective can reduce
overall growth of the program executable. In some implemen
tations, a compiler can take into consideration potential over
head of using multi-versioned program segments, e.g., extra
instructions associated with an indirect call, when selecting
functions for SBO.
A compiler can use one or more Switching mechanisms to

multiplex versions of a multi-versioned program segment. In
Some implementations, a compiler can provide a function and
call graph cloning routine for inter-procedural constant
propagation. A SBO compiler pass can use this routine to
clone internal function data structures. The SBO compiler
pass can rewrite the internals of a original function. In some
implementations, a function is rewritten to include a trampo
line that a dynamic engine can manipulate via one or more
shared memory hooks. In some implementations, a call to a
function is rewritten to include a trampoline that a dynamic
engine can manipulate.
A compiler can use alternate versioning to implement a

Switching mechanism. For example, an original function can
be modified to include at least a portion of a Switching mecha
nism. A switching mechanism can include a conditional
operation, e.g., a trampoline, to jump to an alternate version.
In some implementations, the compiler can inject one or more
basic blocks into an original version of function at a begin
ning portion Such as its head. The one or more injected basic
blocks can check an indicator Such as a global variable. If the
global variable indicates alternative version use, the alterna
tive version is called using a direct call. If present, the calling
parameters that are passed to the original version are passed
on to the alternate version. If applicable, value(s) returned
from the alternate version are then passed on to the original
call site. If the global variable indicates original version use,
control flow proceeds to the body of the original version.
A compiler can use n-version versioning to implement a

Switching mechanism. Such a mechanism can include an
indirect call technique. For example, a call to a function is
replaced with a trampoline that has an indirect call to one of
the versions. A dynamic engine can control this trampoline by
writing the address of a function version in the address loca
tion that the indirect call uses. The compiler can generate a
Switching mechanism to access data such as an active table
and a version index table and to provide an interface to a
dynamic engine.

In some implementations, a SBO compiler pass can inject
one basic block into the head of the main function of an
application. This basic block can include a call to a SBO
initialization routine. The routine can initialize data associ
ated with SBO. The routine can launch a dynamic engine. The
routine can launch a monitor to monitor execution. In some
implementations, the dynamic engine includes the monitor.
A dynamic engine can monitor the execution context of an

application to detect a scenario. The dynamic engine can
reroute execution to a program segment version that is Suited
for the detected Scenario. The dynamic engine can perfor
mance monitoring hardware to continually identify the cur
rent execution context of a host application. The dynamic

US 8,578,355 B1
9

engine can interface with a performance monitor Such as
OProfile, PAPI, and Perfmon2.

In Some implementations, a SBO based compiler can stati
cally generate binaries with specialized versions of one or
more functions and provide hooks for the dynamic engine. In
Some implementations, the dynamic engine can then use one
or more heuristics to reroute execution via control through
these hooks.
A SBO initialization routine can initialize one or more

counters and one or more timers to periodically execute an
analysis routine. An analysis routine can read the counters
Such as counters associated with micro-architectural events,
e.g., cache misses or branch mis-predicts. The analysis rou
tine can run a scenario detection routine to detect a scenario
based on the counter values. If a target scenario is detected,
the dynamic engine can reconfigure the executing binary to
execute the function versions associated with the detected
scenario. The analysis routine can reset the counters and the
timer.
ASBO framework can include selectively executing pro

gram segment versions that have one or more aggressive
optimizations. Such as aggressive cache prefetching or
aggressive loop unrolling. Aggressive optimizations may
improve performance in some case and degrade performance
in others. A program executable can repeatedly call a multi
versioned function. During program execution, different ver
sions can be called to determine performance metrics of dif
ferent versions. In some implementations, a dynamic engine
can reroute execution based on a metric indicative of relative
performance of different versions. Program executables asso
ciated with aggressive optimizations may benefit from an
adaptive online optimization approach. In some implementa
tions, a SBO framework can be used to detect whether an
aggressively optimized version is performing better than
another version Such as a less aggressively optimized version
or a non-aggressively optimized version.

FIG. 5 shows an example of different execution phases
associated with performance based metrics. A SBO based
program execution can include a learning phase 505 and a
post-learning phase 510. The learning phase 505 can include
executing first and second function versions during a first
phase 515 of execution and a second phase 520 of execution,
respectively.

In this example, the active version for a program segmentis
set to a non-aggressive version for the first phase 515 of the
learning phase 505. The program then executes for a period of
time, T1. The dynamic engine can monitor one or more
counters to lookatan absolute number of instructions retired
during the first phase 515. The dynamic engine can record the
number of instructions that were successfully executed dur
ing the first phase 515. The active version for a program
segment is set to an aggressive version for the second phase
520 of the learning phase 505. The program then executes for
a period of time, T1. The dynamic engine can monitor one or
more counters to look at an absolute number of instructions
retired during the second phase 520.
The dynamic engine can calculate and compare perfor

mance metrics of the first and second versions during the
phases 515, 520 of the learning phase 505. Based on the
comparison, the dynamic engine can select a version as an
active version for the post-learning phase 510. In some imple
mentations, the dynamic engine can compare the number of
instructions retired for the phases 515, 520 of the learning
phase 505. The dynamic engine can select the version with the
highest number of instructions retired during a time period T1
for execution in the post-learning phase 510 which can have
a longer duration, T2. In some implementations, the post

10

15

25

30

35

40

45

50

55

60

65

10
learning phase 510 does not perform monitoring to reduce
overhead. In some implementations, the post-learning phase
510 does include performance monitoring.

In some implementations, the dynamic engine can select
the version that has exhibited the lower average cycles per
instruction (CPI) for T1 time. A performance metric such as
CPI can convey whether an execution environment is suited
for executing aggressively optimized program segment ver
sions. The dynamic engine can repeat the learning phase 505
in the future portion of the execution to determine whether
performances of the versions have changed. In some imple
mentations, the T1 duration is one second and the T2 duration
is ten seconds. In some implementations, a dynamic engine
can perform self-tuning to independently learn and respond to
individual slices of code.

FIG. 6 shows an example of a scenario based compiler
process. A compiler process can generate multiple different
versions of a program segment based on different respective
execution scenarios associated with an execution of a pro
gram (605). The process can generate a Switching mechanism
to associate the program segment with the program segment
versions and to invoke one or more of the program segment
versions during an execution of the program based on an input
associated with at least one of the execution scenarios (610).
The compiler process can generate a control mechanism to

monitor an execution of the program and to identify one or
more of the execution scenarios during an execution of the
program and to provide the input to the Switching mechanism
based on an identified execution scenario (615). In some
implementations, generating the control mechanism can
include generating the control mechanism to monitor an
instruction retirement rate associated with an execution of the
program and to provide the input to the Switching mechanism
based on different instruction retirement rate thresholds.
The compiler process can produce an output such as a

program executable or an object file based at least on the
program segment versions, the Switching mechanism, and the
control mechanism (620). In some implementations, produc
ing the output can include producing a program executable
corresponding to the program. The program executable can
include the program segment versions, the Switching mecha
nism, and the control mechanism.

In some implementations, generating multiple different
versions of a program segment can include generating a first
program segment version associated with a first execution
scenario and generating a different, second program segment
version associated with a second execution scenario. The
second program segment version can be based on one or more
optimization techniques. The first execution scenario can be
indicative of a contention of one or more execution resources
during an execution of the program. The second execution
scenario can be indicative of an execution environment Suit
able to execute processor instructions associated with the one
or more optimization techniques.

In some implementations, generating multiple different
versions includes generating a first version without optimiza
tion and multiple versions with varying degrees of optimiza
tion. For example, one version can be generated with loop
unrolling set to unroll a loop twice and a different version can
be generated with loop unrolling set to three or more.

FIG. 7 shows an example of a process to execute a multi
versioned program segment. A process can execute a program
executable associated with multiple different versions of a
program segment (705). The program segment versions can
be associated with different execution scenarios. For
example, the process can execute a program executable that
includes multiple different versions of the program segment.

US 8,578,355 B1
13

tions and data include all forms of non-volatile memory,
media and memory devices, including by way of example
semiconductor memory devices, e.g., EPROM, EEPROM,
and flash memory devices; magnetic disks, e.g., internal hard
disks or removable disks; magneto-optical disks; and CD
ROM and DVD-ROM disks. The processor and the memory
can be Supplemented by, or incorporated in, special purpose
logic circuitry.

To provide for interaction with a user, embodiments of the
Subject matter described in this specification can be imple
mented on a computer having a display device, e.g., a CRT
(cathode ray tube) or LCD (liquid crystal display) monitor,
for displaying information to the user and a keyboard and a
pointing device, e.g., amouse or a trackball, by which the user
can provide input to the computer. Other kinds of devices can
be used to provide for interaction with a user as well; for
example, feedback provided to the user can be any form of
sensory feedback, e.g., visual feedback, auditory feedback, or
tactile feedback; and input from the user can be received in
any form, including acoustic, speech, or tactile input. In addi
tion, a computer can interact with a user by sending docu
ments to and receiving documents from a device that is used
by the user; for example, by sending web pages to a web
browser on a user's client device in response to requests
received from the web browser.

Embodiments of the subject matter described in this speci
fication can be implemented in a computing system that
includes a back-end component, e.g., as a data server, or that
includes a middleware component, e.g., an application server,
or that includes a front-end component, e.g., a client com
puter having a graphical user interface or a Web browser
through which a user can interact with an implementation of
the Subject matter described in this specification, or any com
bination of one or more suchback-end, middleware, or front
end components. The components of the system can be inter
connected by any form or medium of digital data
communication, e.g., a communication network. Examples
of communication networks include a local area network
(“LAN”) and a wide area network (“WAN'), an inter-network
(e.g., the Internet), and peer-to-peer networks (e.g., ad hoc
peer-to-peer networks).
The computing system can include clients and servers. A

client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other. In some embodi
ments, a server transmits data (e.g., an HTML page) to a client
device (e.g., for purposes of displaying data to and receiving
user input from a user interacting with the client device). Data
generated at the client device (e.g., a result of the user inter
action) can be received from the client device at the server.

While this specification contains many specific implemen
tation details, these should not be construed as limitations on
the scope of any inventions or of what may be claimed, but
rather as descriptions of features specific to particular
embodiments of particular inventions. Certain features that
are described in this specification in the context of separate
embodiments can also be implemented in combination in a
single embodiment. Conversely, various features that are
described in the context of a single embodiment can also be
implemented in multiple embodiments separately or in any
suitable subcombination. Moreover, although features may
be described above as acting in certain combinations and even
initially claimed as Such, one or more features from a claimed
combination can in Some cases be excised from the combi

10

15

25

30

35

40

45

50

55

60

65

14
nation, and the claimed combination may be directed to a
Subcombination or variation of a Subcombination.

Similarly, while operations are depicted in the drawings in
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or in sequential order, or that all illustrated operations
be performed, to achieve desirable results. In certain circum
stances, multitasking and parallel processing may be advan
tageous. Moreover, the separation of various system compo
nents in the embodiments described above should not be
understood as requiring Such separation in all embodiments,
and it should be understood that the described program com
ponents and systems can generally be integrated together in a
single software product or packaged into multiple Software
products.

Thus, particular embodiments of the subject matter have
been described. Other embodiments are within the scope of
the following claims. In some cases, the actions recited in the
claims can be performed in a different order and still achieve
desirable results. In addition, the processes depicted in the
accompanying figures do not necessarily require the particu
lar order shown, or sequential order, to achieve desirable
results. In certain implementations, multitasking and parallel
processing may be advantageous.

What is claimed is:
1. A method performed by a data processing apparatus, the

method comprising:
generating multiple different versions of a program seg

ment based on different respective execution scenarios
associated with an execution of a program, the program
operable to use the program segment versions, the pro
gram segment Versions comprising:
a first program segment version associated with a first

execution scenario representing minimal or Zero per
formance impacting events;

a second program segment version associated with a
second execution scenario indicative of a contention
of one or more execution resources during an execu
tion of the program; and

a third program segment version associated with a third
execution scenario indicative of an execution environ
ment Suitable to execute processor instructions asso
ciated with the one or more optimization techniques;

generating a Switching mechanism to associate the pro
gram segment with the program segment versions and to
invoke one or more of the program segment versions
during an execution of the program based on an input
associated with at least one of the execution scenarios,
the Switching mechanism hooking into an execution of
the program using a trampoline mechanism that reroutes
the execution by setting an active program segment ver
sion or combination of program segment versions;

generating a control mechanism to monitor an execution of
the program by monitoring one or more event counters
associated with the one or more execution resources to
identify one or more of the execution scenarios during an
execution of the program, the event counters comprising
a memory bus contention counter and an instruction
retirement counter, the control mechanism providing the
input to the Switching mechanism based on an identified
execution scenario, the control mechanism monitoring
an instruction retirement rate associated with the execu
tion of the program and providing the input associated
with the at least one execution scenario to the Switching
mechanism based on different instruction retirement
rate thresholds or a memory bus contention count; and

US 8,578,355 B1
15

producing an output based at least on the program segment
versions, the Switching mechanism, and the control
mechanism.

2. The method of claim 1, wherein producing the output
comprises producing a program executable corresponding to
the program, the program executable including the program
segment versions, the Switching mechanism, and the control
mechanism.

3. A method performed by a data processing apparatus, the
method comprising:

executing a program executable associated with multiple
different versions of a program segment, the program
segment versions being associated with different execu
tion scenarios, respectively, and comprising:
a first program segment version associated with a first

execution scenario representing minimal or Zero per
formance impacting events;

a second program segment version associated with a
second execution scenario indicative of a contention
of one or more execution resources during an execu
tion of the program; and

a third program segment version associated with a third
execution scenario indicative of an execution environ
ment Suitable to execute processor instructions asso
ciated with the one or more optimization techniques;

analyzing the execution for an indication of at least one of
the execution scenarios to select one of the program
segment versions based on the indication, wherein ana
lyzing the execution comprises:
monitoring one or more event counters associated with

the one or more execution resources to identify one or
more of the execution scenarios during an execution
of the program, the event counters comprising a
memory bus contention counter and an instruction
retirement counter;

monitoring an instruction retirement rate associated
with the execution of the program;

providing the input associated with the at least one
execution scenario to a Switching mechanism based
on different instruction retirement rate thresholds or a
memory bus contention count, the Switching mecha
nism hooking into an execution of the program using
a trampoline mechanism that reroutes the execution
by setting an active program segment version or com
bination of program segment versions; and

Selecting one of the program segment versions associ
ated with an execution scenario detected by the moni
toring; and

causing the execution to use the selected program segment
version during at least a portion of the execution.

4. The method of claim 3, wherein executing the program
executable comprises:

first executing a first one of the program segment versions;
and

second executing a second one of the program segment
versions.

5. The method of claim 4, wherein analyzing the execution
comprises:

comparing a first performance metric associated with the
first executing and a second performance metric associ
ated with the second executing; and

Selecting a program segment version based on an output of
the comparison.

6. The method of claim 3, wherein monitoring the execu
tion comprises accessing one or more event counters associ
ated with processor electronics.

10

15

25

30

35

40

45

50

55

60

65

16
7. The method of claim 3, wherein executing the program

executable comprises accessing one or more of the program
segment versions in the program executable, wherein the
program segment versions include different program segment
versions based on different optimizations of the program
Segment.

8. The method of claim 3, wherein executing the program
executable comprises interfacing with a module that includes
the program segment versions.

9. The method of claim 3, wherein executing the program
executable comprises the analyzing.

10. A system comprising:
a machine readable storage device including a program

product; and
one or more processors configured to execute the program

product to perform operations comprising:
generating multiple different versions of a program seg

ment based on different respective execution scenarios
associated with an execution of a program, the program
operable to use the program segment versions, the pro
gram segment Versions comprising:
a first program segment version associated with a first

execution scenario representing minimal or Zero per
formance impacting events;

a second program segment version associated with a
second execution scenario indicative of a contention
of one or more execution resources during an execu
tion of the program; and

a third program segment version associated with a third
execution scenario indicative of an execution environ
ment Suitable to execute processor instructions asso
ciated with the one or more optimization techniques;

generating a Switching mechanism to associate the pro
gram segment with the program segment versions and
to invoke one or more of the program segment ver
sions during an execution of the program based on an
input associated with at least one of the execution
scenarios, the Switching mechanism hooking into an
execution of the program using a trampoline mecha
nism that reroutes the execution by setting an active
program segment version or combination of program
segment versions;

generating a control mechanism to monitor an execution
of the program by monitoring one or more event
counters associated with the one or more execution
resources to identify one or more of the execution
scenarios during an execution of the program, the
event counters comprising a memory bus contention
counter and an instruction retirement counter, the
control mechanism providing the input to the Switch
ing mechanism based on an identified execution sce
nario, the control mechanism monitoring an instruc
tion retirement rate associated with the execution of
the program and providing the input associated with
the at least one execution scenario to the Switching
mechanism based on different instruction retirement
rate thresholds or a memory bus contention count; and

producing an output based at least on the program seg
ment versions, the Switching mechanism, and the con
trol mechanism.

11. The system of claim 10, wherein producing the output
comprises producing a program executable corresponding to
the program, the program executable including the program
segment versions, the Switching mechanism, and the control
mechanism.

US 8,578,355 B1
17

12. A system comprising:
memory configured to store information associated with an

execution of a program executable, wherein the program
executable is associated with multiple different versions
of a program segment, the program segment versions
being associated with different execution scenarios,
respectively, and comprising:
a first program segment version associated with a first

execution scenario representing minimal or zero per
formance impacting events:

a second program segment version associated with a
second execution scenario indicative of a contention
of one or more execution resources during an execu
tion of the program; and

a third program segment version associated with a third
execution scenario indicative of an execution environ
ment suitable to execute processor instructions asso
ciated with the one or more optimization techniques;
and

processor electronics in communication with the memory,
the processor electronics configured to perform opera
tions comprising:
executing the program executable,
analyzing the execution for an indication of at least one

of the execution scenarios to select one of the program
segment versions based on the indication, wherein
analyzing the execution comprises:
monitoring one or more event counters associated

with the one or more execution resources to iden
tify one or more of the execution scenarios during
an execution of the program, the event counters
comprising a memory bus contention counter and
an instruction retirement counter;

monitoring an instruction retirement rate associated
with the execution of the program:

providing the input associated with the at least one
execution scenario to a switching mechanism
based on different instruction retirement rate
thresholds or a memory bus contention count, the

10

15

25

30

35

18
Switching mechanism hooking into an execution of
the program using a trampoline mechanism that
reroutes the execution by setting an active program
segment version or combination of program seg
ment versions; and

selecting one of the program segment versions asso
ciated with an execution scenario detected by the
monitoring; and

causing the execution to use the selected program segment
Version during at least a portion of the execution.

13. The system of claim 12, wherein executing the program
executable comprises:

first executing a first one of the program segment versions:
and

Second executing a second one of the program segment
versions.

14. The system of claim 13, wherein analyzing the execu
tion comprises:

comparing a first performance metric associated with the
first executing and a second performance metric associ
ated with the second executing; and

Selecting a program segment version based on an output of
the comparison.

15. The system of claim 12, wherein monitoring the execu
tion comprises accessing one or more event counters associ
ated with processor electronics.

16. The system of claim 12, wherein executing the program
executable comprises accessing one or more of the program
segment versions in the program executable, wherein the
program segment versions include different program segment
versions based on different optimizations of the program
Segment.

17. The system of claim 12, wherein executing the program
executable comprises interfacing with a module that includes
the program segment versions.

18. The system of claim 12, wherein executing the program
executable comprises the analyzing.

ck ck ck ck ck

