
Protean Code: Achieving Near-free Online Code Transformations

for Warehouse Scale Computers

Michael A. Laurenzano, Yunqi Zhang, Lingjia Tang, Jason Mars
Advanced Computer Architecture Laboratory, University of Michigan - Ann Arbor, MI

{mlaurenz, yunqi, lingjia, profmars}@eecs.umich.edu

Abstract—Rampant dynamism due to load fluctuations, co-
runner changes, and varying levels of interference poses a threat
to application quality of service (QoS) and has limited our ability
to allow co-locations in modern warehouse scale computers
(WSCs). Instruction set features such as the non-temporal
memory access hints found in modern ISAs (both ARM and x86)
may be useful in mitigating these effects. However, despite the
challenge of this dynamism and the availability of an instruction
set mechanism that might help address the problem, a key
capability missing in the system software stack in modern WSCs
is the ability to dynamically transform (and re-transform) the
executing application code to apply these instruction set features
when necessary.

In this work we introduce protean code, a novel approach
for enacting arbitrary compiler transformations at runtime
for native programs running on commodity hardware with
negligible (<1%) overhead. The fundamental insight behind
the underlying mechanism of protean code is that, instead of
maintaining full control throughout the program’s execution as
with traditional dynamic optimizers, protean code allows the
original binary to execute continuously and diverts control flow
only at a set of virtualized points, allowing rapid and seamless
rerouting to the new code variants. In addition, the protean code
compiler embeds IR with high-level semantic information into
the program, empowering the dynamic compiler to perform rich
analysis and transformations online with little overhead. Using
a fully functional protean code compiler and runtime built on
LLVM, we design PC3D, Protean Code for Cache Contention in
Datacenters. PC3D dynamically employs non-temporal access
hints to achieve utilization improvements of up to 2.8x (1.5x
on average) higher than state-of-the-art contention mitigation
runtime techniques at a QoS target of 98%.

Keywords-compiler; dynamic compiler; optimization; cache;
resource sharing; datacenter; warehouse scale computer

I. INTRODUCTION

Large enterprises such as Google and Facebook build
and maintain large datacenters known as Warehouse Scale

Computers (WSCs) dedicated to hosting popular user-facing
webservices along a variety of support applications. These
datacenters are expensive and resource-intensive, with price
tags now being measured in the billions of dollars [1, 2] and
energy demands that require dedicated power plants.

Maximizing the efficiency of compute resources in modern
WSCs is an important challenge that is rooted in finding ways
to consistently maximize server utilization to minimize cost.
The strategy of co-locating multiple applications on a single
server has proved critical for this objective [3–6]. However,
a significant challenge that emerges from the unpredictable
dynamism in WSCs and limits our ability to co-locate is
the threat of violating the quality of service (QoS) of user-
facing latency-sensitive applications. Sources of dynamism
include (1) fluctuating user demand (load) for user-facing
applications, (2) highly variable co-locations between user-
facing and batch applications on a given machine, and (3)

constant turnaround on each server; when an application
completes, new applications are mapped to the server.

Despite this dynamism, a capability missing in the WSC
system software stack is the ability to dynamically transform
and re-transform executing application code, which limits
the design space when designing solutions to deal with the
dynamism found in WSCs and leads to missed optimization
opportunities. An example of such an optimization is to apply
software non-temporal memory access hints to an application
code to reduce its cache allocation and protect the QoS of its
user-facing latency-sensitive co-runners. Modern ISAs, such
as x86 and ARMv8 [7, 8], include prefetch instructions that
hint to the processor that a subsequent memory access should
not be cached. This instruction provides a mechanism that can
cause an application to occupy more or less shared cache,
and thus can enable higher throughput co-locations while
protecting the QoS of high priority co-runners. However,
it is difficult to leverage these hints effectively without a
mechanism to dynamically add and remove them in response
to changing conditions on the server.

The need for such a mechanism is also motivated by recent
work [9, 10] that uses a ‘napping’ mechanism to reduce
pressure on shared resources. ReQoS [10], for example, is a
static compiler-enabled dynamic approach that throttles low-
priority applications to allow them to be safely co-located
with high-priority co-runners, guaranteeing the QoS of the
high-priority co-runners and improving server utilization.
However, due to the inability to transform application code
online, these approaches are limited to using the heavy
handed approach of putting the batch application to sleep,
i.e., napping, to reduce pressure on shared resources.

While the advantages of a mechanism for online code
transformation are clear, designing such a mechanism that
is deployable in production environments has proved chal-
lenging. Despite a substantial body of prior work and having
been shown to be useful in many problem domains [10–
28], dynamic compilation has not been widely adopted,
particularly in production and commercial domains. Several
challenges have prevented the realization of deployable dy-
namic compilation:
• Overhead - It has been reported that companies such as

Google tolerate no more than 1% to 2% degradation in
performance to support dynamic monitoring approaches
in production [29]. The high overhead that is common in
traditional dynamic compilation frameworks has served
as a barrier to adoption in these performance-critical
datacenter environments.

• Generality and Low Complexity - To avoid hardware
lockin and overly complex software maintenance, a de-
ployable dynamic compilation system should impose little

2014 47th Annual IEEE/ACM International Symposium on Microarchitecture

1072-4451/14 $31.00 © 2014 IEEE

DOI 10.1109/MICRO.2014.21

558

2014 47th Annual IEEE/ACM International Symposium on Microarchitecture

1072-4451/14 $31.00 © 2014 IEEE

DOI 10.1109/MICRO.2014.21

558

2014 47th Annual IEEE/ACM International Symposium on Microarchitecture

1072-4451/14 $31.00 © 2014 IEEE

DOI 10.1109/MICRO.2014.21

558

or no burden on application developers and should require
no specialized hardware support.

• Transformation Power - Traditional dynamic optimizers
raise native machine code to an intermediate representa-
tion before applying transformations. This approach limits
the power of the transformations due to loss of source level
information. Having the ability to apply transformations
online that are as powerful as static compilation signifi-
cantly impacts the flexibility of the dynamic compiler.

• Continuous Extropsection - In a highly dynamic en-
vironment where multiple applications co-run, special-
izing code to runtime conditions should be done both
introspectively, based on a host program’s behavior, and
extrospectively, based on external applications that are
co-located on the same machine. To accomplish this, a
runtime code transformation system must be aware of
changing conditions for both itself and its neighbors,
applying or undoing transformations accordingly.

In this paper, we introduce protean code, a general-purpose,
near-free approach to monitoring, regenerating and replacing
the code of running applications with semantically equivalent,
specialized code versions that reflect the demands of the ex-
ecution environment. Protean code is a co-designed compiler
and runtime system built on top of LLVM [30]. At compile
time, the program is prepared by a compiler pass that virtual-
izes a selected subset of the edges in its control flow and call
graphs, providing hooks through which the runtime system
may redirect execution. This novel mechanism allows the
runtime system, including the dynamic compiler, to operate
asynchronously while the application continuously runs. The
compiler also embeds a copy of the program’s intermediate
representation (IR) into the data region, to be utilized by the
runtime compiler for rapidly performing rich analysis and
transformations on the program. The protean code runtime
monitors all running programs on the system, generating and
dispatching specialized program variants that are tailored to
the particular conditions detected on the system at any given
point in time. Protean code addresses the aforementioned
challenges in the following ways:
1. Low Overhead – Diverting program control flow through

selectively virtualized points introduces near-zero (<1%)
overhead and provides a seamless mechanism through
which the runtime compiler introduces new code variants
as they become ready.

2. General and Flexible – To enact optimizations, protean
code requires no support from the programmer or any
specialized hardware. The design of protean code op-
timizations is in the purview of compiler writers, and
protean code can be deployed for large applications on
commodity hardware.

3. Transformation Power – Protean code embeds the IR into
the program at compile time, which in turn is used by the
runtime compiler as the starting point for analysis and
optimization. Using the IR gives the runtime compiler
the flexibility of a static compiler in terms of the analysis
and optimization options that are available.

4. Continuous Extrospection – The protean code runtime
uses program counter samples along with inter- and intra-
core hardware performance monitors to detect changes to

both host and external applications co-located on a single
machine. This approach allows the runtime to react to
highly dynamic environments by revisiting compilation
choices introspectively as program phases change or ex-
trospectively as the environment changes.

With the protean code mechanism in place, we design Pro-

tean Code for Cache Contention in Datacenters (PC3D), an
approach that generates and deploys code transformations to
change how applications consume shared cache resources.
To tune cache occupancy based on dynamically changing
system conditions, PC3D monitors changes in the behavior
of the host program and its external co-running applications
via a lightweight co-phase1 analysis scheme. PC3D reacts to
co-phase changes by generating, dispatching and evaluating
code variants to discover how to mix cache pressure reduction
transformations with napping in order to both meet the QoS
of high-priority applications while maximizing the perfor-
mance of low-priority applications. The specific contributions
of this paper are as follows:
• Protean Code Compilation - We introduce protean code,

a fully functional co-designed compiler and runtime sys-
tem for enacting general purpose compiler transformations
at runtime with an average overhead of less than 1%.

• Dynamic Cache Pressure Mitigation - We describe Pro-
tean Code for Cache Contention in Datacenters (PC3D), a
dynamic approach to mitigating cache pressure in software
via online compiler transformations.

• Code Transformation Search - We describe a runtime
search algorithm that allows for the rapid discovery of an
effective set of code transformations for cache pressure
reduction, as well as how elements of the search generalize
to other classes of online compiler transformations.

• Real-system Evaluation - We evaluate PC3D on a real
system for a set of CloudSuite [31] webservice workloads,
SPEC [32] and PARSEC [33] benchmarks, and Smash-
Bench [4] microbenchmarks. We also perform an analysis
of how deploying PC3D can impact energy and server
provisioning requirements within full-scale datacenters.

We show that PC3D improves datacenter utilization by up to
2.9x and an average of 1.5x over the state-of-the-art software
contention mitigation technique across a range of workloads,
while meeting 98% QoS targets for high-priority latency-
sensitive applications.

II. BACKGROUND AND RELATED WORK

In this section, we first discuss recently proposed systems
that enable safe application co-locations in datacenters. We
then provide background on non-temporal memory access
hint instructions, which PC3D dynamically exploits to alle-
viate cache contention and facilitate safe co-locations. Last,
we present a comparison between prior dynamic compilation
techniques and protean code.

A. Managing Shared Resources for Co-location

The benefits of enabling co-locations of batch applications
with user-facing latency-sensitive applications have become
well known [4–6, 13, 35]. Recently, techniques have been

1A co-phase is defined as the combination of the currently running phases
among a program and its co-runners.

559559559

Table I. COMPARISON BETWEEN PROTEAN CODE AND PRIOR DYNAMIC COMPILATION INFRASTRUCTURES

ADAPT [23] ADORE [24] DynamoRIO [34] Mojo [25] protean code
Low Overhead � � �

Full Intermediate Representation �

Commodity Hardware � � � �

Programmer Unneeded � � � �

Extrospective �

proposed to make co-locations safe by dynamically throttling
down the execution of low-priority applications by continu-
ously introducing ‘naps’ of varying lengths and granularities
into application execution [9, 10]. This approach has the ef-
fect of alleviating the pressure an application places on shared
server resources, which allows high-priority applications to
consume a larger share of resources to meet their QoS targets.
However, as we show in this work, applying naps is an overly
heavy handed approach and results in lower throughput than
necessary to enforce QoS. We use one of these recent works,
ReQoS [10], as the baseline for our technique.

Another technique, cache partitioning, has been used to
explicitly control cache resource allocations, mitigating cache
interference among co-running applications to ensure co-
location safety. Hardware-based partitioning [36–39] allows
for fine-grain control on the assignment of partitions, how-
ever it requires customized hardware and therefore has not
been deployed in production systems. Software-based cache
partitioning has been enacted with page coloring [14, 40–
42], which controls the parts of cache an application can
access via its page assignment in the operating system.
Unfortunately, dynamically changing an application’s cache
allocation incurs significant performance penalties due to the
overhead of page migration [40]. In addition, page coloring
cannot be used in the presence of large pages [14, 42].

B. ISA Support For Temporal Locality Hints

The importance of quantifying and managing cache con-
tention has been shown by prior work [10–19]. Temporal
locality hints for memory accesses can be exploited to alle-
viate the pressure an application puts on the shared memory
subsystem. Support for these hints is available across a
broad range of instruction set architectures [43], including the
modern high-performance platforms that appear in datacenter
servers such as x86 [7] and ARMv8 [8].

Temporal locality hints can be employed in software
to suggest how data should be cached. On x86, the
prefetchnta instruction hints to the microarchitecture that
data should be prefetched in a way that minimizes cache
pollution. The motivating premise behind supporting these
hints is that there are cases where software can identify
and take advantage of the fact that a memory access lacks
temporal locality – that is, it is likely to be evicted from cache
before being used again. By hinting to the microarchitecture
that a memory access lacks temporal locality, it may avoid
evicting other, more useful data from the cache. In this work,
we demonstrate how to leverage protean code to use temporal
locality hints to dynamically change the cache pressure an
application places on its co-runners.

C. Dynamic Compilation for Optimization

Dynamic compilation is a well-studied area that has been
shown to be useful in a number of problem domains [10–28].

However, as discussed in the introduction, there are several
limitations that prevent the wide adoption of these techniques
in production datacenter environments for performance opti-
mization. These limitations include high runtime overhead,
dependence on programmer support or specialized hardware,
limitations on the available optimizations, or inability to react
to dynamic execution environments. Protean code is designed
to overcome all of these limitations. Table I presents a
comparison between protean code and several other dynamic
compilation infrastructures.

III. PROTEAN CODE

Protean code is a novel dynamic compilation system
specifically designed to address the challenges that prevent
the wide adoption of traditional dynamic compilation tech-
niques in datacenters. Figure 1 presents an overview of
the design of protean code, composed of the protean code

compiler (pcc) and the protean code runtime.

Protean Code Compiler Presented in the left side of Fig-
ure 1, pcc readies the host program for runtime compilation
by making two classes of changes to the program. First, it
virtualizes a subset of the edges in the program’s control flow
and call graphs. These virtualized edges then serve as points
in the program’s control flow at which the runtime system
may redirect execution. Second, the compiler embeds several
metadata structures, including an Edge Virtualization Table
(EVT) and intermediate representation of the program, within
the program’s data region, which are used to aid the runtime
system in dynamically introducing new code variants into the
running program.

Protean Code Runtime Shown in the right side of Figure 1,
the protean code runtime is responsible for monitoring a
host program and its external execution environment in order
to dynamically generate and dispatch code variants when
needed. The runtime system first initializes by attaching to
the program, discovering the program metadata and setting
up a shared code cache from which the program can execute
new code variants. To generate and dispatch a code variant,
the runtime compiler, an LLVM-based compiler backend,
leverages the IR. The new code variant is then inserted into
the code cache and dispatched into the running host program
by the EVT manager. During host program execution, the
lightweight monitoring component of the runtime detects
changes in both the host program phases and the external en-
vironment, including co-running applications, using samples
of program counters and hardware performance monitors.
In response to phase and environment changes, a decision
engine determines when and how to generate new code
variants and selects the appropriate variant for the current
execution phase.

Design Principles The primary goal of protean code is
to provide a dynamic code transformation solution that is

560560560

func1

func2

func3

func4

func5

�
�
�
�
�
�
�

�
�

�
�
�
�
�
�
�
�

protean application�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

&func2

&func3

&func4

&func5

func2

func3

func4

func5

func1

IR + metadata

EVT

protean
code

compiler
&func5 v4 runtime�

compiler

static

EVT manager

monitoring +�
phase analysis decision engine

protean application�
�
�
�
�
�
�
�
�
�IR + metadata�

EVT

&func5
&func5 v4

runtime

protean code runtime

application

func4 v1

func5 v3

func5 v4

func5 v2

code cache

Figure 1. Overview of the protean code compiler and runtime

deployable in production datacenter environments and is
powerful enough to enable techniques such as the PC3D
runtime described in Section IV. There are three principles
used in the design of protean code to realize this goal:
1. Maintaining absolute control of the program throughout

execution, as in traditional dynamic compilers such as
Dynamo [22] and DynamoRIO [34], leads to high over-
head. Protean code instead allows the original binary to
continuously execute and diverts the program control flow
at a set of virtualized points, introducing negligible over-
head. The runtime compiler is invoked asynchronously at
controllable granularity, which also limits the overhead.

2. Many traditional dynamic compilers hoist the native ma-
chine code into an intermediate format at runtime to
perform analysis and transformation [20, 22, 24, 44, 45],
leading to overhead and the loss of rich semantic informa-
tion present in IR from the static compiler [46]. Protean
code embeds the IR into the program binaries, allowing
the dynamic compiler to perform powerful analysis and
transformations online with little overhead.

3. Protean code requires no support from the programmer or
any specialized hardware, allowing it to be seamlessly de-
ployed for large applications on commodity hardware. It
leverages hardware performance monitors for lightweight
monitoring, phase analysis and transformation selection,
further minimizing overhead. A useful property of the
application binaries produced by pcc is that they can
be run without the runtime system, incurring negligible
extra runtime overhead. In addition, once compiled with
pcc, any protean code runtime can be used. These are
particularly useful features in a datacenter environment,
where rapidly changing conditions may dictate applying
different classes of optimizations in the pursuit of differ-
ent objectives to the same application binary.

A. Protean Code Compiler

The Protean Code Compiler (pcc) readies the host program
for runtime compilation by (1) virtualizing control flow edges
and (2) embedding meta-data in the program binary.

1) Control Flow Edge Virtualization: pcc adds a compiler
pass to convert a subset of the branches and calls in the

program from direct to indirect operations. By virtualizing
a subset of edges, pcc sets up those edges as points in
the programs execution where its control flow path may be
easily altered by the protean code runtime to route program
execution to an alternate variant of the code.

There are some important considerations to be made when
selecting which edges to virtualize. Selecting too many edges
or edges that are executed too frequently may result in
unwanted overheads because indirect branches are generally
slightly slower than direct branches. On the other hand,
selecting only edges that are rarely executed risks introducing
large gaps in execution during which new code variants are
not executed. There is a large design space available when
choosing how to virtualize edges. Our current approach to
selecting edges is to virtualize only function calls, and only
those where the callee function has more than one basic
block. We find that this approach works well in practice,
resulting in negligible overhead while ensuring that execution
is promptly routed to the new code variants.

2) Program Metadata: Two types of program metadata
are used by the protean code runtime to rapidly generate and
dispatch correct, alternate code variants at runtime.

Edge Virtualization Table (EVT) A structure called the
EVT contains the source and target addresses of the edges
virtualized by pcc. The EVT is the central mechanism by
which execution of the program is redirected by the runtime.
To change execution, the runtime simply rewrites target
addresses in the EVT to point to the new code variant.

Intermediate Representation pcc serializes, compresses
and places the intermediate representation (IR) of the pro-
gram into its data region, which the runtime decompresses
then deserializes, leveraging it to perform analysis and
transformations. Having direct access to the IR yields two
significant advantages. First, it allows the runtime to avoid
disassembling the binary, which can be difficult or impossible
without access to fine-grain information about the executing
code paths [47, 48]. Second, the alternative of hoisting the
binary to IR, as is done in prior work, loses important seman-
tic information and limits the flexibility of the compiler [46].
As an example of the utility of the IR, in this work PC3D

561561561

gleans loop structure and nesting depth from the IR and uses
that information to guide compilation decisions.

B. Protean Code Runtime

The protean code runtime is a set of mechanisms that work
together to generate and dispatch code variants as the host
program executes.

1) Runtime Initialization: Operating on an executable pre-
pared by pcc, the runtime process begins by attaching to
the program. It first discovers the locations of the structures
inserted by pcc at compile-time, including the EVT and
the IR. It then initializes a code cache, used to store the
code variants generated by the dynamic compiler. Finally,
because the EVT and code cache are structures that are shared
between the program and the runtime and may be frequently
accessed, the runtime sets up a shared memory region via an
anonymous mmap to encompass both structures.

2) Code Generation and Dispatch: The runtime gener-
ates and dispatches code variants into the program asyn-
chronously. When a new variant of a code region is requested,
the dynamic compiler leverages the IR of the code region to
generate the new variant. Once a new code variant has been
generated, it is placed into the code cache. The EVT manager
then modifies the EVT so that the target of the corresponding
virtualized edge is the head of the newly minted variant in
the code cache. The EVT update is a single atomic memory
write operation on most modern platforms, and thus requires
no synchronization between the host program and the runtime
to work correctly.

Throughout these actions of the runtime process, execution
of the program proceeds as normal until control flows through
the virtualized edge, at which point control reaches the new
code variant.

3) Monitoring, Phase Analysis and Decisions: The run-
time supports both introspection, monitoring changes in the
host program, and extrospection, monitoring changes in the
execution environment. Based on this monitoring, the runtime
makes decisions and adapts to changing system conditions
such as application input/load fluctuation, starting or stopping
of co-running applications, and phase changes among both
the host programs and external programs.

Introspection For host programs, the runtime identifies hot
code regions by sampling the program counter periodically
through the ptrace interface. The runtime then associates
the program counter samples with high-level code structures
such as functions, allowing the runtime to keep track of which
code regions are currently hot, as well as how hot regions
change over time.

To identify phase changes, the runtime also leverages hard-
ware performance monitors to track the progress of the pro-
gram. Phases are defined in terms of the hot code identified
by program counter samples described above as well as by the
progress rate of the running applications using metrics such
as instructions per cycle (IPC) or branches retired per cycle
(BPC). Since hardware performance monitors are ubiquitous
on modern platforms and can be sampled with negligible
overhead, this approach allows the runtime to conduct phase
identification in a manner that is both lightweight and general
across hardware platforms.

Extrospection Similarly, for other external programs, the
runtime tracks program progress and identifies phase changes
via hardware performance monitors. Microarchitectural status
and performance, using metrics such as cache misses or
bandwidth usage, are also tracked through the performance
monitor interface. Additionally, the runtime can be configured
to use application-level metrics reported through application-
specific reporting interfaces, such as queries per second or
99th percentile tail query latency for a web search application.

Dynamic Transformation Decisions The decision engine
determines (1) when to invoke the dynamic compiler, (2)
what transformations to apply, and (3) which variant to
dispatch into the running program. The policies for these
decisions depend on the optimization technique protean code
employs, and can also be designed to control how often
compilation occurs to limit any overhead introduced by
running the dynamic compiler. We next present details for
these policies for as they relate to PC3D, and our evaluation
shows that the overhead of the dynamic compiler in PC3D
is minimal.

IV. PC3D: ONLINE INTERFERENCE MITIGATION

Protean Code for Cache Contention in Datacenters (PC3D)
is a protean code runtime that dynamically applies compiler
transformations to insert non-temporal memory access hints,
tuning the pressure a host application exerts on shared caches
when the QoS of an external application is threatened. PC3D
is implemented entirely as a runtime system that operates
on an application prepared by the protean code compiler,
requiring no changes to the basic protean code compiler setup
described in Section III.

A. Overview of PC3D

The goal of PC3D is to find and dispatch variants of the
host program code that contain a mix of non-temporal cache
hints that allows the host’s co-runners to meet their QoS
targets while maximizing the throughput of the host.

Intuition of PC3D To ensure co-runner QoS, PC3D searches
through a spectrum of program variants that have varying
levels of cache contentiousness. The effectiveness of interfer-
ence reduction of each variant is empirically quantified online
by the protean code runtime. The best-performing program
variant is then dispatched and runs until a new program phase
or external application sensitivity phase is detected. In cases
where relying solely on non-temporal cache hints is unable
to ensure QoS of the external applications, naps are mixed
with cache pressure reduction as a fallback.

B. Code Variant Search Space

PC3D generates and dispatches program variants that con-
tain a selection of non-temporal cache hints. We refer to each
such program variant as a bit vector M = 〈M1,M2, ...,MN 〉,
where N is the number of loads in the host program’s
code and Mi ∈ {0, 1} represents the absence or presence
of a non-temporal cache hint associated with the ith load.
The set of program variants of this form is the set of all
possible bit vectors of length N , which has a cardinality
of 2N . Figure 2 shows the four variants for a small code
region (N = 2) within libquantum, where each of the

562562562

prefetchnta (%r14) // m1
mov %r13,%rsi
shl $0x4,%rsi
mov (%r14),%r8
prefetchnta (%r8,%rsi,1) // m2
mov (%r8,%rsi,1),%rax

(a) <m1, m2> = <1, 1>

prefetchnta (%r14) // m1
mov %r13,%rsi
shl $0x4,%rsi
mov (%r14),%r8
 // m2
mov (%r8,%rsi,1),%rax

(b) <m1, m2> = <1, 0>

 // m1
mov %r13,%rsi
shl $0x4,%rsi
mov (%r14),%r8
prefetchnta (%r8,%rsi,1) // m2
mov (%r8,%rsi,1),%rax

(c) <m1, m2> = <0, 1>

 // m1
mov %r13,%rsi
shl $0x4,%rsi
mov (%r14),%r8
 // m2
mov (%r8,%rsi,1),%rax

(d) <m1, m2> = <0, 0>

Figure 2. The set of variants for a small code region within libquantum on x86 64. Non-temporal hints and affected loads are shown in bold

Algorithm 1: Greedy search for a code variant best that
uses the right mix of cache contention reduction and
napping to maximize application performance

output: best
/* enact/evaluate 0 to obtain the nap intensity (nap

0
)

applied to the variant to meet co-runner QoS and the
performance (R

0
) of the variant at that nap intensity */

(nap
0
, R

0
)← V ariantEval(0, 0, 1)

(nap
1
, R

1
)← V ariantEval(1, 0, 1)

napUB ← nap
0
, napLB ← nap

1

m← 1, best← 1, R
best
← R

1

i← 1
while i ≤ n and napLB < napUB do

m← 〈m1, ..., !mi, ...,mn〉 // flip ith bit in m
(napmRm)← V ariantEval(m,napLB , napUB)
if R

best
< Rm then

R
best
← Rm, best← m, napUB ← napm

else
m← 〈m1, ..., !mi, ...,mn〉 // reject change

end
i++

end

return best

four variants contains a different mix of non-temporal cache
hints. PC3D searches these variants using a greedy search
algorithm whose complexity is O(N), described in detail in
Section IV-D. However, even with a search complexity that
is linear in the number of load instructions, the number of
variants may still be large. To navigate this space efficiently,
PC3D employs several heuristics.

C. Variant Search Space Reduction

PC3D focuses on the loads most likely to have a significant
impact on application behavior. The heuristics employed to
this end are as follows:
• Exclude Uncovered Code – Leveraging the PC samples

collected for host program phase analysis, we expect code
regions that never appear in those samples to have a
minimal impact on cache pressure and application perfor-
mance. Therefore, the loads from regions not appearing
in the PC samples are pruned from the search space prior
to the search. This reduces the number of loads that must
be considered by an average of 12x.

• Prioritize Hotter Code – Furthermore, we expect code
regions appearing more frequently in the PC samples to

have a higher impact. Therefore PC3D prioritizes loads
from hotter code regions in the search.

• Only Innermost Loops – For a range of contentious
applications, we have observed that an average of more
than 80% of the dynamic loads come from the maximum-
depth loop(s) within each of the program’s functions.
Leveraging the program’s IR, PC3D recognizes loops and
their nesting depths, then prunes from the search space
loads that are not at the maximum depth.

The number of static loads remaining after applying these
heuristics is on average a factor of 44x smaller than the total
number of static loads in the program (see Section V-B).

These heuristics focus the optimization decisions made
by PC3D on the most important regions of code, a strat-
egy we expect will also prove to be useful among other
protean runtimes. After PC3D applies these heuristics, its
search is limited to variants that are of the form m =
〈m1,m2, ...,mn〉, where mi ∈ {0, 1}. m is a bit vector of
the n loads from innermost loops among active code regions
in the program phase, ordered roughly by how much impact
they are expected to have on execution. For convenience, we
refer to the variant where every load lacks a non-temporal
hint as m = 0 and its converse, the variant where every load
has a non-temporal hint, as m = 1.

D. Traversing the Variant Search Space

The variant search is guided by Algorithm 1. The search
begins by evaluating variants 0 and 1, which are the variants
that exert the most and least amount of cache pressure,
respectively, out of all the variants in the search space.
Because these variants are at the extremes of cache pressure,
they are also at the extremes of the nap intensity required to
meet co-runner QoS targets, and therefore may be viewed as
lower and upper bounds, respectively, for the nap intensity
that would theoretically be required to satisfy co-runner QoS
for any program variant. As we discuss shortly, these bounds
are used to limit the range of nap intensities that are evaluated
for each variant, improving how quickly PC3D can converge
on the right code variant.

Using 1 as a starting point, the algorithm steps through
loads in the order of decreasing importance. For each load,
the algorithm revokes the load’s non-temporal hint, then
calls V ariantEval (Algorithm 2) to enact the resulting code
variant and evaluate whether that revocation improves the
application’s performance given the particular level of cache
pressure produced by that variant along with the level of
nap intensity required to allow the application’s co-runners
to meet their QoS targets. If the incremental change is found
to have improved application performance, the change is

563563563

0 20 40 60 80 100

N
or

m
l.

Pe
rf

or
m

an
ce

0%

20%

40%

60%

80%

100%
(a) Original program variant 0

Nap Intensity

0 20 40 60 80 100

N
or

m
l.

Pe
rf

or
m

an
ce

0%

20%

40%

60%

80%

100%
(b) Fully non−temporal program variant 1

Nap Intensity

Application BPS
Co−runner IPS
QoS target (95%)
Co−runner QoS met

Figure 3. Online empirical evaluation for two variants of libquantum (application) running with er-naive (co-runner)

Algorithm 2: V ariantEval, evaluation of a single pro-
gram variant in PC3D

input : m, napLB , napUB

output: napm, BPSm

napcur ← (napLB + napUB)/2
BPS ← 0
generate and dispatch variant m
while napLB < napUB do

set nap intensity (napcur)
if QoS of co-runners is satisfied then

napUB ← napcur
BPS ← BranchesPerSecond m

else
napLB ← napcur

end
napcur ← (napLB + napUB)/2

end
return (napcur, BPS)

kept and the algorithm repeats these steps on the next load.
Otherwise, the change is rejected and the algorithm repeats
these steps on the next load.

Note that each variant accepted as the best produces more
cache pressure than the previous best version. Similar to the
logic that was used to establish program-wide lower and
upper bounds on the nap intensity range, upon accepting a
variant as the best the upper bound on nap intensity is lowered
to the nap intensity of the newly accepted variant.

E. Online Evaluation of Variants

PC3D searches for program variants that improve applica-
tion performance while meeting co-runner QoS. Guiding the
search are empirical evaluations of a sequence of program
variants, which are dispatched then evaluated against the
current running set of co-runners. Each variant produces a
particular level of cache contentiousness, and may need to
run with a particular nap intensity to allow its co-runners to
hit their QoS targets.

This concept is demonstrated in Figure 3, which presents
the performance of two variants of libquantum (host ap-
plication) running with er-naive (external high-priority

co-runner) as a function of the nap intensity applied to
libquantum. Performance of libquantum is reported as
branches per second (BPS) normalized to its BPS while
running alone, while performance of er-naive is reported
as instructions per second (IPS) normalized to its IPS run-
ning alone. We use BPS for host applications since, unlike
branch counts, their static instruction counts change with the
insertion/removal of non-temporal hints. As Figure 3 shows,
each of these two variants exerts a different level of cache
pressure on er-naive, and thus given a hypothetical QoS
target of 95% for er-naive, a different level of nap intensity
is required to allow er-naive to hit its QoS target. In this
example, the libquantum variant in 3(a) requires a nap
intensity of 99% to allow er-naive to meet its QoS target,
while the variant in 3(b) requires a nap intensity of just 23%.
At those respective nap intensities, the performance of variant
(b) is far better than that of (a).

When evaluating a variant dynamically to discover the
minimum nap intensity needed to meet co-runner QoS, PC3D
need not evaluate the entire spectrum of nap intensities. The
performance of both the application and its co-runners are
monotonic as a function of nap intensity, so PC3D organizes
the variant evaluation as a binary search over the range of
nap intensities, shown in Algorithm 2. To reduce the search
even further, PC3D performs the binary search only within
the range of nap intensities between the lower and upper
bounds established by evaluating other variants.

F. Monitoring Co-runner QoS

PC3D continuously monitors application co-runners to
measure their quality of service (QoS). In this work, we use
co-runner instructions per second (IPS) relative to the IPS
running without the host application as a proxy for QoS. To
measure co-runner IPS without the host, PC3D uses a flux
approach similar to the mechanism described in [9], in which
the host is put to sleep for a short period of time (40ms in
our work) and performance measurements are taken while
the co-runners execute without interference from the host. We
deploy one such measurement every 4 seconds, allowing the
flux technique to be deployed with very little (1%) overhead.

564564564

V. EVALUATION

Methodology The protean code static compiler and runtime
compiler are implemented on top of LLVM version 3.3. When
compiling protean code or non-protean code benchmarks,
compilation is done with -O2. All experiments are performed
on a quad core 2.6GHz AMD Phenom II X4 server. Ap-
plications used throughout the evaluation are drawn from
CloudSuite [31], the SPEC CPU2006 benchmark suite [32],
the PARSEC benchmark suite [33] and SmashBench [4].

A. Performance of Protean Code

Virtualization Mechanism Overhead First we investigate
the baseline cost of virtualizing execution with protean code
and compare this cost with that of virtualizing execution with
DynamoRIO [34]. DynamoRIO is a state of the art binary
translation-based dynamic compiler, chosen as a baseline
because it is a mature software project that is actively
maintained and is well known for its low overhead relative
to other dynamic compilers [49, 50].

Figure 4 shows the overhead for SPEC applications com-
piled as protean code relative to the non-protean code ver-
sion of the benchmark. The base performance overhead of
protean code mechanism is shown to be negligible, less
than 1% on average. DynamoRIO, on the other hand, in-
troduces an average of 18% overhead when performing no
code modification. The primary distinction between binary
translation and protean code is that protean code performs
compilation asynchronously, out of the application’s control
flow path. Running protean code is low overhead because
the application is allowed to continually execute, even when
code is being compiled and dispatched. Binary translation
incurs higher overhead because it requires all execution to
occur from the code cache or interpreter, and thus control is
continually diverted from the application back to the binary
translation system.

Dynamic Compilation Overhead The protean code runtime
runs in its own process and performs compilation asyn-
chronously with respect to the running host application, em-
ploying a dynamic compiler to introduce new code variants
into the running host program. We next present a set of
dynamic compilation stress tests to demonstrate the impact
of the level of activity of the dynamic compiler. In these
experiments, the host program is run with a protean runtime
configured to periodically recompile randomly selected func-
tions throughout the life of the running application.

Figure 5 shows the results of these experiments for the
SPEC benchmarks for a range of different time intervals
between recompilations, where the runtime process (includ-
ing the dynamic compiler) uses a dedicated physical core.
The results show that this causes the dynamic compiler to
generate very little overhead to the host program, even when
performing recompilation every 5ms. We note that the LLVM
compiler backend uses an average of around 5ms to compile
a function, so the 5ms trigger interval results in the dynamic
compiler being active almost continuously. Figure 6 presents,
for the SPEC benchmarks, the average performance overhead
of performing the same dynamic compilation stress tests, with

bz
ip

2

gc
c

m
cf

m
ilc

na
m

d

go
bm

k

de
al

II

so
pl

ex

po
vr

ay

hm
m

er

sj
en

g

lib
qu

an
tu

m

h2
64

re
f

lb
m

om
ne

tp
p

as
ta

r

sp
hi

nx
3

xa
la

nc
bm

k

M
ea

n

Sl
ow

do
w

n
vs

. N
at

iv
e

0.6

0.8

1

1.2

1.4

1.6

protean code DynamoRIO

Figure 4. Dynamic compiler overhead when making no code modifications
(normalized to native execution)

the runtime on the same core as the host or on a separate core
from the host.

While executing the runtime on a separate core introduces
minimal overhead no matter how frequently code generation
is performed, the overheads of performing the compilation
on the same core as the host program can be significant in
extreme cases where compilation is nearly continuous. In an
era of multicore and manycore processors, and particularly
in datacenter environments, the common case is for cores to
be heavily underutilized. For example, Google reports typical
server utilization levels of 10-50% [51]. Nevertheless, in such
instances where no separate core is available for the runtime,
this overhead can be controlled by limiting the frequency
of recompilation. As shown in Figure 6, the overhead of
recompilation on the same core becomes negligible at 800ms.

Cycles Dedicated to the Runtime A unique feature of
protean code is that the work of dynamic compilation of
a host program may be offloaded to use otherwise spare
cycles on the host server, putting those cycles to work for
the benefit of the running applications. While the demand on
the runtime to generate new variants is inevitably a function
of the optimization objective, in PC3D the CPU utilization
levels of the dynamic compiler and the entire runtime are
quite low. Figure 7 presents the percentage of the server’s
cycles used by the PC3D runtime to manage a variety of
batch applications, which is less than 1% in all cases.

B. PC3D Variant Search Heuristics

PC3D searches a set of program variants to arrive at a
variant that improves the host application performance in
the presence of some set of external applications. One of
the keys to making this approach effective is to locate good
code variants quickly. To accomplish this, PC3D employs
several heuristics, described in detail in Section IV-C, to
reduce the number of load instructions considered in the
search. Figure 8 evaluates how effective these heuristics are
across a set of contentious applications. Each cluster shows
the number of loads that must be considered by the search as
each successive heuristic is applied, normalized to the total
number of loads in the application. Where there are multiple
phases in a program, Figure 8 presents the average number
of loads across all phases. Absolute counts of the number
of loads that appear in each program are also included as
numbers at the top of the plot.

565565565

bz
ip

2
gc

c
m

cf
m

ilc
na

m
d

go
bm

k
de

al
II

so
pl

ex
po

vr
ay

hm
m

er
sj

en
g

lib
qu

an
tu

m
h2

64
re

f
lb

m
om

ne
tp

p
as

ta
r

sp
hi

nx
3

xa
la

nc
bm

k
M

ea
n

Sl
ow

do
w

n
vs

. N
at

iv
e

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Edge virt.
5000ms interval
500ms interval

50ms interval
5ms interval

Figure 5. Dynamic compilation stress tests;
compilation occurs on a separate core from the
host application

●●●●

5 10 50 200 1000 5000

1.0

1.1

1.2

1.3

1.4

Code Generation Interval (ms)

Sl
ow

do
w

n
vs

. N
at

iv
e

●

Same Core
Separate Core

Figure 6. Dynamic compilation stress tests on
separate vs. same core

bl
oc

ki
e

bs
t

er
−

na
iv

e

sl
ed

ge

bz
ip

2

m
ilc

so
pl

ex

lib
qu

an
tu

m

lb
m

sp
hi

nx
3

%
 o

f
Se

rv
er

 C
yc

le
s

0%

2%

4%

6%

8%

10%

Figure 7. Average fraction of server cycles
consumed by the PC3D runtime

bl
oc

ki
e

bs
t

er
−

na
iv

e

sl
ed

ge

bz
ip

2

m
ilc

so
pl

ex

lib
qu

an
tu

m

lb
m

sp
hi

nx
3

%
 o

f
St

at
ic

 L
oa

ds

0%
20%
40%
60%
80%

100%

Full Program Active Regions Max Depth

(64) (70) (25) (35) (2582) (3632) (15666) (636) (257) (4963)

Figure 8. Heuristics significantly reduce the search space for PC3D. Static
load counts of the full programs are presented in parentheses above the bars

Table II. APPLICATIONS USED IN DATACENTER EXPERIMENTS

Host (batch) applications
External (latency-
sensitive) apps
web-search,

CloudSuite - media-streaming,
graph-analytics

SPEC
bzip2, milc, soplex, libquantum, mcf,

CPU2006
libquantum, lbm, sphinx3 milc, omnetpp,

xalancbmk

SmashBench bst, blockie, er-naive, sledge bst, er-naive
PARSEC - streamcluster

As described in Section IV-C, PC3D first discards loads
from uncovered code – code regions that appear to the
runtime system to have never executed during the current
phase. On average, discarding loads from uncovered code
results in a reduction of the search space by a factor of
12x. Second, PC3D extracts loop structure from the IR and
discards each load that is not at the maximum loop depth
within each function.

Overall, these heuristics are effective, reducing the number
of static loads examined in the search by an average factor
of 44x while covering more than 80% of the dynamic loads.
It is notable that the reduction in number of loads is largest
for programs with high load counts, such as soplex (15666
loads reduced to 57) and sphinx3 (4963 loads reduced to
116), showing that the heuristics help keep the variant search
manageable even for programs that have large code bases.

C. Utilization Improvements from PC3D

In this section we evaluate PC3D, showing its impact
on server utilization and application QoS when running

batch applications with latency-sensitive webservice appli-
cations, including web-search, media-streaming and
graph-analytics from CloudSuite. The set of latency-
sensitive and batch applications we evaluate are presented
in Table V-C. For these experiments, QoS is presented as
the instructions per second (IPS) an application achieves
normalized to its IPS running alone on the server. Using IPS
in this fashion as a proxy for QoS is consistent with practices
in industry [52], where simple performance monitors are
collected regularly and ubiquitously via mechanisms such as
the Google Wide Profiler (GWP) [29] and used for making
QoS estimates. Likewise, we present application utilization
as the branches per second (BPS) measured by PC3D as a
fraction of the BPS the non-protean version of the application
achieves while running alone on the server. BPS is a useful
metric in this case because PC3D introduces control-invariant
code transformations that may include executing extra non-
temporal access hint instructions in key code regions.

In these experiments, the latency-sensitive application runs
on a single core of the server, while the contentious batch
application runs on another single core. The contentious batch
application is compiled with the protean code compiler, and
may be modified dynamically to be less cache contentious
if PC3D detects that the latency-sensitive application fails to
meet its QoS target. The PC3D runtime consumes only a
small fraction of the cycles on the server (Figure 7), mon-
itoring all running applications to detect co-phase changes,
checking that the latency-sensitive application meets its QoS
target, and potentially introducing transformations that im-
prove the cache contentiousness of the batch application.

Live Webservices Figures 9, 10 and 11 show the utiliza-
tion gains achieved by PC3D over a policy of disallowing
co-locations on a series of benchmarks as they run with
web-search, graph-analytics, and media-streaming.
Each cluster of bars shows the results of a particular batch
application running against one of the webservices. The
three bars in each cluster show the utilization gained with
QoS targets of 90%, 95% and 98%. As applications co-
run with web-search, they show an average utilization
gain of 49% when a 98% QoS target is used. When less
stringent QoS targets are in place, PC3D must mitigate
contention to a lesser degree, which allows them to achieve
higher utilization rates. With a 95% QoS target, the av-

566566566

0%

20%

40%

60%

80%

100%
bl

oc
ki

e

bs
t

er
−

na
iv

e

sl
ed

ge

bz
ip

2

m
ilc

so
pl

ex

lib
qu

an
tu

m

lb
m

sp
hi

nx
3

U
til

iz
at

io
n

90% QoS tgt 95% QoS tgt 98% QoS tgt

Figure 9. Utilization improvement of various
applications running with web-search

0%

20%

40%

60%

80%

100%

bl
oc

ki
e

bs
t

er
−

na
iv

e

sl
ed

ge

bz
ip

2

m
ilc

so
pl

ex

lib
qu

an
tu

m

lb
m

sp
hi

nx
3

U
til

iz
at

io
n

90% QoS tgt 95% QoS tgt 98% QoS tgt

Figure 10. Utilization improvement of various
applications running with media-streaming

0%

20%

40%

60%

80%

100%

bl
oc

ki
e

bs
t

er
−

na
iv

e

sl
ed

ge

bz
ip

2

m
ilc

so
pl

ex

lib
qu

an
tu

m

lb
m

sp
hi

nx
3

U
til

iz
at

io
n

90% QoS tgt 95% QoS tgt 98% QoS tgt

Figure 11. Utilization improvement of various
applications running with graph-analytics

0%

20%

40%

60%

80%

100%

bl
oc

ki
e

bs
t

er
−

na
iv

e

sl
ed

ge

bz
ip

2

m
ilc

so
pl

ex

lib
qu

an
tu

m

lb
m

sp
hi

nx
3

Q
ua

lit
y

of
 S

er
vi

ce

90% QoS tgt 95% QoS tgt 98% QoS tgt

Figure 12. QoS of web-search running with
various applications

0%

20%

40%

60%

80%

100%

bl
oc

ki
e

bs
t

er
−

na
iv

e

sl
ed

ge

bz
ip

2

m
ilc

so
pl

ex

lib
qu

an
tu

m

lb
m

sp
hi

nx
3

Q
ua

lit
y

of
 S

er
vi

ce

90% QoS tgt 95% QoS tgt 98% QoS tgt

Figure 13. QoS of media-streaming running
with various applications

0%

20%

40%

60%

80%

100%

bl
oc

ki
e

bs
t

er
−

na
iv

e

sl
ed

ge

bz
ip

2

m
ilc

so
pl

ex

lib
qu

an
tu

m

lb
m

sp
hi

nx
3

Q
ua

lit
y

of
 S

er
vi

ce

90% QoS tgt 95% QoS tgt 98% QoS tgt

Figure 14. QoS of graph-analytics running
with various applications

bl
oc

ki
e

bs
t

er
−

na
iv

e

sl
ed

ge

bz
ip

2

m
ilc

so
pl

ex

lib
qu

an
tu

m

lb
m

sp
hi

nx
3

M
ea

n

(a) Utilization (90% QoS tgt)

PC
3D

 I
m

pr
ov

em
en

t o
ve

r
R

eQ
oS

0x

0.5x

1x

1.5x

2x
2.31x

bl
oc

ki
e

bs
t

er
−

na
iv

e

sl
ed

ge

bz
ip

2

m
ilc

so
pl

ex

lib
qu

an
tu

m

lb
m

sp
hi

nx
3

M
ea

n

(d) Avg. Co−runner QoS (90% QoS tgt)

Q
ua

lit
y

of
 S

er
vi

ce

0%

20%

40%

60%

80%

100%

PC3D QoS
ReQoS QoS

QoS tgt

bl
oc

ki
e

bs
t

er
−

na
iv

e

sl
ed

ge

bz
ip

2

m
ilc

so
pl

ex

lib
qu

an
tu

m

lb
m

sp
hi

nx
3

M
ea

n

(b) Utilization (95% QoS tgt)

PC
3D

 I
m

pr
ov

em
en

t o
ve

r
R

eQ
oS

0x

0.5x

1x

1.5x

2x
2.57x

bl
oc

ki
e

bs
t

er
−

na
iv

e

sl
ed

ge

bz
ip

2

m
ilc

so
pl

ex

lib
qu

an
tu

m

lb
m

sp
hi

nx
3

M
ea

n

(e) Avg. Co−runner QoS (95% QoS tgt)

Q
ua

lit
y

of
 S

er
vi

ce

0%

20%

40%

60%

80%

100%

PC3D QoS
ReQoS QoS

QoS tgt

bl
oc

ki
e

bs
t

er
−

na
iv

e

sl
ed

ge

bz
ip

2

m
ilc

so
pl

ex

lib
qu

an
tu

m

lb
m

sp
hi

nx
3

M
ea

n

(c) Utilization (98% QoS tgt)

PC
3D

 I
m

pr
ov

em
en

t o
ve

r
R

eQ
oS

0x

0.5x

1x

1.5x

2x
2.84x 2.09x

bl
oc

ki
e

bs
t

er
−

na
iv

e

sl
ed

ge

bz
ip

2

m
ilc

so
pl

ex

lib
qu

an
tu

m

lb
m

sp
hi

nx
3

M
ea

n

(f) Avg. Co−runner QoS (98% QoS tgt)

Q
ua

lit
y

of
 S

er
vi

ce

0%

20%

40%

60%

80%

100%

PC3D QoS
ReQoS QoS

QoS tgt

Figure 15. Utilization (top) and QoS (bottom) of PC3D vs. ReQoS, presented as the average across all CloudSuite, SPEC and SmashBench applications

erage utilization is 67% and with a 90% QoS target the
utilization gain is 81%. Similarly, utilization improvements
for graph-analytics are 67%, 75%, 82% for the three
QoS targets. media-streaming is more sensitive to con-
tention than web-search and graph-analytics, where
we observe utilization improvements of 22%, 40% and 60%.
Overall, these results show that PC3D consistently delivers
substantial utilization gains, even in the presence of heavily
contentious applications such as libquantum and lbm.

Figures 12, 13 and 14 present the QoS of the co-running
webservice applications during the same set of experiments.
These results show that PC3D reliably meets its QoS targets.

Comparison to State-of-the-Art Figure 15 presents the
utilization achieved by PC3D compared to ReQoS [10], an

approach for reducing application contentiousness that em-
ploys a hybrid static/dynamic approach to introduce naps into
the running application. The results shown are the average
utilization improvement of PC3D over ReQoS for a number
of batch applications averaged over the entire spectrum
of CloudSuite, SPEC and SmashBench co-runners. PC3D
employs a napping mechanism similar to the mechanism
used by ReQoS to throttle applications when reducing cache
contention by dynamically inserting non-temporal hints is
insufficient to allow the latency-sensitive co-runner to meet
its QoS target, so in several cases ReQoS and PC3D show
similar utilization levels. In a number of cases, however,
PC3D gains far more utilization than ReQoS. For example,
at a 98% QoS target, PC3D delivers over 2x the utilization

567567567

0 200 400 600 800

0

20

40

60

80

100
(a) web−search load

Q
ue

ri
es

/s
ec

on
d

(Q
PS

)

Time (seconds)

0 200 400 600 800

0

1

2

3

4

(b) libquantum performance

1e
8

x
B

PS

PC3D ReQoS

Time (seconds)

0 20 40 60 80 100

0

1

2

3

4

(e) libquantum perf. (0−100s)

1e
9

x
B

PS

PC3D ReQoS

Time (seconds)

0 200 400 600 800

(c) web−search QoS

w
eb

−
se

ar
ch

 Q
oS

0%
20%
40%
60%
80%

100%

Time (seconds)

PC3D ReQoS QoS Tgt. (95%)

0 200 400 600 800

(d) Cycles used by runtime

%
 o

f
Se

rv
er

 C
yc

le
s

0%

2%

4%

6%

8%

10%
PC3D

Time (seconds)

0 20 40 60 80 100

(f) Cycles for runtime (0−100s)

%
 o

f
Se

rv
er

 C
yc

le
s

0%

2%

4%

6%

8%

10%
PC3D

Time (seconds)

Figure 16. Dynamic behavior of libquantum running with
web-search using the PC3D runtime

of ReQoS on sphinx3 by finding an improved code vari-
ant, leading to far lower cache contentiousness at relatively
small performance overhead to sphinx3. On average, PC3D
improves utilization by a factor of 1.25, 1.45 and 1.52x at
QoS targets of 90%, 95% and 98%, respectively. Figure 15
also includes the co-runner QoS, again presented as the
average over the entire spectrum of co-runners. Both PC3D
and ReQoS consistently meet the co-runner QoS targets.

D. Webservice with Fluctuating Load

To further evaluates how PC3D adapts to the dynamism
in the application and its execution environment, Fig-
ure 16 presents the dynamic behavior of PC3D and Re-
QoS as libquantum runs with web-search. The load on
web-search shifts over the course of the run, with the
load pattern shown in 16(a). 16(b) shows a trace of the
performance (branches per second) of libquantum over the
same time frame. 16(c) shows the QoS of web-search, and
16(d) shows the cycles spent running the PC3D runtime.

Table III. WORKLOAD MIXES FOR SCALE-OUT ANALYSIS

LS web-search, graph-analytics, media-streaming
WL1 libquantum, bzip2, sphinx3, milc
WL2 soplex, bst, milc, lbm
WL3 sledge, soplex, sphinx3, libquantum

PC3D Dynamic Behavior libquantum initially (t=0) be-
gins to execute alongside web-search. PC3D continuously
monitors web-search as an external application, and detects
that libquantum jeopardizes web-search QoS, so PC3D
begins to search for alternate code variants for libquantum
that allow web-search to meet its QoS while allowing
libquantum to make better progress. The performance of
libquantum during the variant search is shown in greater
resolution in 16(e). By t=20, PC3D has arrived at an improved
variant of libquantum, and PC3D allows it to run with this
variant until a co-phase change is detected at t=300.

At t=300, the demand placed on web-search shifts, at
which point PC3D detects a change in the behavior of
web-search, causing it to revert libquantum back to its
original (no non-temporal hints) variant. Until t=600, the
original variant of libquantum runs at full speed because
web-search is not sensitive to contention at low load.

At t=600, the load to web-search picks up and PC3D
again searches for an improved variant that reduces cache
contention. At t=620, the variant search ends and the im-
proved variant of libquantum runs until the end of the
experiment (t=900).

Cycles Consumed by PC3D Figure 16(d) shows the fraction
of server cycles used by the PC3D runtime. Activity is
minimal, kept to well below 1% of the server’s cycles for the
majority of the run. Two brief mini-spikes of up to 2% appear
at t=0 (a higher-resolution view of this spike is presented
in 16(f)) and t=600 as PC3D generates code to search for
variants that improve the performance of libquantum.

ReQoS Dynamic Behavior Figures 16(b) and (c) also show
the impact of ReQoS on the same run of libquantum and
web-search. ReQoS adjusts the nap intensity, reacting to
load changes at t=300 and t=600. During periods of high
load it allows web-search to meet its QoS target strictly
by applying naps to libquantum, causing libquantum

to make significantly slower progress than it makes when
running with PC3D.

E. Impact of PC3D at Scale

This section discusses the impact of deploying PC3D in a
large-scale datacenter cluster that houses a mix of webservice
and batch applications, showing that, by substantially improv-
ing server-level utilization, PC3D can have a large impact on
the number of servers needed to house a particular workload
and on the energy efficiency of the datacenter.

Server Requirements Figure 17 presents an analysis of the
number of servers required to house a variety of webservice
and batch application mixes. This analysis assumes a datacen-
ter with 10k machines and the workload mixes described in
Table III, with 10k instances of a latency-sensitive webservice
(LS) with 95% QoS target along with 10k batch application
instances comprised equally of one of the mixes shown in
the table (WL). Running with PC3D, the 10k machines are
able to achieve a particular level of throughput on each

568568568

of

 S
er

ve
rs

0k

5k

10k

15k

20k

web−search/W
L1

graph−analytics/W
L1

media−stre
aming/W

L1

web−search/W
L2

graph−analytics/W
L2

media−stre
aming/W

L2

web−search/W
L3

graph−analytics/W
L3

media−stre
aming/W

L3

PC3D No Co−location

Figure 17. Server count required to run workload mixes for PC3D vs. no
co-location

E
ne

rg
y

E
ff

ic
ie

nc
y

0
0.2
0.4
0.6
0.8

1
1.2
1.4

web−search/W
L1

graph−analytics/W
L1

media−stre
aming/W

L1

web−search/W
L2

graph−analytics/W
L2

media−stre
aming/W

L2

web−search/W
L3

graph−analytics/W
L3

media−stre
aming/W

L3

PC3D No Co−location

Figure 18. Normalized energy efficiency of workload mixes for PC3D vs.
no co-location

application. Using a policy of disallowing co-locations, extra
servers are needed to run the batch applications to achieve an
equivalent level of throughput as the PC3D-enabled datacen-
ter. Figure 17 shows that between 3.5k and 8k extra servers
are needed on top of the original 10k servers to achieve a level
of batch throughput that matches a PC3D-enabled datacenter.

Energy Efficiency Using a large number of extra servers also
has a significant impact on the overall energy efficiency of the
datacenter. Using a similar setup to the previous experiment,
we employ a linear CPU utilization model to derive the
power consumption of the servers within the datacenters,
from which we compute the overall performance per Watt
of each datacenter and derive energy efficiency comparisons
of the datacenters. Figure 18 presents a comparison of the
energy efficiency of the PC3D-enabled datacenter normalized
to the No Co-location datacenter running the same workload
at the same throughput, from which we observe that PC3D
improves energy efficiency at the datacenter level by 18-34%
across a spectrum of webservice and batch workloads.

VI. CONCLUSION

This work presents protean code, a novel approach to
dynamic compilation designed to be deployable for perfor-
mance optimization in datacenter environments. Protean code
is nearly free of performance overhead, operates without any
special hardware or programmer support, and has the flexibil-
ity of a robust static compiler. This combination of features
gives protean code the capability to cope with the dynamism
of modern datacenters by transforming and re-transforming
running code to reflect the execution environment.

Using this lightweight dynamic compilation capability, we
design Protean Code for Cache Contention in Datacenters
(PC3D), a runtime approach to mitigating cache contention
for live datacenter applications by dynamically inserting
and removing software non-temporal cache hints, allowing
batch applications to achieve high throughput while meeting
latency-sensitive application QoS. On a spectrum of webser-
vice and benchmark applications, PC3D achieves utilization
improvements of up to 2.8x (average of 1.5x) higher than
a recently published state-of-the-art contention mitigation
runtime at a QoS target of 98%.

ACKNOWLEDGMENT

We thank our anonymous reviewers for their feedback
and suggestions. We also thank Balaji Soundararajan for his
help setting up experimental infrastructure. This research was

supported by Google and by the National Science Foundation
under grants CCF-SHF-1302682 and CNS-CSR-1321047.

REFERENCES

[1] Miller, Rich, “The Billion Dollar Datacenter,”
http://www.datacenterknowledge.com/archives/2013/04/
29/the-billion-dollar-data-centers/, 2013, Online; accessed
23-May-2014.

[2] Metz, Cade, “Facebook Catapults $1.5 Billion
Datacenter int Iowa,” http://www.wired.com/2013/04/
facebook-iowa-data-center/, Online; accessed 23-May-2014.

[3] J. Mars and M. L. Soffa, “Synthesizing contention,” in Work-
shop on Binary Instrumentation and Applications (WBIA),
2009.

[4] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa,
“Bubble-up: Increasing utilization in modern warehouse scale
computers via sensible co-locations,” in International Sympo-
sium on Microarchitecture (MICRO), 2011.

[5] C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware schedul-
ing for heterogeneous datacenters,” in Architectural Support
for Programming Languages and Operating Systems (ASP-
LOS), 2013.

[6] J. Mars and L. Tang, “Whare-map: heterogeneity in homo-
geneous warehouse-scale computers,” in International Sympo-
sium on Computer Architecture (ISCA), 2013.

[7] “Intel 64 and IA-32 Architectures Software Developers
Manual. Volume 2: Instruction Set Reference A-
Z,” http://www.intel.com/content/www/us/en/processors/
architectures-software-developer-manuals.html, 2014, Online;
accessed 23-May-2014.

[8] “ARMv8 Instruction Set Overview,” http://infocenter.arm.com/
help/index.jsp?topic=/com.arm.doc.genc010197a/index.html,
2011, Online; accessed 23-May-2014.

[9] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux:
Precise online qos management for increased utilization in
warehouse scale computers,” in International Symposium on
Computer Architecture (ISCA), 2013.

[10] L. Tang, J. Mars, W. Wang, T. Dey, and M. L. Soffa, “Reqos:
Reactive static/dynamic compilation for qos in warehouse
scale computers,” in Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2013.

[11] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn, “Using
os observations to improve performance in multicore systems,”
IEEE Micro, 2008.

[12] Y. Jiang, K. Tian, and X. Shen, “Combining locality analysis
with online proactive job co-scheduling in chip multipro-
cessors,” in High Performance Embedded Architectures and
Compilers (HiPEAC), 2010.

[13] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing
shared resource contention in multicore processors via schedul-
ing,” in Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2010.

569569569

[14] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan,
“Gaining insights into multicore cache partitioning: Bridging
the gap between simulation and real systems,” in High Perfor-
mance Computer Architecture (HPCA), 2008.

[15] B. Bao and C. Ding, “Defensive loop tiling for shared cache,”
in Code Generation and Optimization (CGO), 2013.

[16] S. W. Son, M. Kandemir, M. Karakoy, and D. Chakrabarti, “A
compiler-directed data prefetching scheme for chip multipro-
cessors,” in Principles and Practice of Parallel Programming
(PPoPP), 2009.

[17] L. Tang, J. Mars, and M. L. Soffa, “Compiling for niceness:
Mitigating contention for qos in warehouse scale computers,”
in Code Generation and Optimization (CGO), 2012.

[18] S. Rus, R. Ashok, and D. X. Li, “Automated locality optimiza-
tion based on the reuse distance of string operations,” in Code
Generation and Optimization (CGO), 2011.

[19] A. Sandberg, D. Eklöv, and E. Hagersten, “Reducing cache
pollution through detection and elimination of non-temporal
memory accesses,” in International Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC),
2010.

[20] K. Ebcioğlu and E. R. Altman, “Daisy: Dynamic compilation
for 100% architectural compatibility,” in International Sympo-
sium on Computer Architecture (ISCA), 1997.

[21] W. Cheng, Q. Zhao, B. Yu, and S. Hiroshige, “Tainttrace:
Efficient flow tracing with dynamic binary rewriting,” in IEEE
Symposium on Computers and Communications (ISCC), 2006.

[22] V. Bala, E. Duesterwald, and S. Banerjia, “Dynamo: a transpar-
ent dynamic optimization system,” in Programming Language
Design and Implementation (PLDI), 2000.

[23] M. J. Voss and R. Eigemann, “High-level adaptive program op-
timization with adapt,” in Principles and Practices of Parallel
Programming (PPoPP), 2001.

[24] J. Lu, H. Chen, R. Fu, W.-C. Hsu, B. Othmer, P.-C. Yew,
and D.-Y. Chen, “The performance of runtime data cache
prefetching in a dynamic optimization system,” in Interna-
tional Symposium on Microarchitecture (MICRO), 2003.

[25] W.-K. Chen, S. Lerner, R. Chaiken, and D. M. Gillies, “Mojo:
A dynamic optimization system,” in Feedback-Directed and
Dynamic Optimization (FDDO), 2000.

[26] W. Zhang, B. Calder, and D. M. Tullsen, “An event-driven
multithreaded dynamic optimization framework,” in Parallel
Architectures and Compilation Techniques (PACT), 2005.

[27] A. Jimborean, P. Clauss, J.-F. Dollinger, V. Loechner, and
J. M. M. Caamano, “Dynamic and speculative polyhedral par-
allelization using compiler-generated skeletons,” International
Journal of Parallel Programming, 2014.

[28] B. Breech, A. Danalis, S. Shindo, and L. Pollock, “Online
impact analysis via dynamic compilation technology,” in Inter-
national Conference on Software Maintenance (ICSM), 2004.

[29] G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and R. Hundt,
“Google-wide profiling: A continuous profiling infrastructure
for data centers,” IEEE Micro, 2010.

[30] C. Lattner and V. Adve, “Llvm: A compilation framework
for lifelong program analysis & transformation,” in Code
Generation and Optimization (CGO), 2004.

[31] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and
B. Falsafi, “Clearing the clouds: a study of emerging scale-out
workloads on modern hardware,” in Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
2012.

[32] J. L. Henning, “Spec cpu2006 benchmark descriptions,” ACM
SIGARCH Computer Architecture News, 2006.

[33] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec bench-
mark suite: Characterization and architectural implications,”
in Parallel Architectures and Compilation Techniques (PACT),
2008.

[34] D. Bruening, T. Garnett, and S. Amarasinghe, “An infrastruc-
ture for adaptive dynamic optimization,” in Code Generation
and Optimization (CGO), 2003.

[35] Y. Zhang, M. A. Laurenzano, J. Mars, and L. Tang, “Smite:
Precise qos prediction on real system smt processors to im-
prove utilization in warehouse scale computers,” in Interna-
tional Symposium on Microarchitecture (MICRO), 2014.

[36] H. Kasture and D. Sanchez, “Ubik: efficient cache sharing
with strict qos for latency-critical workloads,” in Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), 2014.

[37] H. Cook, M. Moreto, S. Bird, K. Dao, D. A. Patterson, and
K. Asanovic, “A hardware evaluation of cache partitioning
to improve utilization and energy-efficiency while preserving
responsiveness,” in International Symposium on Computer
Architecture (ISCA), 2013.

[38] M. K. Qureshi and Y. N. Patt, “Utility-based cache partition-
ing: A low-overhead, high-performance, runtime mechanism
to partition shared caches,” in International Symposium on
Microarchitecture (MICRO), 2006.

[39] D. Sanchez and C. Kozyrakis, “Vantage: scalable and efficient
fine-grain cache partitioning,” in International Symposium on
Computer Architecture (ISCA), 2011.

[40] X. Zhang, S. Dwarkadas, and K. Shen, “Towards practical page
coloring-based multicore cache management,” in European
conference on Computer Systems (EuroSys), 2009.

[41] L. Soares, D. Tam, and M. Stumm, “Reducing the harmful
effects of last-level cache polluters with an os-level, software-
only pollute buffer,” in International Symposium on Microar-
chitecture (MICRO), 2008.

[42] D. Tam, R. Azimi, L. Soares, and M. Stumm, “Manag-
ing shared l2 caches on multicore systems in software,” in
Workshop on the Interaction between Operating Systems and
Computer Architecture (WIOSCA), 2007.

[43] R. Fu, J. Lu, A. Zhai, and W.-C. Hsu, “A study of the
performance potential for dynamic instruction hints selection,”
in Asia-Pacific Computer Systems Architecture Conference
(ACSAC), 2006.

[44] J. Mars and M. L. Soffa, “Mats: Multicore adaptive trace
selection,” in Workshop on Software Tools for MultiCore
Systems (STMCS), 2008.

[45] K. Scott, N. Kumar, S. Velusamy, B. Childers, J. W. Davidson,
and M. L. Soffa, “Retargetable and reconfigurable software
dynamic translation,” in Code Generation and Optimization
(CGO), 2003.

[46] V. Chipounov and G. Candea, “Enabling sophisticated analyses
of x86 binaries with revgen,” in Dependable Systems and
Networks (DSN), 2011.

[47] M. A. Laurenzano, M. M. Tikir, L. Carrington, and A. Snavely,
“Pebil: Efficient static binary instrumentation for linux,” in
Performance Analysis of Systems and Software (ISPASS), 2010.

[48] S. Nanda, W. Li, L.-C. Lam, and T.-c. Chiueh, “Bird: Binary
interpretation using runtime disassembly,” in Code Generation
and Optimization (CGO), 2006.

[49] Q. Zhao, D. Bruening, and S. Amarasinghe, “Umbra: Efficient
and scalable memory shadowing,” in Code Generation and
Optimization (CGO), 2010.

[50] P. Feiner, A. D. Brown, and A. Goel, “Comprehensive kernel
instrumentation via dynamic binary translation,” in Architec-
tural Support for Programming Languages and Operating
Systems (ASPLOS), 2012.

[51] L. A. Barroso, J. Clidaras, and U. Hölzle, “The datacenter
as a computer: an introduction to the design of warehouse-
scale machines, 2nd edition,” Synthesis Lectures on Computer
Architecture, 2013.

[52] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and
J. Wilkes, “Cpi2: Cpu performance isolation for shared com-
pute clusters,” in European Conference on Computer Systems
(EuroSys), 2013.

570570570

