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ABSTRACT
Co-location, where multiple jobs share compute nodes in
large-scale HPC systems, has been shown to increase aggre-
gate throughput and energy efficiency by 10 to 20%. How-
ever, system operators disallow co-location due to fair-pricing
concerns, i.e., a pricing mechanism that considers perfor-
mance interference from co-running jobs. In the current
pricing model, application execution time determines the
price, which results in unfair prices paid by the minority of
users whose jobs suffer from co-location.

This paper presents POPPA, a runtime system that en-
ables fair pricing by delivering precise online interference de-
tection and facilitates the adoption of supercomputers with
co-locations. POPPA leverages a novel shutter mechanism
– a cyclic, fine-grained interference sampling mechanism to
accurately deduce the interference between co-runners – to
provide unbiased pricing of jobs that share nodes. POPPA

is able to quantify inter-application interference within 4%
mean absolute error on a variety of co-located benchmark
and real scientific workloads.

Keywords
Online Pricing, Supercomputer Accounting, Resource Shar-
ing, Chip Multiprocessor, Contention

1. INTRODUCTION
Supercomputers typically have hundreds to thousands of

users and consist of tens to thousands of individual servers
connected over a high-speed optical interconnect. At any
one time, many users concurrently utilize the system. The
current approach has been to give each user a non-overlapping
set of compute nodes on which to run his or her application.
While this approach prevents jobs from different users from
clobbering one another, it leads to a missed performance op-
portunity. In fact, recent work has shown that co-location,
where a set of jobs from different users runs on a shared
set of compute nodes, can increase mean application perfor-
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Figure 1: Performance of GTC, a plasma physics
code, when co-located with the applications on the
x-axis. The current pricing mechanism penalizes the
user for co-locating their job by charging them more
when their job degrades more.

mance and system energy efficiency by 20% by reducing con-
tention for shared resources in the memory subsystem and
inter-node network [38, 33, 20]. In addition, current archi-
tectural trends and exascale computing studies suggest that
the benefit of co-location is likely to increase. The studies
project that compute nodes will have hundreds to thousands
of cores [16]. For some applications, it may not be possible
to use all of these cores efficiently. In particular, 80% of all
XSEDE jobs use less than 512 cores [11, 45], which means
co-location will likely be necessary to utilize all of a node’s
cores.

Co-location seems inevitable for larger jobs as well. Pro-
jected scaling trends suggest an increase in the number of
cores per node that outpaces increases in memory bandwidth
and cache capacity, which will reduce the resources available
per core [16]. To mitigate contention, resource-hungry jobs
will have to be spread out over more compute nodes and
paired with resource-light jobs to maintain high system uti-
lization [20].

Although co-location is beneficial to performance and en-
ergy efficiency, it also creates a new set of challenges, one of
which is fair pricing. Fair pricing is a concern because al-
though there is a net benefit from co-location, some pairings
can cause one of the applications to slow down. When this
happens, we argue that the user should be discounted. How-
ever, if we apply the current state-of-practice (SOP) in HPC
infrastructures, where users are billed proportionally to the



time to execute their job, we find there is gross inequity –
users whose jobs benefit from co-location pay comparatively
less while users whose jobs do not benefit pay more.

Figure 1 illustrates the challenge. Under the current state-
of-practice, a user running GTC[41], a plasma physics code,
pays 60% more when co-located with LAMMPS[3], a molec-
ular dynamics code, versus AMG[15, 1], a parallel algebraic
multigrid solver. To remedy this problem, we suggest dis-
counting a user based on the interference caused by the other
co-running applications. The greater the interference, the
greater the discount. The green bars show one such scheme.
Because co-location increases machine throughput per unit
time, these discounts can be viewed as passing the efficiency
savings from co-location back to the end user when their
expectation of service is violated.

Although the concept of progressive discounts is simple,
the realization of such a policy on real systems poses a
number of practical challenges. In particular, a fair pric-
ing model of this nature requires precisely quantifying the
interference due to shared resource contention. While there
has been significant research into predicting cross-core in-
terference, many of the techniques make heavy use of static
profiling or have been tailored to specific machines or ap-
plications [42, 25, 26]. Even though this work has yielded
considerable insight into the problem of shared resource con-
tention, we argue that in practice, it is not practical for
precise pricing on a real HPC cluster. In this domain, static
profiling and machine- or application-specific approaches are
not suitable as jobs may run very shortly after submission
and their characterizations may not be known a priori. Al-
though application profiling may enrich the solution space,
we note that altering even a single input parameter for an
application can vastly change its characteristics. For exam-
ple, doubling a single array dimension can often radically
transform an application’s sensitivity to and aggressiveness
on the memory subsystem. Thus, an instantaneous and dy-
namic mechanism is needed to continuously monitor and
quantify the interference jobs suffer to drive precise pricing.

In addition to being dynamic and precise, the fundamental
pricing mechanism must also be lightweight. The underly-
ing pricing agent has to be mostly invisible to the application
and therefore must have a negligible overhead, below the
system noise threshold. These objectives lead us to the two
key insights of the work – only a software system that uses
empirical, online tests is suitable for this problem domain,
and such an approach must be agnostic to the underlying
software and hardware.

In this paper, we present such a solution: the Persis-
tent Online Precise Pricing Agent (POPPA). POPPA is a
lightweight runtime system that utilizes a cyclic, fine-grain,
interference sampling mechanism to accurately deduce the
interference between co-runners. The key design feature of
POPPA is a dynamic contention detection technique we call
shuttering. For brief periods of execution, POPPA pauses
all applications but one and measures how the selected ap-
plication’s performance changes versus running co-located.
From the disparity between the application’s rate of forward
progress made while running co-located versus shuttered,
POPPA is able to precisely determine the impact of interfer-
ence resulting from co-location and use these measurements
to drive fair pricing for all users’ jobs.

The contributions of this work are as follows:

• We introduce POPPA, a lightweight, workload and ma-

chine agnostic runtime system that enables fair pricing
for HPC clusters. POPPA functions entirely in soft-
ware, requires no changes to the system stack in cur-
rent HPC clusters, and is readily deployable.
• We present the design of precise shuttering, a mech-

anism for the precise online measurement of the per-
formance impact of cross-core interference. Our pre-
cise shuttering approach functions dynamically and re-
quires no a priori knowledge or profiling of the appli-
cations.
• We present a new pricing model for HPC clusters based

on POPPA to provide fair pricing to users.
• We provide a thorough evaluation of POPPA’s efficacy

and robustness as the central accounting mechanism
on HPC clusters with a mix of MPI benchmarks and
real workloads.

POPPA predicts co-located application run time with 4%
mean absolute error and incurs less than 1% overhead. Using
POPPA, we are able to discount the average user by 7.4% and
deliver a pricing distribution that closely resembles that of
an omniscient oracle.

2. BACKGROUND AND MOTIVATION
In order to better understand why fair pricing is of such

importance, we must first explore the current state-of-practice
in accounting on supercomputers. We start by examining
the accounting and allocation model found in the United
States Department of Energy Office of Science INCITE pro-
gram [12] and the National Science Foundation XSEDE pro-
gram [11], two of the largest U.S. programs that provide re-
sources to the general HPC research community. Each of
these programs facilitates access to a number of large scale
computing infrastructures. To successfully obtain an alloca-
tion, researchers submit grant proposals and, after reviews,
are awarded time on those systems as a finite number of
service units (SUs). When a user runs a job on a sys-
tem, they deplete their bank of SUs at a rate proportional
to the length of their programs’ execution and the number
of compute nodes that they request.

In this model, users need strong guarantees that the value
of an SU will not be negatively affected by other users’
jobs running on the same computing resources. Similarly,
supercomputer administrators care about user satisfaction
and are incentivized to provide users with the best possi-
ble experience because individual supercomputing centers
are awarded funds largely based on the success and pop-
ularity of their facilities. Consequently, we observe that
throughout all levels of the funding ladder, fair pric-
ing and accounting are crucial concerns. Regardless
of what mechanisms are implemented to improve supercom-
puter performance, energy efficiency or fault tolerance, they
must not pervert the fairness of the pricing scheme.

2.1 MPI Programming Model
Most large scale scientific applications utilize the Message

Passing Interface (MPI) as the core abstraction to facilitate
workload distribution across a cluster. Two main character-
istics of MPI programs are as follows:

1) Single Program Multiple Data (SPMD): MPI
processes execute the same static program binary and use
unique identifiers called ranks to dictate communication pat-
terns as well as which blocks of code get executed by different
processes. While this allows for a large amount of potential



diversity between processes, in practice most MPI programs
are Single Program Multiple Data (SPMD): all processes ex-
ecute the same core algorithm on different data. Thus within
an MPI program, all the processes have high similarity, e.g.,
they all compete for the same resources.

2) Tightly coupled communication synchronization:
The vast majority of MPI programs exhibit tightly coupled
communication synchronization. Because of this tight syn-
chronization, processes must execute in relative lock-step. If
a process reaches an explicit or implicit barrier before the
other necessary parties, it must wait until all others make
similar progress before proceeding.

2.2 Co-location of MPI programs
When we reason about the nature of MPI programs, it

quickly becomes evident that executing a single MPI pro-
gram across a private set of compute nodes is an inefficient
use of system resources. The homogeneity between MPI pro-
cesses and the fact that they are tightly coupled mean that
many processes will execute the same program regions with
high concurrency. When this happens, there is high risk
for resource contention and performance degradation – ho-
mogeneous processes have high propensity to evict one an-
other’s data in the shared last level cache (LLC), contend
for the memory controller, saturate off-chip bandwidth to
main memory, and cause a backlog of messages for intern-
ode communication.

Previous research shows that homogeneous MPI processes
can degrade one another’s performance by more than 2x [20,
38]. In addition, these works show that introducing hetero-
geneity in workloads by co-locating multiple MPI programs
on disjoint cores can drastically improve performance and
energy efficiency. In fact, both studies find that aggregate
throughput increases by 12 to 23% on average over the cur-
rent state of practice, and [20] shows that system energy
efficiency increases by 11 to 22%.

In conclusion, given the high cost of large supercomput-
ers and the great performance and efficiency benefit of co-
location, it is essential that we provide fair pricing mecha-
nisms to make co-location practical.

3. POPPA OVERVIEW
In this section, we present the overview of the Persis-

tent Online Precise Pricing Agent (POPPA) framework. Our
primary design objective for POPPA is to provide accurate
performance interference estimates for parallel applications
with negligible overhead. As shown in Figure 2, POPPA con-
sists of a main monitoring agent called the Controller and a
series of Execution Managers.

Execution Manager: Each Execution Manager is re-
sponsible for launching and overseeing the entire execution
of a parallel application on a given machine. The Execu-
tion Managers read from the central job queue and select
the next job to run according to the job priority and its re-
source needs. An Execution Manager launches the selected
job and attaches a performance monitoring context (PMC)
to the job. The PMC monitors the job performance by read-
ing and evaluating appropriate hardware performance coun-
ters. During execution, the Execution Manager updates and
reports the current status and performance data of the job
to the Controller.

Controller: The Controller is the main component of
POPPA. Its principle responsibility is to conduct shutter-
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Figure 2: Interaction between POPPA components
and other entities

ing, a mechanism to measure and quantify the performance
interference among the co-running applications. In essence,
the Controller periodically pauses each application but one
for a very short period and monitors the performance impact
on the lone running application. To measure this impact, the
Controller probes the PMCs of each active job to acquire
the performance data and logs it. We present more details
of the shuttering mechanism including our algorithms and
policies in Section 5 and evaluate its accuracy and overhead
in Section 8.

Figure 2 presents how POPPA can be used for pricing.
After execution of a job has completed, the Pricer thread
analyzes the raw performance data logged by the Controller
and quantifies the performance interference and degrada-
tion. More details of the analysis and pricing are presented
in Sections 4 and 6. Based on the quantification, the Pricer
produces the price to be charged and propagates it to the
Account Manager, which then deducts the price from the
user’s bank of SUs.

4. PRICING MODEL
In this section, we discuss the key issues related to pricing

and accounting on current supercomputers and extend those
notions to a supercomputer with job co-locations.

4.1 Pricing Without Co-location
For purposes of this discussion, assume that a user wants

to run a job i on a supercomputer and that Pi denotes the
price that the user is charged for running i.

In present day systems, Pi is given by Equation 1, where
L is a rate constant in terms of service units per core per
time quanta, Ci is the number of cores that a job uses in
whole compute node increments, and Ti is the run time of
the program.

Pi = L ∗ Ci ∗ Ti (1)

From this equation, we can see that the price variable Pi

is linearly proportional to both the cores variable Ci and the
time variable Ti.

4.2 Pricing With Co-location
In this section, we propose how one could modify the ex-

isting pricing model to more fairly price applications when
co-locations are present. In particular, if we have a job i
that is co-located with a set of jobs J , we want a formula



that will produce a reasonable price P
co(J)
i , which takes into

account the net interference from all applications in J . To
this end, we replace L with a rate function F , yielding Equa-
tion 2, where F : R × R → R. T solo

i is the run time when

the job i gets all compute nodes to itself and T
co(J)
i is the

run time of the job i when i is co-located with the set J of
other jobs.

P
co(J)
i = F (T solo

i , T
co(J)
i ) ∗ Ci ∗ T solo

i (2)

Ideally, F is monotonically non-increasing so that the more
degradation an application suffers from co-location, the more
the user is discounted. For the purposes of this paper, we
assume utility is proportional to 1 minus the rational degra-
dation. Therefore if we equate utility to fairness, then we
select F such that users are discounted at a rate propor-
tional to the degradation that each of their jobs experiences

due to contention from co-runners. Thus if D
co(J)
i is the

degradation, then we want P
co(J)
i = (1 − D

co(J)
i ) ∗ P solo

i .
Consequently we define F as follows:

F (T solo
i , T

co(J)
i ) = L ∗ T solo

i

T
co(J)
i

= L ∗ (1−Dco(J)
i ) (3)

By substituting Equation 3 into Equation 2 we see that
we achieve the specific pricing model shown in Equation 4.

P
co(J)
i = L ∗ T solo

i

T
co(J)
i

∗ Ci ∗ T solo
i (4)

While Equation 4 is good for the user, we acknowledge
that it is an idealistic model. Its simplicity makes it easy
for end users to understand; however, we note other factors
such as resource manager queue wait times, job priority,
workload composition, the ratio of each shared resource a job
consumes, machine architecture, and scheduling policy, i.e.
capability versus capacity are also important factors when
determining a fair price. Thus supercomputing facilities will
have to decide what F makes sense for each of their systems.

5. PRECISE SHUTTER MECHANISM
As previously mentioned, POPPA’s chief design objective

is to produce fair prices with high precision, low overhead,
and without the need for a priori knowledge. To achieve
these goals we have designed precise shuttering, an online
co-runner interference masking approach. Essentially, the
precise shuttering mechanism functions by alternating an
application’s execution environment between one where co-
runners are executing and another where they are effectively
absent.

Figure 3 shows shuttering in action on two applications A
and B that are co-located. The shuttering algorithm alter-
nates between execution regions where A and B co-execute,
A executes while B sleeps, A and B co-execute, and B exe-
cutes while A sleeps. We repeat this pattern throughout the
execution of the programs.

To gain insight from shuttering, we must measure the per-
formance of each application before, during, and after shut-
ter regions. During each shutter of duration S, we lever-
age hardware performance monitors via libpfm4 [7, 27] to
measure the instructions per cycle of the sole non-sleeping
application. To infer the degradation due to co-runners, we
also measure the instructions per cycle (IPC) of all active
applications S microseconds before the shutter and S mi-
croseconds directly after it.

Program A Program B

Execution 
Time

KEY

Paired Execution

Paired + IPC Measure

Solo + IPC Measure

Shutter Period

Figure 3: Shown here is shuttering in action on two
separate jobs. During a shutter, one job executes
while all others sleep.

Since we are primarily concerned by how performance
changes with the presence or absence of contention, we only
need to monitor the performance during small windows around
shutters. We also perform each shutter infrequently to min-
imize the perturbation of application execution and param-
eterize the rate of shutter samples to control POPPA’s over-
head. As we show in this work, frequent shutters are not
required to produce an accurate predictive model.

Algorithm 1 Measure(i, S, K)

1: Initialize array perfValue of length |A[i]|
2: for k = 0 to K − 1 do
3: for each thread t that is part of A[i] do
4: perfValue[t] = ReadCounters(t)
5: end for
6: Sleep for S µs
7: for each thread t that is part of A[i] do
8: perfDict[t].append(ReadCounters(t)-perfValue[t])
9: end for

10: end for

Algorithm 2 Shutter Core(j, S, K)

1: for i = 0 to |A| − 1, where i 6= j do
2: for each thread t that is part of A[i] do
3: Pause t
4: end for
5: end for
6: Measure(j, S, K)
7: for i = 0 to |A| − 1, where i 6= j do
8: for each thread t that is part of A[i] do
9: Resume t

10: perfDict[t].append(THREAD ASLEEP)
11: end for
12: end for

5.1 Algorithms
In this section, we present the logic of the shutter mech-

anism, whose core parts are shown in Algorithms 1, 2 and
3. Below we define a list of common data structures and
constants used by the algorithms:

• A, an array of co-located applications
• perfDict, a lookup table that stores the measured IPC

values of each application



Algorithm 3 POPPA Core

1: j = 0
2: while true do
3: for i = 0 to |A| − 1 in parallel do
4: Measure(i, S, K)
5: end for
6: Shutter Core(j, S, K)
7: for i = 0 to |A| − 1 in parallel do
8: Measure(i, S, K)
9: end for

10: j = (j + 1) mod |A|
11: Sleep Pµs
12: end while

• K, the number of IPC measurements to make in a row
in a specific region1

• S, the length of the each measurement in µs
• P , the length of time between groups of measurements,

i.e. the normal execution period, in µs
• S, the length of a shutter, approximately K ∗ S

The core routine is Algorithm 3. At each iteration, we first
measure the IPC of each application while co-located (lines
3-5). We then shutter application j by calling Shutter Core
(line 6), which subsequently calls Measure to measure the
IPC while j is running alone. After that, we measure the
IPC of all applications and increment j (lines 7-10). Then
the shutter component of POPPA goes to sleep for Pµs of
normal execution (line 11). Since POPPA is persistent, this
process repeats continually as applications end and new ap-
plications enter the application pool.

5.2 Tuning the Shutter Mechanism
The shutter implementation presents a number of chal-

lenges. In particular, selecting the correct granularity to
shutter at is key to accurately quantifying interference with-
out noticeably adding to it. The first parameter is the gap
between shutters P . As P is decreased, the amount of time
that POPPA is active increases, consequently also increasing
overhead. Since utilization in supercomputers is often above
95%, we assume that each core has an application thread as-
signed to it. Due to this fact, POPPA must time slice with
application threads. If POPPA is active for x% of a single
core’s execution time, then assuming POPPA threads do not
migrate, one of the co-running applications is likely to suffer
at least an x% hit to performance due to synchronization
between processes.

Since the POPPA runtime inevitably has overhead, we ex-
perimented with conducting round-robin migration of the
POPPA threads to distribute the performance impact of time
slicing across all application threads; however, we deter-
mined that a better solution was to select values for K, P
and S that make POPPA’s CPU utilization very low, as mi-
gration is not guaranteed to be fine-grain enough to mitigate
the effect of time slicing.

Another important parameter is S the duration of a shut-
ter. In our implementation, this quantity is equal to the base
cost of doing a shutter on 8 MPI processes, approximately
120 to 200µs (see Figure 4 in Section 8.1), plus K ∗S, where
K ∗ S is the product of the number of consecutive measure-
ments and the length of each such measurement. During

1We fix K = 1 for experiments and analyses in Section 8.

a shutter, the paused application makes no progress, thus
keeping shutter duration very short relative to P is a pri-
mary concern.

An unexpected find relating to the shutter mechanism is
that in certain cases, POPPA actually slightly improves the
performance of co-located applications. During shutters,
applications that sleep sacrifice a small amount of forward
progress and the lone runner receives a performance boost
from reduced contention. When the net performance boost
from running in isolation offsets the net performance loss
from sleeping, applications speed up relative to the base-
line co-schedule performance. For pairs of two applications,
speedup occurs when a co-schedule increases one applica-
tion’s run time by more than 2x relative to running with
half the cores idle per socket. This phenomenon is demon-
strated empirically in Section 8.2.

6. ESTIMATING DEGRADATION
In this section, we present our method for linking the raw

data that POPPA produces to the actual prices we charge.

6.1 Idealized Model for Degradation
Our pricing model assumes that for an application i, we

know the degradation D
co(J)
i that i suffers as a result of co-

location with a set J of applications. In our pricing model

discussion, we formulated 1 − Dco(J)
i as

Tsolo
i

T
co(J)
i

. While this

gives us a precise way to calculate degradation, POPPA can-
not directly measure T solo

i . Thus, we modify the formula-
tion such that it is amenable to the IPC data that POPPA

produces.
On modern chip multiprocessors, if we are given an ex-

ecution time in seconds, we can convert this to a value in
clock cycles. Thus if we know the clock ticks per second, we
can write the performance of i normalized to running alone

as the ratio of clock cycles Csolo
i and C

co(J)
i (see below).

Perfnorm
i = 1−Dco(J)

i =
Csolo

i

C
co(J)
i

(5)

Additionally, if we assume i to be a truly serial program,
then it is the case that i’s dynamic instructions Ii do not

change. Thus Isoloi = I
co(J)
i , and consequently we can trans-

form Equation 5 into a ratio of IPCs by multiplying by
I
co(J)
i

Isoloi

, yielding the following:

Perfnorm
i =

IPC
co(J)
i

IPCsolo
i

(6)

6.2 Known Challenges with Parallel Programs
For parallel programs, however, it turns out that Equa-

tion 6 is often imprecise. Many parallel programs contain
mutexes, semaphores, and other locking mechanisms to en-
force program correctness by preventing data races. When a
load imbalance occurs, that is, one parallel process advances
faster than its siblings, these locking mechanisms can distort
both dynamic instruction count and CPU clock cycles.

With MPI, this issue is quite prevalent. If a communica-
tion routine is implemented as blocking, then it is common
practice to have the thread that initiated the routine to poll
for a certain number of cycles and then sleep. During this
polling period, the thread executes a while loop where it
continually tests whether the communication operation has



completed. If the thread fails to finish the communication
operation within a certain interval, it is put to sleep and
signaled to wake up when the operation has completed. Be-
cause contention and background noise on the system can
cause this polling period to change in duration, the num-
ber of dynamic instructions attributed to these communi-
cation regions is variable. With MVAPICH2, the MPI-2
implementation, the maximum polling period can be ad-
justed [52]. While we were tempted to disable polling, we
knew that doing so would be disadvantageous. In particular,
polling greatly increases individual application performance
because the blocking thread avoids the performance hit as-
sociated with going to sleep and waking back up, as it can
proceed as soon as communication has finished. Thus, we
decided to keep the parameters that maximized performance
even though it made precise prediction more challenging.

6.3 Filtering
Even though Equation 6 is imprecise in the presence of

variable execution, we find that in practice, it is still suffi-
cient for producing reasonable degradation estimates. We
also assume that the average over the N IPC samples that
we collect is roughly equivalent to the actual average IPC
during shutters (IPCsolo

i ) and during normal paired execu-
tion (IPCco

i ). These assumptions are presented below in
Equations 7 and 8.

Perfnorm
i ≈ IPC

co(J)
i

IPCsolo
i

(7)

IPCsolo
i ≈

∑Nsolo
i

j=0 IPCsolo
i,j

Nsolo
i

and IPCco
i ≈

∑Nco
i

j=0 IPC
co
i,j

Nco
i

(8)
POPPA gives us data in the form of a stream of blocks of

IPC measurements, each consisting of K IPC measurements
just before a shutter, K measurements during a shutter, and
K afterward. We denote this stream of blocks as B and
the lth such block as Bl; within each block Bl, the K IPC
values in Bl before the shutter are denoted as IPCbefore

l ,

the K IPC values during a shutter as IPCduring
l , and the

K IPC values after a shutter as IPCafter
l . Thus Bl =

(IPCbefore
l , IPCduring

l , IPCafter
l ). We denote the arith-

metic means of each of these values as IPCbefore
l , IPCduring

l

and IPCafter
l . Using this notation, we present the filtering

algorithm (Algorithm 4) that allows us to increase the pre-
cision of the performance estimate.

Algorithm 4 Filtered Prediction(IPC Tuples B)

1: Initialize IPCco and IPCsolo to 0
2: for each (IPCbefore

l , IPCduring
l , IPCafter

l ) in B do

3: if |IPCbefore
l − IPCafter

l | < δ and IPCbefore
l <

IPCduring
l and IPCafter

l < IPCduring
l then

4: IPCco +
= 0.5(IPCbefore

l + IPCafter
l )

5: IPCsolo +
= IPCduring

6: end if
7: end for
8: Return ( IPCsolo−IPCco

IPCsolo )

Algorithm 4 aims to reduce noise from sampling IPC. It
removes groups of IPC values where the IPC during a shutter

is not greater than the IPC directly before and after. Since
a shutter can only relieve shared resource contention, the
IPC during a shutter should always exceed the IPC before
and after a shutter if all measurements occur during the
same computational phase. The second mechanism, which
states that the absolute difference in IPC before and after
cannot exceed δ works to ensure that clusters that cross
phase boundaries are removed. We empirically determined
δ = 0.05 to be a reasonable value.

7. EXPERIMENTAL SETUP
This section describes our methodology. We ran our ex-

periments on the Gordon Supercomputer [32, 49]. Each
node is dual-socket. For each socket, there is an 8-core In-
tel EM64T Xeon E5 (Sandy Bridge) processor. Simultane-
ous multithreading is disabled [61]. The CPU frequency is
2.6Ghz, and each core has private 32KB instruction and data
L1 caches, a private 256KB L2 cache, and each socket has
20MB of L3. There are 64GB of DRAM. Compute nodes run
CentOS linux with kernel version 2.6.32. The interconnect
is QDR InfiniBand with 8GB/s of bidirectional bandwidth,
and the topology is a 3D torus of switches [10, 57]. Our
applications and benchmarks are shown in the table that
follows. These benchmarks and applications encompass a
wide variety of scientific domains such as subatomic parti-
cle physics [5], plasma physics [41], molecular dynamics [3],
ocean modeling [2], computational fluid dynamics [6, 8],
shock hydrodynamics [36], finite element methods [4] along
with various other numerical methods that are of high in-
terest to the HPC community. We also note that GTC and
MILC, in particular, use a substantial number of dedicated
allocation hours on many leadership class machines.

Benchmarks, Miniapps and Applications

Swim [9], ADVECT3D [51], pcubed [39]
NAS Parallel Benchmarks: CG, FT, LU, MG [14, 47]
Lulesh [36], MiniGhost [4], MiniFE [4], NekBone [6, 8]
GTC [41], LAMMPS [3], MILC [5], POP [2]

We compile GTC, LAMMPS, MILC, POP, CG, FT, LU
and MG with GNU compilers version 4.7 and MVAPICH2
version 1.7. LULESH, MiniGhost, MiniFE, and NekBone
are compiled with PGI compilers version 11.9 and OpenMPI
version 1.6.

In our experiments, we co-locate two 8 process MPI ap-
plications together on the same set of sockets. Each socket
has half its cores run one application and the other half run
the other. Applications co-run together for a minimum of
5 iterations of both applications. As soon as one applica-
tion ends, we immediately restart it. Data collection stops
once both applications have completed 5 iterations. For the
shutter mechanism, we fix K = 1 and P = 200ms.

8. EVALUATION
In this section, we evaluate the accuracy, overhead, and

the pricing fairness of POPPA.

8.1 Quantifying POPPA’s Base Overhead
In this section, we quantify the minimum time to execute

components within the main loop of the POPPA daemon.
The main loop consists of the three core operations of Algo-
rithm 3 – measuring the IPC of the application just prior
to the shutter, issuing the shutter and measuring the IPC of
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the application during that window, and measuring the IPC
of the application immediately following the shutter.

For these experiments, we co-locate two MPI benchmarks,
an auto-generated loop from the pcubed benchmark suite
and a busy loop, called the NULL co-runner, that runs for
the duration of the pcubed loop. In POPPA, we set all of the
sleep parameters to 0, so we can measure the minimum exe-
cution time for all subcomponents of the loop. During each
iteration of the main loop, we measure its total execution
time, the time to measure the IPC both before and after the
shutter, the total execution time of the shutter, the time to
send the SIGSTOP and SIGCONT signals, and the time to make
the IPC measurements during the shutter.

Figure 4 presents the results. On the x-axis we vary the
number of threads in each job. So 4 corresponds to four
pcubed tasks bound to cores 0, 2, 4, and 6 and four busy

loop tasks bound to cores 1, 3, 5, and 7. The y-axis shows
the total time in µs to execute the main loop. When study-
ing this figure, several interesting trends emerge. Not sur-
prisingly, adding more threads increases the minimum loop
execution time. Execution time is dominated by IPC mea-
surement in the form of calls to libpfm, particularly those
outside the shutter region. In fact, we spend about 4x as
much time measuring the IPC outside of shutter regions
compared to within them. This difference in overhead re-
sults from 1) we only measure active threads within a shut-
ter, which is an optimization decision that we made, so the
overhead to read the performance counters doubles outside
of a shutter, and 2) we make two sets of IPC measurements
outside of a shutter (before and after) versus a single set of
measurements during one.

We see that the mean time to shutter does not exceed
130µs and the mean time to execute the main loop does not
exceed 500µs. Thus, our mechanism is fine grained enough
to measure the IPC at sub-millisecond intervals for thread
counts that are representative of contemporary multi-socket
systems.

In addition to the minimum delays incurred by shuttering,
we quantify the effect of enlarging the amount of time spent
in a shutter. For this experiment, we fix the sleep time at
the end of the main loop, P (see Section 5.1), to 200,000µs
and increase the shutter duration, S (see Section 5.1), multi-
plicatively by factors of 2 from 200µs to 409,600µs. We sep-
arately co-run each of the NAS Parallel Benchmarks (NPB)
with the busy loop NULL. Since NULL generates no interfer-
ence, any dilation in run time is a direct result of increasing
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the shutter window.
Figure 5 presents the results. All four benchmarks ex-

hibit a similar trend. When S is small relative to P , the
overhead is small, but as the ratio S : P increases, so does
the overhead. However, the overhead begins to flatten out
as S approaches and exceeds the value of P .

We need to formulate an analytical model for the overhead
that a pricing shutter creates for an arbitrary co-located
pool of n jobs. To do so, we examine the overhead from
n consecutive shutters. Over the course of n shutters, each
job will run in isolation once and sleep n − 1 times while a
single other job enjoys the privilege. Each such shutter has
duration S. Thus each job will sleep for (n− 1) ∗ S seconds.

The total time for n iterations of the main loop of the
daemon is also important for the analysis. Measuring the
IPC before, during and after a shutter is 3S, as each takes S

time. After this, the daemon sleeps P seconds. This pattern
is cyclic, so the combined time is n ∗ (3S + P ). Equation 9
shows ratio of sleep time to total time.

Z(S, P ) =
sleep time

total time
=

(n− 1) ∗ S
n ∗ (3S + P )

(9)

The model for the execution time of the jobs in Figure 5
is shown below:

T (S, P ) = Ti ∗
1

1− Z(S, P )
= Ti ∗

n ∗ (3S + P )

2nS + nP + S
(10)

Here Ti is the run time of application i when co-located
with the NULL co-runner. When we examine the model fit
to the data in Figure 5, we observe that CG-FIT, FT-FIT,
LU-FIT, MG-FIT almost exactly predict the actual overhead
of the shutter for all S in {100 ∗ 2kµs|1 <= k <= 12} and a
fixed P of 200ms. This model incorporates S, P, and T; if we
know any two of these quantities, we can solve for the third.
Thus administrators can decide on a system by system basis
what is exactly an acceptable amount of degradation due to
the pricing shutter and choose values of S and P accordingly.

8.2 Determining the Sampling Rate
In this section, we evaluate the precision and overhead of

the POPPA daemon for different shutter lengths (S values)
while keeping P fixed to 200ms. We saw in the previous sec-
tion, that the overhead due to the shuttering mechanism has
an analytical upper bound given by Equation 10. Using this
equation, we selected values of S with less than 5% overhead:
200, 400, 800, 1600, 3200, 6400, 12800, and 25600µs.
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Figure 6: Effect of shutter duration on accuracy and overhead for each NPB co-run with ADVECT3D-256
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Figure 7: Effect of shutter duration on accuracy and overhead for each NPB co-run with Swim-150

We ran two sets of pairwise experiments. In the first,
we co-located the NPBs with a contentious co-runner (AD-
VECT3D with a grid size of 2563), and in the other we
co-scheduled the NPBs with a moderately contentious co-
runner (Swim with a grid dimension of 1503). Figures 6a,
6b, 6c, and 6d show the performance prediction accuracy of
the POPPA daemon for CG, FT, LU, and MG when they
are co-located with ADVECT3D. Both the accuracies of the
unfiltered and filtered predictors are shown. For clarity, we
opt not to present the results for 400, 1600 and 6400µs.

In this set of experiments, we are able to very accurately
predict the contention with negligible overhead. Filtering
improves prediction performance. Our predictors have the
largest error for FT. S = 200µs gives the highest accuracy,
but as S increases, so does the error. This error results
from FT’s very fine grain phases, which coarser granularity
shutters have trouble capturing.

Figures 7a, 7b, 7c, and 7d show the prediction accuracy
for the NPBs paired with Swim. Again, our prediction ac-
curacy is very precise. In this case, we note that the filtered
prediction is sometimes overly zealous when predicting con-
tention. However, this result is unsurprising given that fil-
tering removes clusters of IPC measurements where the IPC
measured during a shutter does not exceed the IPC directly
before and after.

A contrasting finding between the experiments with AD-
VECT3D and Swim concerns daemon overhead as a func-
tion of S. In the experiments with ADVECT3D, overhead is
flat regardless of S whereas it sharply increases with Swim.
This divergence is caused by the fact that ADVECT3D is
configured to be contentious whereas Swim is not. During
a shutter, the lone running application receives a respite
from the contention generated by the other application. In
the case of the NPBs with ADVECT3D, this causes each
NPB to speed up by approximately 2x, which offsets the
lost throughput from sleeping during alternate shutters. By
contrast, Swim degrades each NPB by at most 15%, so the
time spent sleeping cannot be masked.
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Figure 8: Overhead of POPPA on NAS benchmarks
co-located with ADVECT-256

These experiments show that the shutter duration S is
largely irrelevant for accuracy. Thus when selecting S, it
makes sense to select a value that induces minimal overhead
and run time variation. Figures 8 and 9 present both the
daemon’s overhead and its distribution for the surveyed val-
ues of S. In Figure 8, regardless of the value of S, overhead
due to the pricing shutter never exceeds 2%. However, in
Figure 9, this value exceeds 4%, which is clearly too costly.
S = 3200µs delivers an overhead of less than 1% and with
the smallest variation. For this reason, we use S = 3200µs
for the remainder of our experiments.

8.3 Pairwise Evaluation
In this section, we evaluate the precision of POPPA on

pairwise co-locations. Since our filtered prediction was bet-
ter in aggregate in our previous experiments, we apply that
prediction mechanism rather than the simple one. We run
co-schedules of all possible combinations of our 12 bench-
marks and real applications.

Figure 10 shows the accuracy of our filtered predictor at
quantifying degradation. The x-axis lists the names of the
benchmarks, and the y-axis lists the co-runners. Individ-
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Figure 11: Performance degradation (%) for jobs on
the x-axis co-located with jobs on the y-axis
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Figure 9: Overhead of POPPA on NAS benchmarks
co-located with Swim-150

ual cells present the percentage difference in predicted run
time versus actual, where negative values represent under-
prediction and positive values represent overprediction. The
top row “mean” presents the mean absolute error across the
apps, and the right most column “mean” presents the mean
absolute error that an application creates in the prediction
accuracy for the other codes.

Figure 11 presents the degradation of each application as
a percentage of run time relative to running with the NULL
co-runner, i.e half the cores vacant on each socket. The top
row presents the mean degradation of each scientific code
on the x-axis and the right most column presents the mean
degradation each application on the y-axis causes to its co-
runners.

If we study Figures 10 and 11 in concert, a number of
interesting trends emerge. POPPA does well at quantifying
degradation for all pairings consisting exclusively of our real
applications, GTC, LAMMPS, MILC, and POP. Our mean
absolute error is 2.5% and absolute error never exceeds 5.8%.
We accurately characterize both ends of the spectrum. We
predict high degradation for MILC paired with itself and we
neither significantly underpredict or overpredict for pairings
with low mutual contention such as GTC-LAMMPS and
LAMMPS-POP. For pairings of real apps with benchmarks,

the prediction accuracy is generally quite good except for
when MILC is co-located with MiniFE and FT.

For our proxy apps LULESH, MiniFE, MiniGhost and
NekProxy (NekBone), the results are more mixed. We are
able to predict their performance with a mean absolute error
of 3.8%. MiniFE is a particularly interesting because in
each case we overpredict the degradation for its co-runner
(mean of 7.5%). This overprediction is an artifact of the
filtering algorithm. When we use our unfiltered predictor,
we overpredict by at most 1.5% for MiniFE’s co-runners.
MiniGhost, by contrast causes us to underpredict contention
for some of its co-runners.

On the NPBs, our prediction error is slightly higher. If
we exclude FT, our mean absolute prediction error is within
5.3%. FT however, poses challenges both for its prediction
and applications it is co-located with. In both cases, we
underpredict the actual degradation. This underprediction
is due to the duration S of the shutter. If we reexamine
Figure 6b, we observe that S = 200µs yields the highest ac-
curacy when FT is co-located with a contentious co-runner.
We also observe in Figure 7b that out of the possible values
for S, S = 3200µs prognosticates the lowest contention. On
the whole, our system is generous and tends towards mod-
estly underpredicting contention. Our mean absolute error
across all pairings is 4.0%.

8.4 Pricing Fairness
In this section, we show POPPA’s pricing fairness versus

the state-of-practice and the oracle. Figure 12 shows the
distribution of relative SUs charged for each application us-
ing the different pricing schemes. On average, the state-of-
practice would charge users 14% more as result of co-locating
their jobs. Jobs that degrade more, pay more. POPPA on
the other hand discounts users by an average of 7.4%, which
is close to the 11.5% discount that the oracle would offer.

When we examine the minimum and maximum relative
SUs charged, we also see favorable results for POPPA. The
maximum discount given by POPPA is 40.8%, which is close
to the oracle’s 38.3%. The max normalized price paid by a
user using POPPA’s counsel is 103.8% of the spread baseline
versus the oracle’s 99.8%. In the minority of cases where
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Figure 12: The distribution of prices a user would pay for a given application when using either the
state-of-practice (SOP), POPPA, or the maximally fair Oracle

POPPA charges more than the spread baseline (23/144), it
is usually smaller than run-to-run variation, with a mean
surcharge of 1.3%. In addition, the mean price paid for each
application never exceeds 99.2% of the baseline, and thus
over time, all users will receive a discount. Contrast this
with the state-of-practice, where a user running MILC in the
worst case can pay up to 62.1% more and on average would
expect to pay 24.9% more as a result of cross-application
interference.

If we consider the impact of POPPA’s discounts, we find
they are entirely tenable. Recall that the job striping study [20]
found that co-locating MPI benchmarks and full-scale appli-
cations at scale increased mean system throughput by 12 to
23%. Thus discounting users by a mean 7.4% does not in-
flate the purchasing power of SUs, and so SU allocation need
not be changed.

9. RELATED WORK
There are a number of works that investigate pricing or

identify pricing as a key issue for large scale grid and cloud
infrastructures [13, 63, 48, 54]. Our work differs from these
works in that we address the pricing issue in supercomputers
with co-locations. To the best of our knowledge, our work
is the first to explore this problem space.

Although this work addresses challenges related to fair
pricing, it shares similarities with research that addresses
identifying and mitigating contention in multicore systems.
Early work on simultaneous multi-threading processors in-
vestigated co-scheduling of heterogeneous threads [55, 56,
21] as a way to increase throughput by reducing contention.

Cross core contention has also been extensively studied [22,
65, 44, 43]. A mechanism similar to the pricing shutter is
explored in [44] but differs in that it is in the commercial
data center space and in that it focuses on L3 miss rates
with and without the presence of contention.

Another solution to mitigating contention has been cache
partitioning both in software and in hardware [46, 58, 53,
23]. Core fusion is an architectural design that helps reduce
the cross core contention problem by dynamically combining
simpler cores into larger cores [34, 59]. Others have exam-
ined using scheduling to mitigate contention [64, 29, 28,
18, 17] and [50, 60] investigate scheduling considerations in

mapreduce environments.
There are also studies that evaluate the effectiveness of an-

alytical and statistical models to solve problems related to
contention [40, 62, 24, 31]. The computational complexity,
heuristics and approximation algorithms for optimal multi-
processor scheduling are explored in [30, 19, 37, 35].

10. CONCLUSION
We have provided a mechanism to enable fair pricing on

HPC systems, one of the fundamental roadblocks to enable
node sharing on HPC systems. By employing POPPA, we
can accurately measure performance degradation across a
range of MPI applications. Using this data, we price users
in a fashion that approaches the optimal fairness provided
by the oracle, and our mean absolute prediction error is 4%
across all combinations of 12 application codes.

POPPA is not a definitive solution to the pricing problem
but a key part of a more holistic solution. Going forward,
the development of additional, light-weight techniques for
application introspection will become essential. By harness-
ing this dynamic information, further optimization oppor-
tunities will arise. Through combining these solutions, the
road to exascale supercomputers looks bright.
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