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Abstract

As multicore processors with expanding core counts continue to
dominate the server market, the overall utilization of the class of
datacenters known as warehouse scale computers (WSCs) depends
heavily on colocation of multiple workloads on each server to take
advantage of the computational power provided by modern proces-
sors. However, many of the applications running in WSCs, such
as websearch, are user-facing and have quality of service (QoS)
requirements. When multiple applications are co-located on a mul-
ticore machine, contention for shared memory resources threatens
application QoS as severe cross-core performance interference may
occur. WSC operators are left with two options: either disregard
QoS to maximize WSC utilization, or disallow the co-location of
high-priority user-facing applications with other applications, re-
sulting in low machine utilization and millions of dollars wasted.

This paper presents ReQoS, a static/dynamic compilation ap-
proach that enables low-priority applications to adaptively manip-
ulate their own contentiousness to ensure the QoS of high-priority
co-runners. ReQoS is composed of a profile guided compilation
technique that identifies and inserts markers in contentious code
regions in low-priority applications, and a lightweight runtime that
monitors the QoS of high-priority applications and reactively re-
duces the pressure low-priority applications generate to the mem-
ory subsystem when cross-core interference is detected. In this
work, we show that ReQoS can accurately diagnose contention and
significantly reduce performance interference to ensure application
QoS. Applying ReQoS to SPEC2006 and SmashBench workloads
on real multicore machines, we are able to improve machine uti-
lization by more than 70% in many cases, and more than 50% on
average, while enforcing a 90% QoS threshold. We are also able
to improve the energy efficiency of modern multicore machines by
47% on average over a policy of disallowing co-locations.

Categories and Subject Descriptors B.3.3 [Hardware]: Memory
Structures—Performance Analysis and Design Aids; D.3.4 [Pro-
gramming Languages]: Processors—code generation, run-time en-
vironments, compilers, optimization; D.4.8 [Operating Systems]:
Performance—measurements, monitors
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Figure 1. Goal of ReQoS
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1. Introduction

Web-service companies such as Google, Yahoo, Amazon, and Mi-
crosoft host large-scale data intensive applications that require
nothing less than a Warehouse Scale Computer (WSC) [3] to run.
These WSCs house hundreds to thousands of machines to provide
the computing resources needed to serve millions of users. To limit
the cost of ownership of WSCs, these machines are composed of
commodity components that are cheap and easily replaceable, often
2 to 4 server grade processors per machine, and 4 to 12 cores per
chip. The cores of a single chip share memory subsystem resources
such as caches and bandwidth to the main memory on the machine.
When multiple applications are running simultaneously on a mul-
ticore machine, resources sharing and contention among cores can
result in a significant amount of performance interference. This
interference leads to a significant problem for the service level
requirements of user facing web-service applications [19, 33].

User facing latency-sensitive applications must provide a pre-
dictable and sometimes strictly defined quality of service (QoS).
To avoid the constant unpredictable threat that shared resource con-
tention poses to application QoS, datacenter operators and system
designers typically disallow co-locations of latency-sensitive jobs
with other jobs. This unnecessary over-provisioning of compute re-
sources reduces the overall utilization of WSCs, recently reported
to be below 30% on average [22], and results in an unnecessar-
ily high cost and a large environmental footprint for a given set of
web-service workloads.

Improving the utilization of multicore processors in light of
QoS constraints has been identified as an important goal by prior
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work. However, the problem is far from solved in real-world de-
ployments. A number of novel hardware solutions have been pro-
posed [12, 13, 27, 28, 30, 36] to address contention and perfor-
mance fairness. However, these solutions are not readily deployable
and high cost may hinder their adoption in production. Contention
aware scheduling has also been proposed in prior work [2, 4, 7, 11,
15, 23, 34, 37]. However, these techniques assume that a balanced
set of contentious and non-contentious jobs are available to maxi-
mize utilization and can only select co-run schedules of these jobs.
When contentious workloads must co-run, one approach that has
largely been unexplored in prior work is to dynamically change the
contentious nature of applications.

The goal of this work is to manage contention directly by ma-
nipulating the contentiousness of co-running applications to ensure
high quality of service and high utilization, irrespective to the co-
run schedule. This goal is summarized in Figure 1. As opposed
to disallowing the co-location of high-priority and low-priority ap-
plications to guarantee QoS, as shown in 1(a), or simply allowing
co-locations and suffering performance interference, as shown in
1(b), we aim to enable “safe” co-locations between potentially con-
tentious low-priority applications with high-priority applications,
shown in 1(c), by providing a software mechanism to manipulate
contentiousness directly.

Recently, compilation has been proposed to provide a mech-
anism to indeed modify the contention characteristics of applica-
tions to attenuate the interference caused to co-running applica-
tions [32] by applying transformations to stagger the memory re-
quest rate of contentious code regions. This approach effectively
trades the performance of low-priority applications for the QoS of
high-priority applications to facilitate co-location and has shown to
be particularly useful within the ecosystem of applications in WSCs
as the workloads and infrastructure in a WSC are typically owned
by the same web-service company, such as Google, Microsoft, Ya-
hoo and Apple. However, there are three critical limitations of this
approach, all of which stem from the fact that the code transforma-
tions are decided before runtime and applied statically:

1. The performance sacrificed to ensure the “niceness” of the
low-priority application is overly conservative as it persists
regardless of whether it is in fact co-running with a high-priority
application that is indeed sensitive to contention.

2. Specific QoS goals cannot be targeted and the self-adaptation of
the low-priority application to ensure a QoS goal is not possible.
With a static approach, the resulting QoS of the high priority
application when co-located is variable and unpredictable.

3. A significant tuning effort is required for each low-priority
application as it is based entirely on the particular contentious
characteristics of the application.

To address these three challenges and best accomplish the goal
outlined in Figure 1, a reactive dynamic approach is needed to ef-
fectively detect contention at runtime and adaptively adjust the con-
tentious nature of an application based on the amount of contention
that is actually occurring. Such an approach addresses each of the
three limitations noted. In designing this reactive approach, we aim
to ensure its deployability in WSCs by providing a lightweight soft-
ware solution that does not incur high performance overheads and
is unobtrusive in that it does not require changes to the current
production system software stack in deployment. In this paper, we
present ReQoS, a static/dynamic compilation approach for adap-
tively manipulating application contentiousness online to increase
WSC utilization while enforcing application QoS.

ReQoS is composed of two co-designed components: the RQ-
Compiler and RQ-Runtime. First, our RQ-Compiler uses a profil-
ing approach similar to that proposed in prior work [32] to identify

the code regions in low-priority applications that aggressively de-
mand memory resources and may cause resource contention. Then,
as opposed to statically pessimizing the contentious region, our
RQ-Compiler applies a code marking technique on those regions.
The marking technique has been co-designed with the RQ-Runtime
to enable the flexible and reactive manipulation of the code re-
gions’ contentiousness. Dynamically, the RQ-Runtime uses a novel
software-only technique to detect when contention has caused QoS
degradations and adaptively throttles down the memory request rate
by injecting short naps in the contentious code regions of the low-
priority application. The degree of nap insertion applied to the con-
tentious code regions of the low-priority application is dynamically
determined based on the severity of observed QoS degradation of
the high-priority application, resulting in more drastic responses
to higher levels of contention. As contention lessens dynamically,
naps are reduced, increasing the execution rate of the low-priority
application to maximize machine utilization. Keep in mind that
when the application executes code not identified as contentious,
these naps do not occur. In performing this execution rate manipu-
lation, cores that would otherwise remain idle are utilized.

To the best of our knowledge, this paper is the first to enable the
direct modification of the contentiousness of low-priority applica-
tions dynamically to ensure the QoS of high priority applications.
Specifically, this paper makes the following contributions:

• The RQ-Compiler - We present a compilation approach that
enables the adaptive manipulation of contentiousness of the
low-priority application. The RQ-Compiler identifies the con-
tentious code regions of an application and inserts hooks in
these regions that are used to invoke runtime manipulation.

• The RQ-Runtime - We present a runtime system that contin-
uously monitors the QoS of high-priority applications, detects
when contention is occurring dynamically, and directs the ma-
nipulation of the contentiousness of low-priority applications
based on an adaptation policy.

• Simple and Targeted Adaptation Policies - We present two
adaptation policies, simple, which provides a “knob” that con-
trols whether the online response to contention emphasizes
higher utilization or higher QoS, and for when a specific QoS
threshold is available, targeted, that dynamically self tunes to
the specified QoS target while maximizing utilization.

• We present a thorough evaluation of ReQoS and each of its
adaptation policies including a phase level analysis demonstrat-
ing how ReQoS adapts during execution to ensure application
QoS.

Using ReQoS on SPEC2006 and SmashBench workloads on a
Quad Core Intel Nehalem machine, we are able to improve uti-
lization by more than 70% in many cases, and more than 50% on
average, while enforcing a 90% QoS threshold. We are also able
to improve the energy efficiency of modern multicore machines by
47% on average over a policy of disallowing co-locations. Com-
paring to prior work [32], ReQoS improves utilization by 51% on
average while providing similar QoS improvement.

The rest of the paper is organized as follows: Section 2 presents
the overview of ReQoS. Section 3 presents our compilation tech-
nique to instrument markers to identified contentious code regions
to invoke dynamic adaptation. Section 4 presents the runtime and
policies for dynamic contention detection and reaction. Section 5
presents the evaluation. Section 6 presents prior work and Section 7
concludes.

2. ReQoS Overview

ReQoS provides a software mechanism that automatically and
adaptively regulates the pressure that a low-priority batch appli-
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Figure 2. ReQoS Overview

cation applies to the shared memory subsystem resources to ensure
the QoS of high-priority latency-sensitive applications. As shown
in Figure 2, ReQoS consists of two components: The RQ-Compiler,
and RQ-Runtime.

2.1 RQ-Compiler

The RQ-Compiler is a static profile-driven compiler approach that
uses a performance counter based profiling analysis to identify con-
tentious code regions and insert markers on those regions to steer
the runtime adaptation. This profiling allows us to pinpoint the po-
tentially problematic code regions for accurate dynamic contention
detection with a small runtime overhead. As shown in Figure 2,
the inserted markers trigger the RQ-Runtime, via the Nap Engine,
when contentious code regions are executed. These triggers call
upon the runtime to directly manipulate the rate of memory ac-
cesses generated by the low-priority application through the Nap
Engine interface. The binaries produced by the RQ-Compiler can
also be run without the RQ-Runtime. In this case, the inserted
markers are benign, and the application runs as normal. The over-
head of having these markers present in the binary is minimal. A
full evaluation of the overhead is presented in Section 5. The RQ-
Compiler and the profiling analysis used to identify contentious
code regions are described in detail in Section 3.

2.2 RQ-Runtime

The RQ-Runtime is responsible for monitoring the QoS of high-
priority applications, detecting when a low-priority application in-
terferes with the performance of the high-priority application, and
dynamically deciding the degree of memory access rate reduction
to apply to alleviate the performance interference. As shown in Fig-
ure 2, a lightweight dynamic runtime that monitors application QoS
is attached to the high-priority application. This runtime periodi-
cally reports an application’s QoS through a shared memory buffer.
The Nap Engine that is attached to the application binary of the
low-priority application reads the most recent QoS reports from this
buffer to steer the online contention response. The RQ-Runtime and
the adaptive policies are described in detail in Section 4.

Figure 2 also illustrates how ReQoS is used in the context of a
WSC. All low-priority applications in the WSC are compiled with
a flag denoting that it is a low-priority application. The applications
are then compatible for execution with ReQoS enabled. When
these applications are scheduled to co-run with a high-priority
application, QoS monitoring is turned on, and the Nap Engine
enacts the adaptation policy.

2.3 ReQoS in the OS

ReQoS can be integrated into the OS by implementing the RQ-
Runtime as a module that is compiled into the OS and allowing the
application markers to trigger the runtime via system calls for Re-
QoS. However, while contention aware scheduling approaches can
naturally be realized as OS techniques, the dynamic manipulation
of the contentiousness of specific code regions can best be realized
using user-mode runtime systems as the cost to invoke the runtime
in user-mode is an order of magnitude more efficient than suffering
an OS context switch for each runtime invocation. These context
switches can become overbearing especially when considering the
frequency of invocations during detection and the fine grain feed-
back control mechanisms discussed in Section 4.

3. Compiling for ReQoS

In this section we present RQ-Compile, our static compilation to
enable dynamic contention mitigation and QoS improvement at
runtime. The RQ-Compile process is illustrated in Figure 3. To
compile a low-priority application, we first identify its contentious
code regions using a profiler that scores the contentious nature of
code regions as they execute. We then insert markers in those re-
gions that periodically invoke the RQ-Runtime. Because markers
target the problematic regions, the runtime engine is only triggered
when the contentious regions are executing, minimizing the run-
time overhead.

3.1 Profiling to Identify Contentious Code

Our profiling analysis provides dynamic scoring of sequences of
executed code for its contentious nature using a prediction model
based on prior work [32]. The model uses the memory resource
usage of a code region to predict the severity of the performance
interference the code may cause when co-running with other appli-
cations. The more aggressively a code region consumes the shared
memory resources such as caches and memory bandwidth when
executing, the more likely it is to be contentious for the resource
when co-running. To collect the memory resource usage informa-
tion of a code region, the profiler samples performance monitoring
units (PMUs) during runtime. Using the prediction model based on
the performance counter sampling, the profiler dynamically calcu-
lates the contention score of a code region, identifies contentious
code regions that aggressively demand shared memory resources
and thus most likely to cause contention and performance degrada-
tion when co-running with other applications.

The prediction model takes several important shared resources
including shared caches, memory bandwidth and prefetchers into
consideration. Our general linear model is as follows:

C = a1 × LLC usage + b1 × BW usage + c1 × Pref usage, (1)

where C is the contention score indicating the amount of the poten-
tial degradation a code region may cause to its co-runners. LLC is
the shared last level cache; BW is memory bandwidth and Pref
is the prefetchers.

After identifying the appropriate performance counters, we ap-
ply multiple regression to determine the appropriate model coef-
ficients for our experimental platform (Section 5.1) using Smash-
Bench [19], a suite of contentious kernels developed within Google
to span a spectrum of contentious memory access patterns and
working set sizes. The established model is as follows:

C = 1.663× (L2LinesIn/ns− L3LinesIn/ns)

+ 8.890× L3LinesIn/ns+ 0.044, (2)

where L2LinesIn is the number of cache lines brought in for
the last level private cache (L2) and L3LinesIn for the shared
last level cache (L3). The difference between the two measures the
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Figure 3. ReQoS Compilation

amount of data coming from the shared cache instead of the main
memory, including the traffic generated by L2 prefetchers. It is used
as a proxy to measure the shared cache usage. L3LinesIn is used
to measure the memory bandwidth consumption. The coefficients
of each term in Equation 2 demonstrate the relative impact of
bandwidth contention and LLC contention, implying that memory
bandwidth contention may have a more dominating impact on
performance degradation on this platform.

3.2 Compiling Contentious Code

Our profiler identifies the contentious code regions based on the
PMU model and applies instrumentation to these regions. The in-
strumentation facilitates the dynamic manipulation and adaptation
of a code region’s contentiousness. To identify these contentious
regions, during profiling, performance counters (L2 and L3 cache
lines in rate) are sampled every 1 ms and the contention score is cal-
culated using Equation 2. To correlate the contention score to the
corresponding static code regions, the number of instructions re-
tired in each 1 ms execution interval is also sampled and recorded.
After the profiling run, a PIN [18] tool is used to replay the execu-
tion. Based on the recorded instruction profile, our PIN tool iden-
tifies the hottest basic blocks that are executed during each 1 ms

execution interval and assigns the corresponding contention score
to these basic blocks. The PIN tool then selects the basic blocks
with a high contention score.

After these highly contentious basic blocks are identified, we
instrument markers, invoke rt( ), to the contentious code, shown
in Figure 3. At runtime, these markers invoke the RQ-Runtime to
dynamically decide the throttling policy. To minimize the potential
overhead of frequent calls to the runtime, we have implemented a
number of optimizations. Most notably, we use a self-tuning global
checker that allows the call to the runtime to be executed only
after sufficient execution iterations of the same basic block. This is
especially helpful when a large number of markers are inserted in
the critical path of execution. Instead of executing the function call
every time, an increment and compare is executed in the average
case.

4. The ReQoS Runtime

ReQoS combines both static compilation and dynamic adaptation.
The profiling and static compilation enable the dynamic engine to
manipulate the execution of the low-priority application. They also
assist the diagnosis of contention and trigger the runtime only when
problematic code regions are executing. As neither the particular
co-locations of high-priority applications and low-priority appli-
cations nor how sensitive the high-priority application may be to
resource contention are known statically, it is desirable to have a

PMU
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Figure 4. ReQoS Runtime Architecture

runtime approach that can adjust the amount of throttling dynami-
cally. In this section, we present RQ-Runtime, our runtime engine
that detects the QoS degradation of high-priority applications due
to resource contention online, and adaptively manipulates the con-
tentiousness of the low-priority applications to mitigate the degra-
dation.

4.1 Runtime

Figure 4 illustrates the design for RQ-Runtime. The runtime engine
is composed of two main components: Monitor and Nap Engine.
The Nap Engine is linked into the low-priority application and the
Monitor is either linked into, or attached to the PID of, the high-
priority application. The Nap Engine and the Monitor communicate
through a shared memory buffer.

[Monitor] The Monitor is responsible for monitoring the
QoS of high-priority applications. The monitor is capable of us-
ing various performance metrics. In our implementation we use
instruction-per-cycle (IPC) as a proxy for QoS. The IPC is often
used in production datacenters as a QoS proxy because it is readily
available using hardware performance counters and can be sampled
with little overhead. For example, Google Wide Profiling (GWP) is
currently deployed in Google’s fleet to collect IPC and other coun-
ters for performance monitoring and debugging [26]. The Monitor
uses a periodic probing technique, leveraging a timer interrupt to
sample the hardware performance counters every 1 ms, and storing
the recent sequence of IPC samples in a circular buffer in the shared
memory. As we show in Section 5, this period probing technique
incurs a minimal overhead (often less than 1%).

[Nap Engine] Based on the monitored QoS, the Nap Engine
detects resource contention and QoS degradation, and accordingly
reacts by deciding the appropriate execution rate reduction for the
low-priority application. The Nap Engine is only invoked by the in-
strumented markers when the low-priority application is executing
the contentious regions. Instead of invoking the Nap Engine every
time an instrumented contentious basic block is executing, a timer
based on the time stamp register, read using the RDTSC instruc-
tion [1], is used in the instrumentation to only yield control from
the low-priority application to the Nap Engine periodically (2 ms in
our experiments). To further reduce the overhead of timer check-
ing, we also use this timer to adapt the global checker mentioned in
Section 3 by approximating the amount of runtime invocations to
skip before reading the timestamp counter again. This approxima-
tion requires a simple calculation based on the time past since the
prior invocations and is adaptively adjusted upon every timestamp
read. Due in part to these optimizations, the overhead of invoking
the Nap Engine is low, never exceeding 5%. The evaluation is pre-
sented in Section 5.

When invoked, the Nap Engine’s main tasks are to firstly detect
contention and QoS degradation based on the information provided
by the Monitor, and secondly if contention is detected, analyzes and
decides how to appropriately throttle down the low-priority appli-
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cation to mitigate the degradation. The Nap Engine controls the ex-
ecution rate of a low-priority application by putting the execution
of a contentious code region to epochal intermittent short “nap”
mode.

Naps reduce the memory request rate and execution rate of
the low-priority application and the pressure it puts on the shared
memory subsystem. This in turn prioritizes the memory requests
of the co-running high-priority application, and as a result, the
QoS degradation it suffers due to the resource contention is greatly
reduced or eliminated. The nap is implemented using nanosleep( ).
Two main parameters that affect the behavior and the effectiveness
of napping include the frequency and the duration of naps. The Nap
Engine controls these parameters and decides whether and when a
nap should occur (essentially how long the low-priority application
should execute at a normal rate) and how long of a nap it should
take to effectively improve the QoS of the co-running high-priority
application. Because the Nap Engine can directly control these two
parameters, it has a fairly accurate and predictable rate reduction
control. Flexible policies and heuristics for contention detection
and reaction can be implemented in RQ-Runtime, which are further
discussed in the next section.

4.2 Detection and Reaction

In this section, we present two adaptation policies used in RQ-
Runtime to detect resource contention and QoS degradation, and
to reactively control the execution rate of the low-priority applica-
tion to mitigate contention if necessary. It is challenging to design
a software approach to detecting contention as it occurs. As we
mentioned earlier, this is mostly due to the fact that contention in
various hardware components such as shared caches and memory
controllers is not exposed to the software. We design probabilis-
tic empirical approaches to tackling the challenge of dynamic con-
tention detection based on the online monitoring and feedback con-
trol. Once contention and QoS degradation are detected, the Nap
Engine is also tasked to decide the appropriate rate reduction to ap-
ply to the low-priority application to reduce the QoS degradation.

In this work, we design two heuristics for the Nap Engine:
simple and targeted. The simple heuristic directly relies on
QoS monitoring information of the high-priority application and
is designed to provide users with a flexible, tunable “knob” to man-
age the tradeoffs between QoS and utilization. For example, the
heuristic can be configured to prioritize QoS and conservatively re-
duce utilization or prioritize utilization and risk the QoS. However,
the simple heuristic does not strive for a strict QoS goal, such as
improving the QoS of high-priority application to above 90% of
its normal QoS when running alone. The targeted heuristic on
the other hand, is designed to accommodate a pre-specified QoS
target. Targeted makes the detection based on closely monitoring
the impact of throttling of the low-priority application on the QoS
and uses an analytical model to adjust the appropriate nap duration
adaptively.

Algorithm 1: Nap Engine (Heuristic 1: Simple)

Input : threshold low, threshold high, nap ratio low,
nap ratio mid, nap ratio high

ipc = latest IPC sample from the shared IPC buffer;

if (ipc < threshold low) then

nap duration← nap ratio low × exec duration ;

else if (ipc < threshold high) then

nap duration← nap ratio mid× exec duration ;

else

nap duration← nap ratio high× exec duration ;

end

nap(nap duration);
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Figure 5. DFA for Targeted Heuristic

[Heuristic 1: Simple] The basic idea of simple is to detect
and react purely based on the monitored QoS of the high-priority
application. In our runtime implementation, we use instruction-per-
cycle (IPC) as a proxy for QoS and simple adjusts the nap duration
based on the dynamically monitored IPC. The details of our algo-
rithm are described in Algorithm 1. When the contentious code re-
gion of a low-priority application (LP) is executing, the Nap Engine
is invoked periodically (every execution duration). The Nap
Engine then reads the latest IPC sample of the high-priority appli-
cation (HP). Two thresholds (threshold low, threshold high)
are used to bucket the monitored IPC into low, medium and high.
The nap duration is decided based on which bucket the IPC is
in. The lower the IPC, the longer the nap duration. In addition
to IPC, application specific performance metrics such as query la-
tency can also be monitored and bucketed. The rationale of this
heuristic is that although many factors other than contention may
cause QoS degradation (such as load fluctuations), we will conser-
vatively throttle down the low-priority application once the QoS
degradation of the high-priority application is observed. The pa-
rameter configurations (IPC thresholds and nap ratio) decide how
QoS-biased (conservative) or utilization-biased (optimistic)
the simple heuristic is. The sensitivity of those parameters is dis-
cussed in Section 5.

[Heuristic 2: Targeted] The primary design goal of targeted
is to adaptively adjust the nap duration to improve the QoS to a
user-specified goal (such as a minimum QoS of normalized 90%
of a specific QoS target). The basic idea of targeted is to detect
and react based on measuring how the QoS of high-priority ap-
plication is affected by naps of low-priority applications. Figure 5
illustrates the logic of targeted. There are three basic states for
a low-priority application (LP), which the Nap Engine tracks and
controls. Periodically, the nap engine is invoked to analyze the QoS
samples of the high-priority application (HP) and the analysis result
triggers potential state transitions.

• Intermittent nap state. In this state, naps are inserted to
throttle LP’s execution rate. The QoS of the HP is sampled both
when the LP is napping and when the LP wakes up from the
nap and resumes executing. The difference between the two
samples, delta IPC is used to adjust the next nap duration.
The bigger the difference, the more significant the impact of
contention is, and the longer the nap duration should be. The
detailed model of adapting the nap duration is shown later this
section. When the IPC delta is smaller than the pre-specified
QoS degradation threshold, it indicates that napping does not
have a significant impact, and LP transition to the execution

state.

• Execution state. In execution state, LP executes at the
full rate with no naps inserted. However, LP does not stay in
execution state indefinitely. A countdown is set to trigger
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the transition to voluntary check state after a pre-specified
execution period.

• Check state. The purpose of the check state is to period-
ically detect if contention occurs after a period of execution.
The detection is similar to intermittent nap state. LP is
put to nap for a short interval and then is run for a short in-
terval. The difference of the IPC samples of HP during these
two intervals is used to decide if contention is occurring. If so,
LP transitions to the intermittent nap state; if not, the
execution state.

Algorithm 2: Nap Engine (Heuristic 2: Targeted)

Input : QoS goal, conservative factor, execute period

if (LP state == execution state&& execute countdown > 0)

then

execute countdown−− ;

return; /* no napping, running ahead */ ;

else if (LP state == execution state&&

execute countdown = 0) then

nap(check interval) ;
ipc nap← read the average IPC of HP when LP is in the last napping
duration from the shared IPC buffer ;

LP state← check state; /* voluntarily nap for a short
period to test if contention is back by checking
delta IPC */ ;

else if (LP state == nap state || LP state == check state) then
ipc exec← read the average IPC of HP when LP is the execution
interval from the shared IPC buffer ;

delta ipc← (ipc nap− ipc exec)/ipc nap ;

if (delta ipc < conservative factor ∗ (1−QoS goal)) then

execute countdown← execute period ;

LP state← execution state ;

return; /* significant contention is not detected nap

does not seem to have a big enough effect on IPC */

;

else
nap duration←
calculate duration(delta ipc,QoS goal) ;

nap(nap duration) ;
ipc nap← read the average IPC of HP when LP is the last
napping duration from the shared IPC buffer ;

LP state← nap state ;

end

end

The algorithm for targeted heuristics is described in Algo-
rithm 2. A parameter conservative factor is used to guard
how close the monitored QoS degradation is to the pre-specified
threshold (delta IPC, for example) before the napping is used to
throttle down the LP. Also in Algorithm 2, we estimate the ap-
propriate nap duration based on the QoS goal (the degradation
threshold QoSthresh, such as 90% of the optimal QoS), the given
exec duration (how long LP executes between consecutive nap
engine invocations) and the observed difference between IPC of
HP when LP is napping (IPCnap) and when LP is executing
(IPCexec). To estimate the appropriate nap duration we solve the
following equation:

QoSthresh =
IPCnap × nap duration + IPCexec × exec duration

IPCnap × (nap duration + exec duration)
,

(3)

where exec duration is the duration of the execution interval
between inserted intermittent naps.

5. Evaluation

In this section, we first valuate the effectiveness of our two heuris-
tics in mitigating the QoS degradation due to resource contention
and in improving machine utilization. We also take a deeper look

Configurations thresh low thresh high nap ratio
util biased 0.5 1.0 {0, 1, 2}
balanced 0.8 1.5 {0, 1, 2}
QoS biased 0.5 1.0 {1, 2, 3}

Table 1. Three configurations for simple heuristic

into the dynamic behavior of ReQoS and its reaction to contentious
phases throughout execution. We then compare ReQoS against the
technique presented in prior work. Lastly, we evaluate the overhead
and power efficiency of ReQoS.

5.1 Setup and Methodology

Our evaluation is conducted on a 2.67GHZ Quad Core Intel Ne-
halem processor with private L1/L2 caches, an 8MB last level cache
(L3) shared by four cores and 4GB main memory. This platform
runs Linux 2.6.29.6 and a customized GCC 4.4.6.

The workloads used in our evaluation include the sledge ap-
plication from the SmashBench contentious kernel suite [19, 20]
(developed at Google) and applications from SPEC CPU2006. All
benchmarks are compiled using GCC at the O2 level. All SPEC
applications are run using ref inputs. Each experiment is con-
ducted three times to calculate the average performance. Bench-
mark runs are stable with a performance variance of 1% or less
between runs. As shown in prior work [19, 32, 33], key large-scale
Google workloads including web search, bigtable and ad-servlets
degrade significantly due to memory resource contention such as
shared caches and bandwidth (5%-40%), similar to the amount of
degradation SPEC CPU2006 (especially several SPEC memory in-
tensive benchmarks) suffer on this architecture. In addition, prior
work [32] shows that throttling down low-priority applications us-
ing inserted naps at millisecond granularity has a similar effect of
improving the performance of both SPEC and Google applications.

5.2 Effectiveness of ReQoS: QoS and Utilization

In this section, we evaluate the effectiveness of ReQoS using both
simple and targeted heuristics and discuss the tradeoffs between
the two heuristics.

5.2.1 Heuristic 1: Simple

As mentioned in Section 4.2, our simple heuristic provides
“knobs” that control whether the emphasis of ReQoS is biased
towards QoS or machine utilization. Table 1 presents the three con-
figurations we use in our evaluation. These include util bias,
balanced, and QoS bias, representing an emphasis on higher uti-
lization, a balance between utilization and QoS, and higher QoS
respectively. Threshold low, threshold high and nap ration

are parameters for Algorithm 1 to control the binning of moni-
tored instructions-per-cycle (IPC) of the high-priority application
and the nap duration of the low-priority application. In general the
longer the nap ratio, the more throttling down the heuristic applies
to the low-priority applications, and the more biased the heuristic
is towards the QoS of high-priority applications.

Figures 6, 7 and 8 present the QoS of the high-priority appli-
cations when we apply ReQoS to their co-running low-priority ap-
plications with three configurations of simple heuristic. In each
of these figures, the x-axis shows the high-priority applications
and the y-axis shows their QoS when each of them is co-running
with a low-priority application, normalized to its QoS performance
when running alone on the machine. For each high-priority appli-
cation, a cluster of four bars demonstrates four settings for the co-
running low-priority application. The first bar shows the QoS of
the high-priority application when it is co-running with the orig-
inal low-priority application without the ReQoS. The rest of the
three bars show its QoS when we apply ReQoS with three con-
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Figure 6. Normalized QoS of each bench-
mark co-running with sledge (RQ simple)
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Figure 7. Normalized QoS of each bench-
mark co-running with lbm (RQ simple).
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Figure 8. Normalized QoS of each bench-
mark co-running with milc (RQ simple)
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Figure 9. Utilization of sledge

(RQ simple)
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Figure 10. Utilization of lbm with each
configuration. (RQ simple)
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Figure 11. Utilization of milc with each
configuration (RQ simple)
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Figure 12. Normalized QoS of each
benchmark co-running with sledge

(RQ targeted)
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Figure 13. Normalized QoS of each bench-
mark co-running with lbm (RQ targeted)
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Figure 14. Normazlied QoS of each bench-
mark co-running with milc (RQ targeted)
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Figure 15. Utilization of sledge with each
configuration (RQ targeted)
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Figure 16. Utilization of lbm with each
configuration (RQ targeted)
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configuration (RQ targeted)
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Configurations ex period(ms) conserv factor QoS goal
conservative 90 6 0.4 90%
relaxed 90 12 1.0 90%
conservative 80 9 0.4 80%

Table 2. Three configurations of targeted heuristic

figurations of the simple heuristic to its co-running low-priority
application. Each of three low-priority applications, sledge, lbm,
and milc is used in Figures 6, 7, 8 respectively. Sledge is a highly
contentious kernel that contains two large arrays copying data back
and forth between arrays with this sledgehammer pattern. Lbm and
milc are top contentious benchmarks in the SPEC 2006 suite. The
five high-priority applications in each graph present a wide range
of sensitivity to contention in SPEC suite.

Figures 9, 10 and 11 show the corresponding utilization gained
for each low-priority application. We measure the execution rate of
the low-priority application normalized to its speed when running
alone on that architecture to indicate the utilization of the comput-
ing resources used by the application. For example, 50% utilization
for lbm indicates that lbm is now running at half of its speed when
it is running alone.

From Figure 6-11, we observe that when applying ReQoS with
our simple heuristic, the QoS of each high-priority application is
significantly improved (by up to 26%) compared to simply allow-
ing the co-location of both applications without ReQoS (first bars
of each cluster in Figures 6, 7 and 8). Without ReQoS, such coloca-
tion of low- and high-priority applications would be disallowed due
to the potentially significant QoS degradation. Compared to this
commonly adopted approach of disallowing co-location, we gain
a significant amount of utilization when allowing co-location with
ReQoS, often more than 50%. Various configurations in simple

heuristic also provide a wide range of options for balancing QoS
and utilization. In this experiment, the utilization-biased configura-
tion achieves significantly higher utilization than other two configu-
rations, and the QoS of each high-priority application only slightly
degrades. This demonstrates that the simple heuristic can be ef-
fective in improving QoS while gaining a significant amount of
machine utilization.

5.2.2 Heuristic 2: Targeted

Our more sophisticated targeted heuristic enables a more pre-
cise enforcement to achieve the desired QoS requirements. This
heuristic has effectively three “knobs,” one for the specific QoS
threshold to enforce, and the other two for how conservatively
(strictly) this QoS threshold must be enforced (parameters QoS

goal, conservative factor and execution period in Algo-
rithm 2). With more conservative parameters, a larger amount uti-
lization may be sacrificed; however, the application QoS is less
likely to drop below the specified threshold. We explore this trade-
off in our evaluation.

Figures 12 – 17 are similar to those presented above. For this
set of graphs we use our targeted heuristic with the three con-
figurations presented in Table 2. The configurations conserv 90,
relaxed 90, and conserv 80 represent a conservative setting at
a 90% QoS threshold, a relaxed setting at 90%, and a conservate
setting at an 80% QoS threshold, respectively. Figures 12, 13 and
14 show the effect of using our targeted heuristic on the QoS
of the high-priority applications. Note that two horizontal lines are
drawn in each graph denoting the 90% and 80% QoS thresholds.
Figures 15, 16 and 17 show the corresponding processor utilization
gained for each configuration.

As shown in these figures, the targeted heuristic is quite
effective in bringing the QoS of the high-priority applications to
the desired QoS threshold, beating it in many cases and coming

very close in the worst cases with our conservative settings. When
using a relaxed setting, we observe a bump in the utilization, and
our QoS target is often met. The decision as to how conservative or
relaxed the QoS target is depends on the objectives and discretion
of the application service provider and whether higher utilization is
desired or stricter QoS polices are specified.

[Simple vs. Targeted] Our simple and targeted heuristics
offer two options to application service providers: one providing
the flexibility and the tradeoffs between utilization and QoS, the
other allowing specifying a QoS target. When configured appro-
priately, the simple heuristic can perform quite well. However,
it may require a significant amount of parameter tuning to search
for the appropriate configuration if certain QoS level is required.
The targeted does not require such parameter tweaking because
it is self-tuning and feedback directed. More comparison between
simple and targeted is presented in the following section.

5.3 Phase Level Behavior

We further evaluate the phase-level effectiveness of RQ-Runtime
including our two heuristics in improving the QoS of high-priority
applications and machine utilization.

[Improving QoS] Figure 18 presents the IPC of sphinx when
it is running with the original sledge, comparing to its IPC when
running with sledge on RQ-Runtime using the simple heuristic.
The IPC samples are normalized to sphinx’s IPC profile when run-
ning alone to demonstrate the IPC degradation due to contention.
In this experiment, simple heuristic is using balance configura-
tion and sphinx is using ref input. To calculate the normalized
IPC, we collect the IPC profiles of sphinx when it is running alone
(solo) and running with sledge. IPC is sampled every 1 ms and all
profiles of the entire execution of sphinx are down sampled to
1000 data points. The normalized IPC at point i is calculated as
IPCco−run i

IPCsolo i
. Therefore, the closer the normalized IPC to 1, the

less the degradation. In Figure 18, the line denoting the original
sledge shows phase-level changes of the IPC degradation due to
contention. For example, around samples 100 to 200, and 300 to
400, there are noticeable phases of degradation increase. The degra-
dation is also less significant during the later half of the execution.
Figure 18 clearly demonstrates the IPC improvement achieved by
RQ-Runtime throughout the entire execution of sphinx. Instead
of around 60%-70% of the normalized IPC when running with the
original sledge, ReQoS improves the normalized IPC to above
80% during most of the execution.

Similar to Figure 18, Figure 19 presents sphinx’s normalized
IPC when it is running with sledge using targeted heuristics
(conservative 90 configuration), also compared with its normal-
ized IPC when running with the original sledge. Despite the dis-
tinctive phases of varying levels of degradation when running with
the original sledge as discussed previously (for example, samples
100-200 and 300-400), targeted heuristic consistently achieves
around 90% IPC for sphinx during the entire execution. This is
different from the simple heuristic shown in Figure 18 where
the improved normalized IPC fluctuates between 70% and 90%.
This comparison highlights the difference between simple and
targeted heuristics. While simple is effective in improving the
QoS, targeted heuristic is effective in adapting, achieving and
maintaining a stable QoS level as specified.

[Improving Utilization] Similar to Figures 18 and 19, Fig-
ures 20 and 21 present the normalized IPC of sphinx when it
is running with the original milc, as well as milc with ReQoS.
In Figures 20 and 21, the RQ-Runtime for milc uses the simple

heuristic and targeted heuristic respectively. The normalized IPC
of sphinx when running with the original milc demonstrates the
phases with varying levels of contention and degradation. For ex-
ample, during samples 600 to 800, the degradation is significantly
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Figure 18. Sphinx normalized IPC with original sledge and with
simple sledge
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Figure 19. Sphinx normalized IPC with original sledge and with
targeted sledge. Compared to simple, targeted heuristic is
effective in achieving and maintaining a more stable QoS level as
specified
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Figure 20. Sphinx normalized IPC with
original milc and with simple milc
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Figure 21. Sphinx normalized IPC with
original milc and with targeted milc
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Figure 22. Average nap duration for milc
with simple vs. milc with targeted.
Targeted adaptively determines the neces-
sary amount of napping, attaining higher uti-
lization.

smaller (normalized IPC close to 1) than the rest of the execution.
A few samples of normalized IPC are higher than 1 due to aliasing
of downsampling. In this set of experiments, targeted heuristic
is configured as conservative 90, meaning RQ-Runtime aims at
less than 10% of the QoS degradation for sphinx. Simple heuristic
is configured with QoS biased configuration to achieve the similar
QoS goal as targeted. Figures 18 and 19 demonstrate similar ef-
fectiveness of both heuristics. The QoS of sphinx is significantly
improved after applying either heuristic to the co-running milc; the
normalized IPC of sphinx is stable and between 0.9 and 1.

However, there is significant difference in nap duration with two
heuristics. Figure 22 presents the corresponding average nap dura-
tion of milc for every 2 ms’ execution, decided dynamically by
RQ-Runtime based on dynamic contention detection. The longer
the nap duration, the lower the utilization. Figure 22 shows that
simple heuristic demonstrates certain adaptability. After sample
600 when the contention is not as significant, naps become shorter.
However, when using the targeted heuristic, the nap duration
is significantly shorter, and thus the utilization is much higher,
while achieving similar QoS improvement as the simple heuristic.
This demonstrates that simple heuristic may over-conservatively
throttle down the low-priority application, while targeted heuris-
tic can intelligently estimate and adaptively adjust the necessary
amount of nap/throttling, attaining much higher utilization while
achieving the QoS goal. This also demonstrates the importance of
using dynamic feedback control (targeted) to prune the potential
false positive contention detection instead of detecting purely on
QoS degradation (simple).

5.4 Comparing to the prior art

Figures 23 and 24 compare the effectiveness of ReQoS against the
state-of-the-art technique QoS-Compile [32]. Figure 23 presents

the normalized QoS of high-priority applications when each of
them is co-running with a low-priority application. The x-axis
presents the workloads, each composed of a high-priority (HP) and
a low-priority (LP) application. For example, sphinx - lbm denotes
a HP application sphinx co-running with a LP application lbm.
The first bar in each cluster of bars presents the QoS of the high-
priority application running with the original LP application. The
second and the third present its QoS when QoS-compile or ReQoS
is applied to the LP application, respectively. C1 and C2 denote two
configurations we use for QoS-Compile and ReQoS. For ReQoS,
configuration 1 (C1) targets 80% QoS, and configuration 2 (C2)
targets 90% QoS. Note that we can specify a QoS target in ReQoS
and the RQ-Runtime can adaptively adjust the throttling to achieve
the target. However, QoS-Compile does not have that functionality.
To achieve a specified QoS, many trial runs of parameter tuning are
needed. Here we carefully tune the configurations of QoS-Compile
to achieve similar QoS improvement as ReQoS.

As Figures 23 and 24 demonstrate, while with careful tuning,
QoS-Compile can be as effective as ReQoS in reducing contention
and improving QoS, ReQoS attains significantly higher machine
utilization than QoS-Compile. For example, for sphinx-milc C2,
ReQoS achieves 80% execution rate for milc as opposed to 40%
using QoS-Compile while providing better QoS. On average, Re-
QoS attains 65% utilization compared to 43% by QoS-Compile,
51% better while providing similar QoS. This is mainly due to the
fact that ReQoS can adaptively adjust the necessary throttling down
as contention phase changes, avoiding unnecessary throttling down
while maintaining stable QoS. However, QoS-compile determines
the amount of throttling down statically. Even with tuning, it does
not handle phase changes and may perform either over conserva-
tively and waste utilization, or over-optimistically and fail to effec-
tively mitigate degradation to achieve the QoS goal. In addition,
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Figure 23. QoS of high-priority applications. When carefully
tuned for each workload, QoS-Compile achieves similar QoS as
ReQoS.
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Figure 24. Utilization. ReQoS attains higher machine utilization
than QoS-Compile.
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Figure 25. Overhead of monitoring for high-priority application.

due to its static nature, QoS-Compile also cannot adapt to new sit-
uations such as changes of the co-running high-priority applica-
tions or their QoS requirements. In comparison, ReQoS can adapt
to these changes without any tuning.

5.5 Overhead

Figure 25 presents the performance costs of the monitoring the
QoS of the high-priority application. The overhead is minimal. The
overhead suffered by high-priority applications is less than 1% on
average with a max of 2% in the cases of milc and lbm.

Figure 26 shows the performance overhead of invoking the Nap
Engine to throttle down low-priority applications. The overhead of
probing the Nap Engine is slightly more costly, approaching 5%
for milc. However, the Nap Engine only causes overhead to the
low-priority application, and thus the performance cost is not as
important.

The low cost of our runtime approach for the high-priority
application is due to the fact that the overhead of reading and
recording performance counters at 1 ms granularity is minimal. The
cost is slightly higher for the low-priority application because we
add a lightweight check at the point of every compiler-inserted
marker. However the runtime is only invoked when the marker
is detected (when the identified contentious region is executing)
instead of every 1 ms. Coarsening the granularity can further reduce
these overheads; but the tradeoff must be made between a lower
overhead and a higher penalty for potential delays in detecting
contention as it occurs.

5.6 Energy Efficiency of ReQoS

Figure 27 presents the improved energy efficiency when allowing
co-location with ReQoS. These experiments were performed us-
ing a P3 International Kill A Watt R© power meter connected to
our Quad Core Intel Nehalem machine to measure whole system
watt consumption during execution. For each cluster of bars in the
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Figure 26. Overhead of nap engine for low-priority application.

figure, the energy efficiency is calculated by the instructions pro-
cessed per watt for a three minute time period after the machine
wattage stabilizes during each run. The higher the bar, the more
energy efficient. The x-axis shows the workloads, the high-priority
and low-priority application pairs. The first bar for each workload
shows the energy efficiency when using separate machines for low
and high-priority applications; the second bar shows the energy ef-
ficiency of co-locating both high and low-priority applications us-
ing ReQoS with the targeted policy and the conserv 90 con-
figuration shown in Table 2. We observe a significant energy effi-
ciency improvement for many workloads. Application pairs that in-
clude less contentious applications, such as namd, produce a greater
benefit as there is less napping occurring. Meanwhile, highly con-
tentious pairs, such as sphinx-lbm, show a more modest benefit.
On average there is a 47% improvement of using ReQoS to allow
co-location over using two separate machines for low- and high-
priority applications.

5.7 Varying Architecture

To investigate the effectiveness of ReQoS across architectures, we
performed experiments on a 2.6GHZs Quad Core AMD Phenom
X4 system with 6MB last level cache and 3GB of main memory.
This machine is also running Linux 2.6.29.6 and our customized
GCC 4.4.6.

Figures 28 and 29 show the results for our targeted heuristic
using the same configurations shown in Table 2. As shown in these
figures, ReQoS is also quite effective on this platform. For both lbm
and milc we achieve 80% to 90% utilization while significantly
reducing the performance interference to our high-priority applica-
tions. The contentiousness of sledge is severe on this processor.
For the lbm-sledge pair, we observe that when lowering the QoS
threshold to 80% from 90%, we achieve more than 2x improvement
for the utilization. Overall, as shown in Figure 28, our conservative
settings meet and exceed our QoS requirements in all experiments,
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Figure 27. Energy efficiency of allowing co-location with ReQoS
(targeted) vs. over-provisioning.
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Figure 28. Effectiveness of RQ targeted - QoS of each bench-
mark co-running with sledge, lbm, and milc on AMD X4
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Figure 29. Effectiveness of RQ targeted - Utilization of sledge,
lbm and milc with each configuration on AMD X4

and our relaxed configuration satisfies the QoS constraint for the
majority of the applications.

6. Related Work

Contention Aware Scheduling An important software approach
to mitigating contention is contention aware scheduling [2, 4, 7,
11, 15, 23, 34, 37]. Our work is orthogonal and complementary
to existing contention-aware scheduling approaches. The goal of
scheduling is to, for a given set of applications, decide what ap-
plications should be co-running together to improve performance
or performance isolation. The goal of ReQoS is to, for a given co-
run schedule (a set of applications that are scheduled to run simul-
taneously), make sure that the high priority application achieves a
pre-specified QoS goal by manipulating the contentiousness of low-
priority applications. ReQoS can be used after the schedule is de-
cided. To illustrate the difference, imagine a simple scenario where
only two applications are available for scheduling and these ap-

plications do not “play nicely” together. In this situation, schedul-
ing can either run these two appliations simultaneously (thus vi-
olating the QoS of the high-priority application), or only allow
one to run to ensure QoS. ReQoS is complimentary in that it en-
ables “safe colocation” by allowing two applications to run simul-
taneously and guaranteeing the QoS of the high-priority applica-
tion. It is also important to note that, unlike ReQoS, prior work
on contention-aware OS scheduling does not precisely guarantee
application QoS. When the scheduler selects applications to co-
run, the resulting QoS depends on the composition of the work-
loads. Different from scheduling, our approach does not require a
balanced mix of high-contention and low-contention applications
since we directly manipulate the contentiousness of an application
to improve QoS. Even if only contentious co-runners are left to
be scheduled our approach remains effective. Yang et al. present
Redline [35], an OS technique to guarantee the QoS of interactive
applications on time-sharing systems. However, we focus on con-
tention among applications simultaneously executing across multi-
ple cores. Software solutions to reduce cache contention using page
coloring/remapping have also been proposed [5, 16, 29]. Most page
coloring methods require significant modifications to the kernel and
the knowledge of the cache design details.

QoS-compile Tang et al. [32] propose QoS-Compile, a state-
of-the-art technique to statically throttle down the memory con-
tentious regions to achieve the same goal as this paper. As shown
in our evaluation (Section 5.4), because of its dynamic and reac-
tive nature, ReQoS significantly outperforms QoS-Compile. Mars
et al. [21] propose a shutter approach to detect contention, while
our approach first identifies contentious code regions and then ap-
plies compilation techniques to those regions.

Researchers recently have started to explore using code trans-
formations and restructuring to improve cache sharing and reduce
contention on multicores [12, 13, 27, 28, 30, 36]. Most such re-
search focuses on compilation techniques to improve cache sharing
for a multi-threaded application. Differently, our approach manip-
ulates how applications interact with each other in terms of con-
tending for the memory resources. Hardware techniques such as
cache/bandwidth partitioning and source throttling to improve per-
formance and fairness on multicores have received much research
attention [6, 8–10, 14, 17, 24, 25, 31]. These studies have shown
promising future directions for hardware designers; however they
require hardware changes and are not yet available in commodity
chips.

7. Conclusion

In this work, we have shown that static compilation and dynamic
adaptation can be combined to address the challenge of cross-core
interference on the QoS of high-priority applications. We have pre-
sented ReQoS, a statically enabled dynamic compilation approach
to improve machine utilization in WSCs by enabling the adap-
tive manipulation of the contentiousness of low-priority applica-
tions to ensure the QoS of high-priority co-runners. Using a profile
guided compilation technique that identifies and inserts markers in
contentious code regions, and a lightweight runtime that monitors
the QoS of high-priority applications and reactively triggers short
naps of low-priority applications when cross-core interference is
detected we were able to improve utilization by more than 70% in
many cases, and more than 50% on average, while enforcing a 90%
QoS threshold. In this work, we argue that in addition to providing
a compilation strategy for an application’s individual performance,
it is also desirable to include an application’s “niceness” to other
co-runners as a compilation objective, and show that ReQoS can
significantly reduce performance interference to ensure application
QoS.
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