
CHAPTER TWO

Understanding Application
Contentiousness and Sensitivity
on Modern Multicores
JasonMars and Lingjia Tang
Department of Electrical Engineering and Computer Science, University of Michigan, 2260 Hayward Street,
Ann Arbor, MI 48109-2121, USA

Contents

1. Introduction 60
2. Contentiousness vs. Sensitivity 62

2.1 Definition 62
2.2 Contentiousness and Sensitivity 63
2.3 Experiment Design, Results, and Insights 64

2.3.1 Contentiousness 64

2.3.2 Sensitivity 65

2.3.3 Contentiousness vs. Sensitivity 65

3. LLC Misses as an Indicator? 67
4. Predicting Contention Characteristics 70

4.1 Modeling Contention Characteristics 70
4.2 Approximation Using PMUs 72

4.2.1 PMUs for Memory Resource Usage 72

4.2.2 Regression to Determine Coefficients 74

5. Evaluation 78
6. Related Work 81
7. Summary 81
References 82

Abstract

Runtime systems tomitigate memory resource contention problems onmulticore pro-
cessors have recently attracted much research attention. One critical component of
these runtimes is the indicators to rank and classify applications based on their con-
tention characteristics. However, although there has been significant research effort,
application contention characteristics remain not well understood and indicators have
not been thoroughly evaluated.

In this chapter, we performed a thorough study of applications’ contention char-
acteristics to develop better indicators to improve contention-aware runtime systems.
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The contention characteristics are composed of an application’s contentiousness, and its
sensitivity to contention. We show that contentiousness and sensitivity are not strongly
correlated, and contrary to prior wisdom, a single indicator is not adequate to pre-
dict both. Also, while prior wisdom has relied on last level cache miss rate as one of
the best indicators to predict an application’s contention characteristics, we show that
depending on the workloads, it can often be misleading. We then present prediction
models that consider contention in various memory resources. Our regression analysis
establishes an accurate model to predict application contentiousness. The analysis also
demonstrates that performance counters alonemay not be sufficient to accurately pre-
dict application sensitivity to contention. In this chapter, we also present an evaluation
using SPEC CPU2006 benchmarks showing that, when predicting an application’s con-
tentiousness, the linear correlation coefficient R2 of our predictor and the realmeasured
contentiousness is 0.834, as opposed to 0.224 when using last level cache miss rate.

1. INTRODUCTION

Multicore processors have become pervasive and can be found in a
variety of computing domains, from the most basic desktop computers to
the most sophisticated high performance datacenters.With each new gener-
ation of architectures,more cores are being added to a single die. In currently
available multicore designs, much of the memory subsystem is shared.These
shared components include on-chip caches, the memory bus, memory con-
trollers, underlying interconnect, and even on-chip data prefetchers. For
such architectures equipped with multiple processing cores, contention for
shared resources significantly aggravates the existing memory wall problem
and restricts the performance benefit of multicore processors.

There has been a significant research effort to mitigate the effects of con-
tention using software runtime solutions. Ourselves and others have devel-
oped techniques that perform runtime contention detection and execution
control [21, 29–31, 35] and online job scheduling [2, 6, 12, 14, 17–19, 34,
37]. To most effectively design these runtime systems, there are two impor-
tant underlying research challenges.

[Challenge 1] It is important to have an in-depth understanding of
application contention characteristics, including an application’s contentious-
ness, which is the potential performance degradation it can cause to its co-
runners, and an application’s sensitivity to contention, which is the potential
degradation it can suffer from its co-runners. In prior work, there have
been conflicting conclusions about the relationship between an application’s
contentiousness and its sensitivity to contention. Some prior works [33, 37]
argue that there is a clear distinction between an application’s contentiousness
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and contention sensitivity,while other works [12, 16] conclude that an appli-
cation’s contentiousness and sensitivity are strongly correlated for most appli-
cations and thus can be represented and estimated using a unified model.
To address this disagreement, we perform thorough investigation of the
contentiousness and sensitivity of general purpose applications on current
systems.

[Challenge 2] Contention-aware runtimes use indicators for application
contention characteristics to predict the potential performance degradation
that may occur due to contention or detect contention as it occurs. Prior
works use an application’s last level cache (LLC) miss rate as an indicator
to detect contention or to predict applications’ contention characteristics in
order to classify the applications [14, 21, 37]. In fact, LLC miss rate is argued
to be one of the most precise indicators for contention-aware scheduling
[37]. However, to the best of our knowledge, no prior work has thoroughly
investigated how to use microarchitectural events to best construct indicators
for an application’s contention characteristics. It remains unclear that LLC
miss rate is the best performance monitor-based indicator for all workloads.
In particular, its accuracy for memory intensive workloads has not been
thoroughly evaluated.

This chapter accomplishes five key objectives:

1. We investigate application contention characteristics through system-
atic experiments on latest multicore hardware and show that although
contentiousness and contention sensitivity are consistent characteristics
of an application on a given platform, they are not strongly correlated.

2. We explore the effectiveness of using LLC miss rate as an indicator for
contentiousness and contention sensitivity and find that it can some-
times be misleading for both. One key insight of our work is that since
contentiousness and contention sensitivity are not strongly correlated,
no single indicator can accurately predict both.

3. We construct two models that combine usages of multiple memory
resources including LLC, memory bandwidth and prefetchers to indi-
cate an application’s contention characteristics. Our insights are firstly,
understanding contention characteristics require a holistic view of the
entire memory subsystem. Secondly, a good indicator for an applica-
tion’s contentiousness must capture the pressure an application puts on
the shared resources; meanwhile, a good indicator for an application’s
sensitivity must capture its reliance on the shared memory resources.
And for many memory resources, pressure, and reliance are very
different.
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4. We select appropriate performance counters that can capture the usage
of various memory resources. We then use regression analysis on a
synthetic benchmark suite to establish an accurate model to predict an
application’s contentiousness. Regression also demonstrates that per-
formance counters alone may not be sufficient to accurately predict
an application’s sensitivity to contention.

5. We present an evaluation using SPEC CPU2006 benchmarks that
shows that when predicting an application’s contentiousness, our pre-
dictor is much more accurate. The linear correlation coefficient R2

of our predictor and the real measured contentiousness is 0.834, as
opposed to 0.224 when using last level cache miss rate.

2. CONTENTIOUSNESS vs. SENSITIVITY

In this section we present formal definitions of both contentiousness and
contention sensitivity, and then investigate key questions about the nature of
each and how they relate.

2.1 Definition
On multicore processors, an application’s contentiousness is defined as the
potential performance degradation it can cause to co-running application(s)
due to its heavy demand on shared resources. On the other hand, an applica-
tion’s sensitivity to contention is defined by its potential to suffer performance
degradation from the interference caused by its contentious co-runners.

As demonstrated in previous work [12], an application A’s sensitivity is
formally defined using the following formula,

SensitivityA = IPCA(solo) − IPCA(co-run)

IPCA(solo)
, (1)

where IPCA(solo) is A’s IPC when it is running alone and IPCA(co-run) is
the statistical expectation of the A’s IPC when it co-runs with random co-
runners. We extend this definition to include A’s contentiousness as,

ContentiousnessA = IPCBi (solo) − IPCBi (co-runA)

IPCBi (solo)
, (2)

where A’s contentiousness is quantified as the statistical expectation of the
IPC degradation A causes to its random co-runner.
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We can estimate SensitivityA and ContentiousnessA by co-locating A with
various co-runners Bi, and take the average of A’s measured contentiousness
and contention sensitivity. A’s sensitivity to co-runner Bi can be defined as,

SensitivityA(co-runBi )
= IPCA(solo) − IPCA(co-runBi )

IPCA(solo)
(3)

and the A’s average measured sensitivity is,

SensitivityA(avg) =
∑n

i SensitivityA(co-runBi )

n
. (4)

Similarly, we can define A’s contentiousness when it is co-running with
Bi and its average contentiousness as,

ContentiousnessA(co-runBi )
= IPCBi (solo) − IPCi(co-runA)

IPCBi (solo)
, (5)

ContentiousnessA(avg) =
∑n

i ContentiousnessA(co-runBi )

n
. (6)

In this work we use Eq. (4) to estimate sensitivityA, and Eq. (6) to estimate
contentiousnessA.

2.2 Contentiousness and Sensitivity
In this section we address two important questions about an application’s con-
tentiousness and sensitivity to contention. We first investigated whether con-
tention characteristics (both contentiousness and sensitivity to contention)
are consistent characteristics of an application. We define consistent as, for a
given machine, the relative ordering between all applications’ contentious-
ness and sensitivity in general does not change across different co-runners.

Secondly, we investigated the correlation between an application’s con-
tentiousness and its sensitivity to contention. An important observation is
that both an application’s contentiousness, and its sensitivity to contention,
involve the usage of shared resources. One intuition is that contentious appli-
cations may also be sensitive to contention and vice versa. Prior work has
had conflicting conclusions about the relations between an application’s con-
tentiousness and contention sensitivity. There are four possible outcomes.
An application can be (1) contentious and sensitive; (2) not contentious
and insensitive; (3) contentious but not sensitive; and (4) not contentious but
sensitive.Among these four outcomes, Jiang et al. [12, 16] conclude that typ-
ical applications’ contentiousness and sensitivity are strongly correlated and
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should be classified as either contentious and sensitive, or not contentious
and insensitive. Xie and Loh [33] on the other hand, argue the existence of
applications that are not contentious but sensitive. Meanwhile, other recent
works [14, 37] argue that a contentious application that has high cache misses
is likely to be very sensitive as well.

2.3 Experiment Design, Results, and Insights
To evaluate these issues, we have performed a series of experiments using
18 benchmarks of SPEC CPU2006 benchmarks suite. These benchmarks
represent a diverse range of application workloads and memory behaviors,
including different working set sizes, cache misses, and offcore traffic. All
experiments were conducted on Intel Core i7 920 (Nehalem) Quad Core
with 2.67 GHZ processors, 8 MB last level cache shared by four cores and
4 GB memory. For each experiment,we selected two of the 18 benchmarks,
co-located them on neighboring two cores, and measured each benchmark’s
contentiousness and sensitivity in each experiment using Eqs. (3) and (5).
We then calculated each benchmark’s average contentiousness and sensitivity
using Eqs. (4) and (6). We conducted exhaustive co-running of all possible
co-running pairs, which is a total of 162( 18×18

2 ) co-running experiments
executed to completion on ref inputs. Each experiment was conducted
three times to calculate the average. Note that SPEC runs are fairly stable
and there is little variance between runs.

2.3.1 Contentiousness
Figure 1 presents our benchmarks’ contentiousness.This contentiousness is cal-
culated using Eq. (5), which indicates the performance degradation each of
the 18 benchmarks causes to its co-runner. The 18 benchmarks are shown
on the x-axis. For each of the 18 benchmarks, we show its measured con-
tentiousness when it is co-running with each of the 8 most contentious co-
runners respectively. Each bar represents a co-runner. Only 8 co-runners are
shown in the figure because of the space limit. The dotted line shows the
average contentiousness of each benchmark, computed by averaging each
benchmark’s 18 contentiousness values across 18 co-runners using Eq. (6).
The 18 benchmarks on the x-axis are then sorted by their average con-
tentiousness. The line graph for average contentiousness shows a general
descending trend.

Figure 1 demonstrates that contentiousness is a consistent characteristic
of an application. The relative order of benchmarks’ contentiousness stays
fairly consistent regardless of which co-runner is present. For example,when
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Fig. 1. Contentiousness. Each bar shows the performance degradation of a co-runner
caused by the application across x-axis.

comparing each benchmark’s contentiousness when it is co-running with
lbm, shown by the first bar for each 18 benchmark, we notice that the
contentiousness of 18 benchmarks are almost all in descending order along
the y-axis mirroring the dotted line.This also applies to all other co-runners
as well. The graph also shows that lbm is the most contentious benchmark
among the 18 benchmarks.

2.3.2 Sensitivity
Similar to Fig. 1, Fig. 2 shows the sensitivity to contention of each of the 18
benchmarks when co-located with the most contentious applications. This
sensitivity is calculated using Eq. (3), indicating how much degradation the
8 co-runners cause to each of the 18 benchmarks. These 18 benchmarks
are sorted according to their average sensitivity, calculated using Eq. (4).
Similar to Fig. 1, this figure shows that sensitivity is also consistent for each
application. Although the descending trend is not as consistent as Fig. 1, the
general trend is strong.

2.3.3 Contentiousness vs. Sensitivity
In Fig. 3,we juxtapose contentiousness and sensitivity. In this graph, for each
application across the x-axis, the first bar shows the average contentiousness

Fig. 2. Sensitivity. Each bar shows the performance degradation of the application
across x-axis caused by each of the 8 different co-runners.
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Fig. 3. Average contentiousness vs. sensitivity.

of this application with the 18 co-runners presented in Figs. 1 and 2. The
second bar shows each benchmark’s average sensitivity to the same set of
co-runners. Figure 3 clearly demonstrates a large disparity between applica-
tion contentiousness and sensitivity.As shown in the figure,applications such
as lbm and libquantum are highly contentious and only mildly sensitive,
while other applications such as omnetpp and xalan are highly sensi-
tive, and slightly contentious. Also notice that, in Figs. 1 and 2, the sorted
ordering of the 18 benchmarks (x-axis) are almost completely different.
In fact, the correlation coefficient between contentiousness and sensitivity
using linear regression is 0.48, which further shows they are not strongly
correlated.

To summarize, through our experimentation we find,

1. Contentiousness and sensitivity are an application’s consistent charac-
teristics. Figure 1 shows that applications with higher contentiousness
tend to be consistently more contentious regardless of co-runners.This
general trend also applies to sensitivity, as shown in Fig. 2.

2. Contentiousness and sensitivity of general purpose applications are
not strongly correlated as shown in Fig. 3. While we do not observe
applications that are only sensitive or only contentious, four outcomes
occur in practice; applications can be (1) contentious and sensitive; (2)
not contentious and insensitive;(3) contentious but not highly sensitive;
(4) not highly contentious but sensitive.

We present analysis as why contentiousness and sensitivity are different in
Section 4.1. Section 4.2.2 also presents more experimental data on a different
set of benchmarks to demonstrate the difference between contentiousness
and sensitivity.
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3. LLCMISSES AS AN INDICATOR?

The ability to predict application contention characteristics is impor-
tant for contention-aware runtime systems. In this chapter, we focus on
indicators using performance monitoring units (PMUs). Last level cache
(LLC) miss rate is one of the most commonly used indicators of an applica-
tion’s contentiousness and is used to classify applications to achieve sensible
co-scheduling decisions [14, 37] and detect contention online [21]. In this
section we evaluate the effectiveness of using last level cache misses to indi-
cate an application’s level of contentiousness and sensitivity to contention.

Both LLC miss rate, the number of misses for a given amount of time,
and miss ratio, the number of misses for a given number of instructions,
have been used by prior work to perform contention-aware scheduling. To
evaluate whether LLC miss rate or ratio is a good indicator for an applica-
tion’s contentiousness, we measure LLC miss rate and miss ratio for the 18
SPEC2006 benchmarks used in Section 2, and compare each benchmark’s
rate and ratio against the average degradation it causes to its co-runners.We
also compare each benchmark’s miss rate and ratio to the average degrada-
tion it suffers due to contention to evaluate if LLC miss is a good indicator
for sensitivity. Experiment set up is as described in Section 2.3. Both the
LLC miss rate and ratio are collected when each benchmark is running alone
using pfmon [7].

Figures 4 and 5 compare the average contentiousness and sensitivity of
the benchmarks with their LLC misses per million instructions. Figures 6 and
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Fig. 4. LLC miss ratio vs. average contentiousness.
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Fig. 5. LLC miss ratio vs. average sensitivity.

7 compare the average contentiousness and sensitivity with LLC misses per
millisecond. In these four figures,each bar shows the average contentiousness
or sensitivity of each application as measured from our experimentation in
Section 2. The dotted line shows the each benchmark’s LLC miss rate or
ratio. We use line graphs to better demonstrate the difference between the
trend of LLC misses and each application’s contentiousness or sensitivity.
The left y-axis shows the contentiousness and sensitivity, respectively, and
the right y-axis shows the LLC misses rate and ratio.
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Fig. 6. LLC miss rate vs. average contentiousness.
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Fig. 7. LLC miss rate vs. average sensitivity.

These figures demonstrate two key observations. The first observation
is that LLC miss rate and ratio are good indicators to distinguish
CPU-bound applications and memory-bound applications. Appli-
cations that are shown to the right of each figure, such as hmmer, sjeng,
and povray are CPU bound applications. They tend to have little con-
tentiousness or sensitivity to contention, and this is accurately predicted
by their extremely low cache miss rate/ratio. This insight indicates that a
contention-aware runtime system that uses LLC misses to predict perfor-
mance degradation or detect contention may be quite effective for work-
loads that contain a balanced mix of CPU bound applications and memory
bound applications,as co-scheduling CPU bound and memory bound appli-
cations does indeed minimize contention effectively. The scheduler would
simply have to pair low LLC miss benchmarks (e.g., povray) with high
LLC misses benchmarks (e.g.,milc). Also contention may not occur when
CPU bound applications are executing and thus using LLC miss rate can
fairly effectively detect when contention is not occuring. This observation
may explain the good results in prior work.

The second key observation is that LLC cache miss rate and ratio
are not good at predicting the degree of contentiousness and sen-
sitivity for memory bound applications. This is demonstrated by the
mismatch between the dotted line and bars for benchmarks to the left of
each figure. These benchmarks exhibit various levels of contentiousness
and sensitivity ranging from 5% to 35% for contentiousness and 20% for
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sensitivity). However using LLC miss rate and ratio gives little indication of
the magnitude of the contentiousness or sensitivity. For example, in Figs. 4
and 6, lbm and libquantum are the two most contentious benchmarks,
yet their LLC misses rate and ratio are quite low. In Figs. 5 and 7,sphinx is
shown to be one of the most sensitive benchmarks, yet its LLC miss rate and
ratio are almost negligible. From these observations, we conclude that LLC
miss rate or ratio is not a good indicator for predicting the magnitude of
contentiousness and sensitivity of a memory bound application, and there-
fore is not suitable for scheduling workloads that are memory bound biased
(containing more memory bound applications than cpu bound) or detecting
the severity of contention among such workloads.

Section 4.2.1 presents more details on why LLC miss rate is not a good
indicator for contentiousness or sensitivity.

4. PREDICTING CONTENTION CHARACTERISTICS

In this section we construct models to indicate contention character-
istics for all types of workloads including memory bound workloads. One
of the key insights of this work is that because an application’s contentiousness
and its sensitivity to contention are two distinct characteristics, we need separate pre-
dictors for each. Also, based on the results presented in Section 3, we conclude
that contention also occurs in other shared components in the memory
subsystem in addition to last level caches. Therefore, understanding the
contention characteristics of an application requires a holistic view of the
memory subsystem and a comprehensive predictor must capture how an
application uses and relies on the shared resources beyond last level cache
such as memory bandwidth, prefetchers, memory controllers, etc.

In this section, we first construct general models to estimate an appli-
cation’s contention characteristics that take sharing of multiple memory
components into consideration.We then select PMUs that can reflect appli-
cation’s activity in regard to these shared memory components. Finally, we
determine the detailed prediction models using regression analysis between
an application’s selected PMUs profile and its contention characteristics.

4.1 Modeling Contention Characteristics
Why are applications’ contentiousness and sensitivity are different?

The fundamental difference between contentiousness and sensitivity is
that contentiousness reflects how much pressure an application puts on the shared
resources; meanwhile, application sensitivity to contention reflects an application’s
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reliance on the shared memory resources. Last level caches and prefetchers are
both essentially performance optimization mechanisms whose effectiveness
is depending on application’s data reuse patterns, therefore for these two
resources, there is a difference between an application’s pressure and reliance
on them. Pressure is directly linked to how much the shared resource (LLC
or prefetcher) an application is using; while reliance is how much an appli-
cation’s progress is benefiting from using the shared resource.

For example, an application’s working set may occupy a great amount of
LLC space but the application’s performance may or may not rely on the
LLC, depending on whether it reuses its data residing in the LLC. Another
example is that an application can issue a large amount of prefetching requests
but may not benefit or only benefit slightly from these requests. In this case,
the application is heavily using but not depending on the prefetcher. For
other components such as memory bandwidth, pressure, and reliance can be
more correlated.

To model an application’s contention characteristics,we use a linear model
to combine the effect of shared resources, including LLC, memory band-
width and prefetchers. We also consider contentiousness and sensitivity to
contention separately.

Contentiousness. An application’s contentiousness is determined by
the amount of pressure it puts on the shared memory subsystem.Thus it can
be directly predicted using the application’s usage of the shared resources.

C = a1 × LLC_usage + b1 × BW_usage + c1 × Pref_usage, (7)

where C stands for contentiousness, BW is bandwidth, and Pref is prefetch-
ers. It is fairly easy to quantify and measure the bandwidth usage (e.g., bus
transactions per second). However, it is difficult to quantify cache usage
because it is multifaceted. For example, both the cache access frequency and
the cache footprint reflect dimensions of the cache usage.

Each application may have a different combination of cache, bandwidth,
and prefetch usage. For example, a cache-intensive application whose work-
ing set is similar to the size of the LLC has a heavy LLC usage and probably
little bandwidth usage. Streaming applications may have little to medium
cache usage but heavy bandwidth usage. How contentious these applica-
tions are relative to each other depends on the relative importance between
the cache contention and the bandwidth contention. Note that the goal
of the prediction model is to rank the relative contentiousness of a group
of applications to make scheduling decisions, instead of predicting the exact
average contentiousness or the exact performance degradation. Therefore
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identifying the relative importance of contention in shared caches, band-
width, and prefetchers, reflected as coefficients a1, b1, and c1, is one of the
main objectives of the modeling and regression.The next section will present
the regression analysis for determining coefficients of the model. It is worth
noting that a1, b1, c1 are architecture-specific.

Sensitivity. A good prediction model for sensitivity should capture
how much the application is relying on the shared memory system. However,
this is much more challenging than predicting contentiousness using PMUs.

S = a2 × LLC_usage + b2 × BW_usage + c2 × Pref_usage, (8)

As shown in Eq. (8), to capture the difference between contentiousness and
sensitivity,we use difference coefficients (e.g., a1 vs. a2). In addition to being
architecture-specific, coefficients a2, b2, and c2 are also application specific.
This is because,as we discussed earlier,even with the same amount of resource
usage, how much an application relies on the shared resources is different.
And it is heavily depending on how applications reuse data.

4.2 Approximation Using PMUs
In this section, we identify performance counters (PMUs) to estimate the
usage of memory resources including LLC and memory bandwidth.We then
profile a set of synthetic benchmarks to collect the selected performance
counters as well as the contention characteristics of these benchmarks on a
real architecture. Using performance counter profiles to estimate resource
usages in Eqs. (7) and (8), we can use regression analysis to determine coef-
ficients of the models. The platform we use in this section is a quad-core
Intel Core i7 described in Section 2.3.

4.2.1 PMUs for Memory Resource Usage
Contentiousness. On our Intel Core i7 platform, we identify the num-
ber of cache lines the last level cache (LLC) brings in per millisecond
(L3LinesIn/ms), as shown in Fig. 8, to measure the memory bandwidth
usage. This is because that LLC lines in rate can better capture the actual
aggregate pressure an application is putting on the bandwidth than LLC
miss rate or ratio because it includes prefetchers’ effect on the bandwidth.
We identify (L2LinesIn–L3LinesIn)/ms to estimate the shared cache (L3)
usage. (L2LinesIn–L3LinesIn) rate shows how much data is used in an inter-
val that is coming from only L3 and not the DRAM. However, unlike using
L3LinesIn/ms to estimate the bandwidth usage, (L2LinesIn–L3LinesIn) rate
is an approximation of the L3 cache usage. As we discussed, both the cache
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Shared Cache

L2 L2 L2 L2

Core Core Core Core

Remaining Memory Subsystem

Application

LLC Lines In 

L2 Lines In

Fig. 8. PMUs used for predicting contention characteristics.

footprint and the access frequency are dimensions of the cache usage. Big-
ger footprint and higher access frequency indicate more pressure on the
cache. (L2LinesIn–L3LinesIn) rate only reflects the frequency but may not
fully reflect the application’s footprint in the L3 cache because PMUs do not
reflect the amount of data reuse. However,we will show that this is a sufficient
approximation when indicating contentiousness. Prefetcher usage is mani-
fested in both cache and bandwidth usage. The main impact of prefetchers
is the increased bandwidth and the cache space the prefetched data occupy.
Because both L3LinesIn and L2LinesIn include the prefetchers’ traffic, we
do not need an extra PMU to measure the prefetcher usage. Although we
use an Intel Core i7 platform here, the reasoning of selecting PMUs should
be general for other multicore architectures. Using the above PMUs,Eq. (7)
becomes:

C = a1 × (L2LinesIn_rate − L3LinesIn_rate) + b1 × L3LinesIn_rate (9)

Why LLC miss rate is not a good indicator for contentiousness?
Our experiments in Section 3 show that solo LLC miss rate and ratio do not
accurately indicate an application’s level of contentiousness. There are two
main reasons that our model (Eq. (9)) can be more accurate. Firstly, LLC
miss rate does not fully reflect the contention for the memory bandwidth or
prefetcher. LLC miss rate or ratio, as an architectural performance monitor-
ing event on most platforms, does not capture the prefetching bandwidth,
which often consumes a large portion of the memory bandwidth on mod-
ern architectures. Secondly, LLC miss rate and ratio also cannot accurately
capture cache contentiousness of an application. An application can have a
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working set that fits in the L3 cache.The application can frequently access its
working set without incurring many cache misses. However, since it is heav-
ily using the shared cache, it can be very cache contentious when co-located
and causing cache misses to its co-runners. LLC miss rate cannot accu-
rately predict cache-intensive applications’ contentiousness but (L2LinesIn -
L3LinesIn) rate can.

Sensitivity. We use the same PMUs to estimate the reliance an appli-
cation has on the shared resources and to predict the application’s sensitivity
to contention.

S = a2 × (L2LinesIn_rate − L3LinesIn_rate) + b2 × L3LinesIn_rate. (10)

As we mentioned in Section 4.1, a2 and b2 are application-specific coef-
ficients that are related to how an application reuses its data. However, due
to the limitation of current available PMUs on most hardware, we cannot
accurately measure data reuse. Therefore, the goal of the regression analysis
for the sensitivity model is to investigate whether these application specific
factors are not negligible when predicting an application’s sensitivity.

Why LLC miss rate is not a good indicator for sensitivity? As
we discussed in the previous section, LLC miss rate does not always reflect
the reliance an application has on LLC or the rest of the shared memory
system. Firstly, an application can be highly relying on the LLC, occupying
large portion of the LLC and frequently accessing it without incurring LLC
misses. This type of applications actually may be highly sensitive. However,
the LLC miss rate does not reflect that. Secondly, multiple shared memory
components also need to be considered for sensitivity to contention. For
example, sensitivity to bandwidth contention is not considered previously.
Streaming applications are considered to be contentious but not necessarily
sensitive because they are already having cache misses when it is running
alone. So it would seem that co-running with other applications would
not make the situation worse. However, they are highly sensitive to memory
bandwidth contention although not to cache contention.These applications
also may not have high LLC miss rates.

4.2.2 Regression to Determine Coefficients
In this section, we use multiple regression to determine the coefficients
in Eqs. (9) and (10). The goal of the regression analysis is to firstly test that
whether there is a strong correlation between an application’s resource usage
and its contention characteristics; and secondly to determine the relative
importance of contention in various resources.
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Table 1 Synthetic benchmarks.

Benchmark Footprint Description

Bst 4 mb, 8 mb, 50 mb Random accessing a binary search tree
Naive 4 mb, 8 mb, 50 mb Random accessing an array
Er-naive 4 mb, 8 mb, 50 mb Fast random accessing an array
Blockie Small, medium, large A number of large 3D arrays. A portion of

one array is continuously copied to another
Sledge Small, medium, large Two large arrays, copies data back and forth

between arrays with this sledgehammer
pattern

Synthetic Benchmarks. To conduct regression analysis, we collect
PMU profiles and contention characteristics of a suite of synthetic bench-
marks.Table 1 presents our synthetic benchmarks. Bst,naive,blockie,
and sledge are from the contention benchmark suite developed by Mars
and Soffa [16]. The benchmarks are memory intensive applications with
various memory access patterns. They are run using three different inputs
with different working set sizes to stress different memory resources. The
only difference between naive and er-naive is that er-naive uses a
much faster random number generator. The goal is to test how contention
characteristics would change when an application’s cache access frequency
increases but everything else remains the same. Figure 9 presents each bench-
mark’s average contention characteristics calculated using Eqs. (4) and (6).
As the figure shows, the benchmark suite presents a fairly wide range of
contentiousness and sensitivity. Also this figure again demonstrates that an
application’s contentiousness and sensitivity are not strongly correlated.

Regression. We conduct multiple linear regression on Eq. (9) using
each benchmark’s L2LinesIn rate,L3LinesIn rate,and average C (contentious-
ness), shown in Fig. 9. The regression result for contentiousness is:

C = 1.663 × (L2LinesIn/ns − L3LinesIn/ns)

+ 8.890 × L3LinesIn/ns + 0.044 (11)

The p value for (L2LinesIn/ns − L3LinesIn/ns) is 0.018; for L3LinesIn/ns,
5.11e-07; for the entire regression, 2.015e-06; all smaller than 0.5, indicat-
ing statistically significant effects. The R-squared is 0.8876, indicating
a strong fit. The coefficients show the relative importance between the
bandwidth usage and the LLC usage, indicating that memory bandwidth
contention has a more dominating effect. Figure 10 presents benchmarks’
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Fig. 9. Average contentiousness and sensitivity of synthetic benchmarks.
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Fig. 10. Regression Result for Contentiousness using L2LinesIn and L3LinesIn. The
figure shows a strong linear fit.

predicted contentiousness values using the regression model (Eq. (11)) com-
paring against the measured actual average contentiousness.

Figures 11 and 12 demonstrate the relative importance of contention in
the memory bandwidth and contention in the LLC. Figure 11 shows that
for most benchmarks, L3LinesIn rate can be very indicative of an applica-
tion’s contentiousness. Applications with high L3LInesIn_rate are in gen-
eral causing more performance degradation to its co-runners. This is true
except for a few benchmarks including er-naive4mb, er-naive8mb,
bst4mb, and bst8mb.Those benchmarks have minimum L3LInesIn_rate
but they have medium levels of contentiousness. This is because they are
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Fig. 11. Benchmarks’ average contentiousness vs. their L3LinesIn/ms.
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Fig. 12. Benchmarks’ average contentiousness vs. their (L2LinesIn/ms-L3LinesIn/ms).

contentious for the shared cache instead of contentious for the bandwidth.
Figure 12 shows that these benchmarks have a medium to high (L2LInesIn–
L3LinesIn) rate, indicating that (L2LInesIn–L3LinesIn) rate can capture their
potential cache contentiousness. It is not as accurate as to predicting
bandwidth contention because as we mentioned, cache usage is more dif-
ficult to capture using PMUs. Note that their contentiousness level is mild
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comparing to benchmarks such as blockie and sledge. This is consis-
tent with the regression results that bandwidth usage is more important (has
a much higher coefficient) than cache usage.

However, regression for Eq. (10) cannot establish a linear model for
sensitivity, indicating that application-specific factors such as locality play
a non-negligible role in deciding applications’ sensitivity and PMU alone
may not be a good candidate for an accurate prediction model. It is worth
noting that predicting sensitivity is challenging using other approaches too.
Reuse distance profile can capture the application’s locality characteristics.
However, most works [12, 37] using reuse distance profile only consider
contention in the last level cache, and it may be difficult to simulate and
combine the contention effect in various other resources such as sophisti-
cated prefetchers. One promising approach is through direct empirical mea-
surement instead of indirect PMU indicators. Cipe, proposed by Mars et al.
[20], empirically measures application’s sensitivity in a controlled synthesised
environment.

Summary. In summary, an application’s contentiousness is deter-
mined by the pressure the application places on the shared memory sub-
system. On the Intel Core i7, a combination of L2LinesIn and L3LinesIn
rate is a better indicator of contention characteristics instead of LLC misses.
One key insight is, because the fundamental difference between an appli-
cation’s contentiousness and sensitivity to contention (e.g., contentiousness
is directly related to resource usage but sensitivity is related to the depen-
dence on the resource), it is easier to predict an application’s contentiousness
using PMUs. However, PMU alone may not be sufficient for an accurate
sensitivity prediction. In addition, because of the complexity of the mem-
ory system design on modern multicore architectures, a good predictor for
contentiousness needs to fully reflect the aggregate usage of a number of
resources including shared caches, memory bandwidth, prefetchers, etc.

5. EVALUATION

In this section, we evaluate our prediction model for application’s
contentiousness (Eq. (11)) using SPEC CPU2006 benchmarks. All experi-
ments are conducted on quad-core Intel Core i7 described in Section 2.3.
Each benchmark’s contentiousness is measured as described in Section 2.3.1,
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Fig. 13. Predicted contentiousness using our model is highly correlated with the real
measured contentiousness for SPEC benchmarks.

shown in Fig. 3.We also measure each benchmark’s solo L2LinesIn_rate and
L3LinesIn_rate. Using the PMU profiles, we calculate the predicted con-
tentiousness using Eq. (11).

Figure 13 presents our prediction results compared to the real measured
contentiousness for SPEC CPU2006 benchmarks. The linear correlation
coefficient R is 0.91, indicating our prediction is highly correlated with the
real measured contentiousness. Note that we are not predicting the actual
value of contentiousness because most contention-aware runtime systems
only need to rank applications according to their contentiousness levels.
Based on the ranking,the scheduler then co-locates highly contentious appli-
cations with applications that are not so contentious.The strong correlation
(0.91) demonstrates that our prediction model can successfully rank the con-
tentiousness levels of applications and thus can greatly improve scheduling
decisions. For comparison, Fig. 14 shows the results when using LLC miss
rate to predict applications’ contentiousness. Figure 15 shows the prediction
results using LLC reference rate. Zhuravlev et al. [37] propose using LLC
reference rate to predict an application’s intensity (contentiousness).The cor-
relation coefficients (R) are 0.47 and 0.28, respectively, showing that neither
LLC miss rate nor LLC reference rate can accurately indicate application
contentiousness.

Our evaluation shows that our prediction model can indicate applica-
tions’ contentiousness much more accurately than the state-of-the-art LLC
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Fig. 15. L3 reference rate is not strongly correlated with the real contentiousness.

miss rate indicator.And our contentiousness model can improve contention-
aware runtime solutions that base on PMUs to indicate applications’ con-
tentiousness levels.
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6. RELATEDWORK

There has been a wealth of research on the challenge of shared resource
contention on multicore processors. Contention-aware runtime systems have
been proposed to mitigate the effect of contention [2, 12, 14, 21, 22, 34,
37]. Jiang et al. develop a locality model to predict co-running applica-
tions’ degradation and use the model for co-scheduling to reduce perfor-
mance degradation and unfairness [12]. Zhuravlev et al. demonstrate that
cache contention is not the dominant cause for performance degradation of
co-running applications on CMPs; contention that happens in many com-
ponents of the memory subsystem all contributes to the performance degra-
dation. They also conclude that last level cache miss ratio is one of the best
predictor for co-running applications’ performance degradation [37]. Jiang
et al. and Tian et al. study the theoretical complexity of co-scheduling and
provide approximate algorithms [11, 32]. Also, there has been a number of
contention-aware scheduling schemes proposed that guarantee fairness and
Quality-of-Service for multiprogrammed and multithreaded applications [1, 8,
14]. Fedorova et al. use cache model prediction to enhance the OS scheduler
to provide performance isolation by allocating CPU resources according to
contention interference [8]. Hardware techniques and related algorithms to
enable cache management such as cache partitioning and memory scheduler
have been proposed [4, 13, 23, 25, 28]. Iyer et al. proposed a QoS-enabled
memory architecture for CMP platforms to allocate memory resources such
as cache and memory bandwidth [10]. Other hardware solutions have been
developed to guarantee fairness and QoS [9, 15, 24, 26]. Related to novel
cache designs and architectural support, analytical models to predict the
impact of cache sharing are also proposed by Chandra et al. [3]. In addition
to new hardware cache management, other approaches manage the shared
cache through the OS [5, 8, 27, 36].

7. SUMMARY

In this chapter, we performed a thorough study of contention char-
acteristics to develop an improved predictor for contention-aware runtime
systems.We studied the two aspects of an application’s contention character-
istics: an application’s contentiousness, e.g., the amount of degradation it tends
to cause to its co-runners due to its demand on shared resources,and an appli-
cation’s sensitivity, e.g., the amount of degradation the application is likely to
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suffer due to co-running with contentious applications. Our study found that
although these two characteristics are consistent for each application,they are
not strongly correlated for general purpose applications. We also found that
although last level cache miss rate is a commonly perceived good indicator
for application contention characteristic, it could often be misleading. Based
on the findings and insights,we then present prediction models that compre-
hensively consider contention in various memory resources. Our regression
analysis establishes an accurate model to predict application contentious-
ness. Further evaluation using SPEC CPU2006 benchmarks shows that our
predictor significantly out performs the state-of-the-art PMU indicators.
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