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Abstract—Modern processors widely use hardware prefetch-
ing to hide memory latency. While aggressive hardware
prefetchers can improve performance significantly for some
applications, they can limit the overall performance in highly-
utilized multicore processors by saturating the offchip band-
width and wasting last-level cache capacity. Co-executing
applications can slowdown due to contention over these shared
resources.

This work introduces Adaptive Resource Efficient Prefetch-
ing (AREP) − a runtime framework that dynamically combines
software prefetching and hardware prefetching to maximize
throughput in highly utilized multicore processors. AREP
achieves better performance by prefetching data in a resource
efficient way − conserving offchip-bandwidth and last-level
cache capacity with accurate prefetching and by applying
cache-bypassing when possible. AREP dynamically explores a
mix of hardware/software prefetching policies, then selects and
applies the best performing policy. AREP is phase-aware and
re-explores (at runtime) for the best prefetching policy at phase
boundaries.

A multitude of experiments with workload mixes and paral-
lel applications on a modern high performance multicore show
that AREP can increase throughput by up to 49% (8.1% on
average). This is complemented by improved fairness, resulting
in average quality of service above 94%.

I. INTRODUCTION

High performance processors employ hardware prefetch-

ing to hide memory latency. While hardware prefetchers can

improve single-thread performance considerably, aggressive

prefetchers waste shared resources, such as offchip band-

width and last-level cache capacity, which can impact overall

processor performance [7, 8, 9, 17]. Aggressive hardware

prefetching wastes shared resources due to the trade-off

between prefetch accuracy and prefetch coverage − to

prefetch more useful cache lines, the prefetcher also fetches

more useless cache lines [17]. Figure 1 shows that hardware

prefetchers on an Intel Sandybridge processor significantly

increase offchip data volume (useless data prefetching) and

offchip bandwidth across most of the 14 memory-intensive

Spec CPU 2006 benchmarks [6]. When several such applica-

tions co-execute, the offchip bandwidth and LLC share per-

core shrink. With little shared resources to spare, hardware

prefetching can lead to worse performance. In fact, we

observed that for a fully utilized 4-core Intel Sandybridge

i7-2600K processor running 4 different threads (randomly
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Figure 1. Aggressive hardware prefetchers (in Intel i7-2600K) increase
offchip data volume (Offchip DV) due to useless prefetches. This wastes
shared bandwidth and LLC capacity which can degrade the performance
of co-executing threads.

chosen from benchmarks in Figure 1), there is a 40% chance

that hardware prefetching hurts performance considerably.

Using hardware prefetching as baseline in Figure 2, the

No-Prefetching curve (shaded) shows the increase in pro-

cessor throughput when all prefetching is turned off. In

this paper we present a runtime system that dynamically

adjusts prefetch settings for more economical prefetching

when shared resources are constrained, maximizing multi-

core performance by avoiding overly-aggressive prefetching

and efficiently utilizing those shared resources.

Prior work has shown [8, 9] that a resource-efficient

software-only prefetching method can avoid useless

prefetches and improve throughput performance signifi-

cantly in fully utilized multicores. They show that software-

only prefetching (with intelligent cache bypassing) can

help scale performance better than hardware prefetching

by lowering the offchip bandwidth and LLC pollution. In

this paper we show that hardware prefetching is not always

harmful and performance can be scaled further by selectively

combining it with software prefetching at runtime.

We present a runtime system that can dynamically com-

bine any available software and hardware prefetching to

scale multicore performance. The key idea is that instead

of relying solely on static software prefetching [8], our

approach dynamically combines it with hardware prefetch-

ing at runtime to maximize throughput in multicores. Sev-

eral prefetch configurations can be created by combining

software prefetching with hardware prefetching at differ-
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Figure 2. Hardware prefetching can hurt performance when shared
resources are highly contended. When running 4 memory intensive bench-
marks there is a 40% chance that hardware prefetching will hurt perfor-
mance (No-Prefetching curve). The static-max curve shows that applying
the right prefetch settings can improve performance up to 50% and 10% on
average (smax). Each prefetching setting is shown with a different color.

ent cache levels (Sections III-E and III-F). Our dynamic

prefetching strategy explores overall processor performance

across the various prefetch settings by quickly switching

prefetching configurations across all running threads. The

method applies the best prefetch configuration and re-

explores at phase changes to keep exploration time low and

to maximize the performance benefit.

In Figure 2, the color coded best prefetching curve called

static-max shows the maximum performance improvement

across 160 mixes of four applications. This curve is gener-

ated by picking the best strategy of the 5 different com-

binations of software prefetching and hardware prefetch-

ing (prefetch combinations described in Sections III-E

and III-F). Each prefetching combination was applied to all

mixes for the entire run and the best performance is shown.

Prefetch configurations are color coded differently (color

legend in Figure 10), for example hardware prefetching is

shown with red points on the 0-axis. The static-max curve

shows that with the right prefetch strategy the processor

throughput can be improved (over hardware prefetching)

for more than 80% of the mixes, and 10% on average (see

averages on right in Figure 2).

In this paper we make the following contributions: 1) We

investigate when hardware prefetching becomes sub-optimal

and how performance can be improved, 2) We show that

multicore performance can scale by combining resource-

efficient software prefetching and hardware prefetching,

and lastly 3) We propose AREP − a runtime system that

dynamically combines software prefetching and hardware

prefetching to maximize multicore performance. AREP can

improve performance up to 49% (and by 8% on average)

compared to hardware prefetching. This is complemented

by high fairness with AREP maintaining above 94% quality
of service (QoS) on average, whereas average QoS with

hardware prefetching can be as low as 66%.
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Figure 3. static-max performance across mixes of 2 (2x), 3 (3x) and 4 (4x)
applications. As the number of active threads increase the contention in the
shared resources grows, increasing the opportunity to improve performance
with intelligent prefetching.

II. WHEN HARDWARE PREFETCHING HURTS

Aggressive hardware prefetchers waste the shared offchip

bandwidth and LLC capacity. Hardware prefetching works

very well for improving single-thread performance [8]. How-

ever, as more cores are utilized and the effective memory

bandwidth per core shrinks, hardware prefetching’s wasteful

use of shared resources can lead to worse performance.

Figure 3 shows the effect of choosing the best prefetching

strategy when two (2x), three (3x) and four (4x) applications

are co-executing. We applied the different software prefetch-

ing and hardware prefetching combinations (as for static-
max in Figure 2) to mixes of two, three and four of the SPEC

CPU 2006 applications shown in Figure 1 to see how the

static-max performance scales as shared resources become

more scarce (due to more co-executing applications). Note

that the static-max curve in Figure 2 corresponds to the 4x
curve in Figure 3. As the number of threads increase the

benefit of more intelligent prefetching choices also increases

significantly. This happens because the per-core-share of

the offchip bandwidth and LLC capacity decreases with

increasing applications, and as a result the most resource-

efficient prefetching choice wins. The opportunity is greatest

when all cores are utilized: choosing the best of our prefetch-

ing approaches increases throughput compared to hardware

prefetching in 80% of the mixes.

What resources are critical for scaling performance? To

answer that question we make an argument using offchip

bandwidth. Figure 4 shows how much the best performing

prefetch policy reduces offchip bandwidth compared to hard-

ware prefetching for mixes of 4. The diagonal represents the

offchip bandwidth for hardware prefetching and the points

along the diagonal are the workload mixes where hardware

prefetching performs best. Points below the diagonal show

that the best prefetch policy lowered the offchip bandwidth

(w.r.t. hardware prefetching). Prefetch policies are colored

differently (and same as Figure 2). With this graph we can

get several insights. First, performance in a fully utilized

processor improves when offchip bandwidth is reduced.

The fact that there are no points above the diagonal, i.e.
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Figure 4. Offchip bandwidth of best prefetch configuration (static-max)
versus hardware prefetching (HWPF). Each point represents an individual
mix of 4 applications. Different colors (same as Figure 2) show the
different prefetch settings. None of the winning policies is above the
diagonal showing that better performance is correlated to conserving offchip
bandwidth.

offchip bandwidth is never higher than the baseline hardware

prefetcher bandwidth, confirms this observation. Second, in

some cases performance is improved by further lowering

offchip bandwidth even when hardware prefetching offchip

bandwidth is already moderate (70% or lower). This shows

that lowering contention at the memory controller and LLC

also play a role in improving performance. Third, aggressive

hardware prefetching does not do a good job of improving

performance when about 75% of the total available offchip

bandwidth has been saturated. Beyond this point prefetching

needs to be scaled down to reduce the pressure on offchip

bandwidth in order to scale performance.

III. RUNTIME FRAMEWORK

The ability to dynamically control prefetching at run-

time can help maximize performance by applying the right

prefetching choices when they perform best. Since our

method aims at choosing the best combination of software

prefetching and hardware prefetching, it requires exploration

across various hardware and software prefetching configura-

tions. For the software prefetching part the runtime should

be able to insert (and remove) software prefetches in the

code on the fly. Moreover, to be able to dynamically adjust

to different prefetch configurations and sample performance

for those settings, the runtime must switch very quickly (to

avoid performance overheads) between different hardware

prefetcher and software prefetching configurations.

Hardware prefetchers can be configured on many mod-

ern processors by programming dedicated model-specific

registers (MSRs). However, inserting (and removing) soft-

ware prefetches in the instruction stream on the fly (when

switching software prefetch configurations) is a major chal-

lenge. This can be achieved using JIT compilation, however,

frequent JITing of code impacts performance and is not a

feasible option. To that end we have extended the Protean
code framework, originally developed by Laurenzano et al.

[10], to maintain and use multiple versions of an application.

Using Protean code we create two versions of the application

binary at execution start up: the original binary and another

one with software prefetches inserted. The runtime can then

switch between these two versions to turn off/on software

prefetching. The runtime can combine this capability with

various hardware prefetcher configurations to create several

prefetching options.

We now explain how our runtime framework functions

and enables exploration of processor performance under

varying prefetching settings. Applications compiled with

Protean code instantiate a per-application runtime on a

separate thread at startup. The runtime thread wakes up

every 25 ms to monitor performance and (if required) change

prefetch settings for its parent application. Our runtime

framework consists of the applications’ runtime threads and

a separate policy manager (PM) that chooses when to change

the prefetch policy.

A. Performance Monitoring

An application’s runtime thread uses hardware counters to

monitor the performance of its parent application. Hardware

counters are configured to count branches, instructions, cy-

cles and offchip memory requests. When the runtime thread

wakes up it reports the performance values to the PM.

B. Supporting Multiple Variants

Controlling software prefetching requires inserting (and

removing) software prefetches in the binary on the fly. We

achieve this by maintaining two versions of the application

binary: the original and one with software prefetches. At

execution start up, the application’s runtime thread (JIT)

compiles the software prefetching binary version and saves

it in a code cache. The PM can then request each application

at runtime to switch versions as needed.

Protean code [10] is built on top of LLVM and appli-

cations compiled with Protean code have the LLVM-IR

embedded in a dedicated section in the binary. At application

startup the runtime thread is spawned which attaches to the

embedded LLVM-IR in the binary, and uses it to JIT the

software prefetching version. Since the runtime compilation

of the software prefetching version happens independently

on a separate thread context, the execution of the parent

application thread does not stop. It should be noted that the

need to JIT the software prefetching version is that of the

underlying Protean code framework. It is not a necessary

condition and can be removed completely if a pre-compiled

software prefetching binary is embedded instead of the

LLVM-IR. For this work we assume the software prefetch

version has been cached and is available at startup.

C. Inserting Software Prefetches

Deciding where to insert the software prefetches in the

instruction stream is a considerable challenge. The runtime

does not decide where to insert the software prefetches. This

information is provided as input to the runtime and can be
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generated with help of a profiling pass. There is a plethora of

prior works that use various fast profiling methods to identify

which memory instructions miss in the cache hierarchy, such

as [1, 5, 13, 23]. Those memory instructions can be targeted

for software prefetching as shown by [8, 13, 23].

In principle, any software prefetching strategy listed above

can be used with our dynamic runtime framework. However,

in this work we have focused on reuse-distance based

methods to model prefetches as they can be targeted to

enable improved use of shared resources. Reuse-distance

based models such as [1, 5] can model miss ratios for

individual memory instructions. This information can be

used to decide which memory instructions should be targeted

for software prefetching. Data-reuse based cache models can

use reuse profiles to point at memory instructions whose

accessed data never gets reused from the cache hierarchy.

This information can be used to insert non-temporal software

prefetches to cache-bypass the data that is not reused from

the lower-level caches (L2 and LLC). This way data with

good temporal reuse properties is maintained in the lower-

level caches longer and reused from there.

Khan et al. [8] and Sandberg et al. [19] have extensively

used this approach to develop software prefetching methods

that conserve shared resources and help scale performance

when offchip bandwidth and LLC space are scarce. They

have also shown the approach to work well across different

data inputs. In this work we leverage the resource-efficient

software prefetching algorithm developed by Khan et al.

[8] to guide software prefetch insertion. The information

provided is 1) where to insert the software prefetches in

the instruction stream, 2) how far to prefetch and 3) should

cache-bypassing be used. The runtime thread takes this

information, inserts the appropriate software prefetches at

the IR level and then JITs the corresponding binary.

D. Enabling Software Prefetching

Once the software prefetching version has been created

and deposited to the code cache, the runtime can switch

between the original and the software prefetching version

when requested. Protean code virtualizes function calls

during the compilation pass to enable changing control flow

at runtime. On function calls, control is redirected to the

appropriate function via a Edge Virtualization Table (EVT).

When the runtime needs to enable software prefetching, the

control is redirected to the software prefetching version by

changing the target addresses in the EVT to point to the

corresponding function versions. This enables the runtime

thread to turn on/off software prefetching dynamically on

the fly.

E. Hardware Prefetchers Configuration

Many modern processors allow for software control over

hardware prefetchers via MSRs. In this work we use an

Intel Sandybridge processor whose hardware prefetchers at

the LLC/L2 and L1 cache can be enabled (or disabled)

independently. We look at three hardware prefetcher con-

figurations that have different impacts on shared resources –

1) Full Hardware Prefetching, 2) L1 Hardware prefetching

only (LLC/L2 hardware prefetching turned off), and 3) No

Prefetching (all prefetching turned off) . For ease we refer

to LLC/L2 prefetchers as LLC prefetcher. When requested,

the runtime can configure the hardware prefetchers by pro-

gramming the MSRs appropriately.

F. Policy Manager

An external agent, the Policy Manager (PM), monitors

the overall system performance and oversees the operation

of all applications’ runtime threads. The PM performs the

following operations:

1) The PM oversees the prefetch settings across all

applications and can request their runtime threads

to enable/disable software prefetching (Section III-D)

and hardware prefetching on the different cores (Sec-

tion III-E). The PM can combine Hardware and Soft-

ware prefetching options to configure prefetch settings

in a total of 5 different ways – a) Hardware Prefetching
only, b) Hardware Prefetching + Software Prefetching,

c) L1 Hardware prefetching + Software Prefetching,

d) Software prefetching only (all hardware prefetchers

disabled) and e) No Prefetching. The selected policy is

applied uniformly across all cores.

2) When not operating in the above mode, the PM receives

performance metrics from all applications’ runtime

threads. Based on the reported metrics the PM evaluates

the overall system performance and may decide to

change the prefetch configuration across all cores.

Together the runtime threads and the PM form a runtime

system that can monitor performance, dynamically configure

various prefetch settings to explore performance improve-

ments and apply the one that works best. The prefetching

policy exploration is detailed in the next section.

IV. METHODOLOGY

To make the best prefetching decision we need to deter-

mine the best prefetching configuration dynamically. Such

an approach requires exploring different prefetching config-

urations at runtime and applying the best one. The effective-

ness of such a method depends on its ability to make the

right decisions with little overhead.

The runtime framework operates in two modes: 1) the ex-

ploration mode – when different prefetching configurations

are tested for performance, and 2) the performance monitor-

ing mode – when performance is monitored for the applied

prefetch configuration. We use branches-per-cycle (BPC)

metric to evaluate performance and avoid instructions-per-

cycle (IPC) due to the bias introduced by the additional

software prefetch instructions.
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Figure 5. Phase changes across different threads in a mixed workload
environment can affect performance in different ways. In this example
although thread 4 remains in the same phase, the combined affect is that
of phases changing on the order of tens of milliseconds.

Application behavior can change significantly during dif-

ferent phases which can have varying impact on the shared

resources. Phases can change on the order of tens of millisec-

onds (or even faster) and require to re-explore the prefetch

settings very frequently. Even more challenging is when

several threads co-execute and frequently change phases.

Figure 5 illustrates phase changes across four independent

threads in a mix during a period of 5 seconds. Even though

the phase in thread 4 remains constant, the frequently

changing phases on other threads can have varying impact

on the processor’s shared resources and overall performance.

Fast varying phases require more frequent sampling which

increases the overhead.

Figure 6 presents a summary of how quickly phases

change when running 4 independent applications on 4 cores

on an Intel Sandybridge i7-2600K processor1. We looked

at more than 150 randomly generated workload mixes of 4

benchmarks from Figure 1. In more than 50% of the mixes

a phase change (across all threads) can be expected on the

order of tens of milliseconds (red region in Figure 6). The

fastest case being an expected phase change every 18 ms. We

observed that to keep the runtime system’s average processor

utilization below 5%, it has to operate at a granularity of at

least 25 ms. This can make our runtime method oblivious to

phases shorter than 25 ms. To implement an efficient runtime

method we start with a simple periodic exploration approach.

A. Periodic Sampling

Sampling performance with period of 25 ms raises the is-

sue of micro-phases. Figure 7 shows the execution of bwaves
where frequently changing micro-phases occur repeatedly

and performance shifts significantly. Figure 6 also shows

that there are many cases where phases change in less than

25 ms. So, relying on a single sample window (spanning

25 ms) to evaluate the performance of a prefetching policy

1Phase information was generated using Scarphase tool [20]
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Figure 6. Average time (in milliseconds) before a phase change occurs
in at least one of the threads in the workload mix. Phase changes may
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commonly phases change in 10s of ms.
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Figure 7. bwaves has regularly occurring microphases. Taking one sample
at the granularity of tens of milliseconds will not give the right performance
estimate. The behavior needs to be averaged.

during exploration can lead to erroneous results. Therefore

we average the behavior over several sample windows.

We implement a simple periodic sampling mechanism –

the PM enters exploration phase after every d seconds and

explores (i.e. records performance for) each prefetch con-

figuration for duration of s seconds. After exploration, the

prefetch configuration with the highest throughput (evaluated

using average weighted speedup over hardware prefetching)

is selected and applied across all cores for the next d sec-

onds. We vary the parameters d and s and test on a small set

of 35 workload mixes of 4 applications. In addition, we test a

second configuration where a moving average over the whole

sampled history is used to select the best prefetching policy.

Figure 8 shows the average increase in throughput (over

hardware prefetching) across the 35 mixes when varying d
between 1–20 seconds and s between 0.125–0.5 seconds.

Note that a single sample window spans 25 ms, so the

parameter s=0.125 means that 5 windows are consecutively

sampled and averaged for a single prefetch setting. The

figure also shows the standard deviation of the difference

of the runtime method’s performance and static-max across

all mixes. This is to evaluate how close in performance our

method is to static-max. A lower standard deviation means

the performance achieved by the runtime exploration is

closer to the static-max performance. Performance for both
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Figure 9. An example workload mix where moving-average (hist) helps
avoid sub-optimal prefetch settings. This results in considerable perfor-
mance improvements for the entire run (averages on right). We explore 3
prefetch settings here to simplify this example.

configurations, moving-average (hist) and without history

(nohist) are shown.

Figure 8 shows that the performance is mostly stable

across the various sampling parameters and can help increase

throughput between 8-10% over hardware prefetching on

average. The sampling parameters with highest performance

and smallest standard deviation are (hist, d=3, s=0.125). As

we move left from this point and d is further decreased to 2

and 1 we see diminishing returns due to increasing useless

exploration.

Figure 9 shows an example mix (of 4 applications)

demonstrating how performance history can perform better

than nohist configuration. The figure shows when (during

the execution) different prefetch configurations are applied

to the mix. nohist applies the sub-optimal baseline (HWPF)

configuration at 4% into the execution and applies the

software-only prefetching (SWPF) several times during the

execution, which proves to be sub-optimal as well. This

results in a smaller throughput increase compared to hist
(see averages on right of Figure 9). The moving average

approach (hist) avoids immediately adapting a sub-optimal

prefetch setting when it performs better for a short duration.
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Figure 10. The Phase-adaptive exploration approach re-explores for the
best prefetch setting when the overall performance changes significantly.
Re-exploration (marked with vertical lines) takes place when relative
performance changes by 11%. The jitters in performance are because of re-
calibration of hardware prefetching (baseline) performance at exploration
points. Phase-adaptive approach explores only 6 times in total, whereas the
periodic exploration approach explores 32 times for this mix. The color
scheme used here is the same as Figure 2.

B. Phase Adaptive Exploration

The exploration time for periodic sampling can be con-

siderable, for example, the best periodic exploration config-

uration in Section IV-A (hist, d=3, s=0.125) spends almost

14% of the time testing different prefetch settings. To lower

the time spent in exploration we develop a phase adaptive

performance sampling approach that re-explores only when

performance changes considerably (due to phase changes).

The PM continuously monitors performance (across all

threads) when not in exploration mode and uses performance

change as proxy for phase change. The PM enters re-

exploration when it observes the overall relative performance

change by ±c. This change in overall performance can

occur because 1) one (or more) executing thread(s) enters

a new phase and its performance metric (BPC) changes, or

2) contention at the shared-resources affects performance

of one (or more) executing thread(s). In either case re-

exploration is required to adjust the prefetch configuration.

Figure 10 illustrates the exploration process with an ex-

ample assuming c=11%. The marked points in the figure

show that exploration to find the best prefetch settings

happen only when the relative performance changes by 11%.

The jitters in the relative performance are because of re-

calibration of hardware prefetching (baseline) performance

at re-exploration points.

To evaluate the effectiveness of this method we explore

the phase change sensitivity (c) between 5-25% on 35 work-

load mixes (as we did for periodic sampling Section IV-A).

Figure 11 shows the average increase in throughput (over

hardware prefetching) across 35 mixes for varying values

of c. The figure also shows the standard deviation w.r.t.

static-max, showing how close our method’s performance

is to static-max on average. The average performance and

standard deviation (w.r.t. static-max) for the best periodic

exploration settings (hist, d=3, s=0.125) is marked with

a line for reference. The average performance for the
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across a set of 35 workloads mixes when varying phase sensitivity for re-
exploration. The average performance and standard deviation (w.r.t. static-
max) for the best performance in periodic sampling are marked with lines.
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Figure 12. Performance and exploration time of the three different policies
for an example mix of 3 applications (bzip2, libquantum and milc). The
time spent in exploration clearly has an impact on performance for some
workload mixes.

phase-adaptive approach is only slightly better than peri-

odic sampling, indicating that the best prefetching policy

usually remains the same through the execution. However,

time spent in exploration can impact performance in some

cases. Figure 12 shows an example mix of 3 applications

where lowering the exploration time with the phase-adaptive

approach benefits performance. For the rest of the paper

we evaluate performance using phase-adaptive exploration

with c=11%. With this configuration the runtime spends on

average only 3.4% of the time exploring prefetching options.

We call this phase-adaptive approach adaptive resource-
efficient prefetching (AREP).

V. EVALUATION

In this section we evaluate the performance of our phase-

adaptive runtime prefetching method AREP (Section IV-B)

on a modern x86 multicore processor. We use a 4-core Intel

Sandybridge i7-2600K processor, with all cores clocked at

3.4 GHz. The DRAM (DDR3) frequency is 1333 MHz and

the processor has 2 memory channels. streams benchmarking

measures the offchip bandwidth at 13 GB/s. The L1, L2 and

LLC sizes are 32 KB, 256 KB and 8 MB, respectively.

To evaluate our approach we ran mixes of single-threaded

applications, parallel workloads and mixes of parallel work-

loads. We selected 14 benchmarks from SPEC CPU 2006

suite [6] whose dataset does not fit in the LLC, shown in

Figure 1. All benchmarks were compiled using the LLVM-

3.3 compiler with -O3 optimization flag. We use randomly

generated set of 160 mixes of 4 applications and 105 mixes

of 3 applications. The mixes are run for two minutes and

throughput is reported, excluding the initial JIT duration. We

also look at 10 parallel workloads and mixes of two parallel

applications, each running two threads.

A. Mixed Workloads Performance

Figure 13a shows the performance of AREP for mixes

of 4 applications. The performance increase is reported as

weighted speedup, computed as

WS =

(
N∑
i=1

Performanceappi(AREP )

Performanceappi(HWPF )

)
/N

The mixes are sorted in descending order of static-max

performance. The static-max shows that there is an oppor-

tunity to improve the throughput by 10% on average by

statically choosing the best prefetching choice. Note that

the static-max incurs no exploration. AREP improves the

performance by 8.1% on average and up to 49% in the

best case. Figure 13b shows the performance for mixes of

3 applications, where AREP improves performance by 3%

and static-max improves performance by 3.6% on average.

In some cases AREP performs better than the static-max

because it is dynamic and can better adjust the prefetching

configuration to some slower changes in phase behavior.

Varying Inputs: The information about software prefetch

insertion used by the runtime system is generated by a

profiler pass. To evaluate AREP’s sensitivity to varying

inputs we used different application inputs for modeling

the software prefetches and for the actual runs. The train
curve in Figures 14a and 14b shows the performance of

AREP for mixes of 4 and 3 applications when software

prefetching is modeled using the train input set and ref
input is used for the actual runs. The mixes are sorted

by performance in descending order. The ref curve shows

AREP’s performance when the same input set (ref ) was

used for modeling software prefetches and the actual runs.

There is near perfect overlap in performance when using the

different inputs showing that AREP is efficient at improving

performance across different inputs. Figure 15 summarizes

the performance of the phase adaptive runtime exploration

(AREP), periodic runtime exploration (Section IV-A) and

software prefetching only (SWPF) across all mixes. Using

software prefetching (SWPF) alone clearly does not perform

as well as runtime exploration and is sub-optimal for mixes

of 3 applications. This shows that even in highly utilized

multicores the right strategy is to choose the prefetch policy

at runtime instead of relying on a static policy. The static-

max is 2% better than AREP, though this does not take

its profiling overhead into consideration, which involves

running each workload mix with each of the 5 prefetching

policies to determine the best.
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(a) Performance across 160 mixed workloads of 4 applications.
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(b) Performance across 105 mixed workloads of 3 applications.

Figure 13. Performance of AREP compared to hardware prefetching (0-
axis) and static-max.

B. Offchip Bandwidth

In Section II we showed that increasing offchip bandwidth

utilization can have a significant impact on performance

in a highly utilized multicore processor. Figure 4 showed

that in such cases performance improvement is correlated to

reduced offchip bandwidth (compared to hardware prefetch-

ing). In Figure 16 we compare the offchip bandwidth of

AREP to hardware prefetching for mixes of 4. The mixes are

sorted in ascending order of relative offchip bandwidth in-

crease. Note that here we use No Prefetching as the baseline

to compare how offchip bandwidth increases for AREP and

for hardware prefetching. Hardware prefetching increases

the offchip bandwidth pressure significantly in all cases,

typically above 70% of the total available bandwidth (not

shown here). Whereas, AREP consistently maintains lower

offchip bandwidth than hardware prefetching. In more than

50% of the runs AREP maintains lower offchip bandwidth

than No Prefetching. This helps explain the performance

improvement achieved by AREP over hardware prefetching.

C. Last Level Cache Pollution

Besides offchip bandwidth, performance is also affected

by shared LLC capacity. Aggressive hardware prefetching

often brings in data that is not useful for the application.

This wastes LLC space and can hurt performance of the

running applications. It is important to note that an increase

in offchip data volume2 can also be the effect of a single

thread executing faster due to prefetching and kicking out

2measured as memory requests per kilo branches
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(a) Performance across 160 mixed workloads of 4 applications.
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(b) Performance across 105 mixed workloads of 3 applications.

Figure 14. Performance of AREP when using the train dataset for
generating software prefetches. In both cases performance is similar to
optimal case using the same input (ref ).
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Figure 15. Average throughput increase for mixes of 4 (4x) and mixes
of 3 (3x) with different prefetching policies. The phase-adaptive (AREP)
approach is closest in performance to static-max. Software-only prefetching
(SWPF) is worse in performance than both runtime approaches (AREP and
periodic exploration). Also, it performs 5% worse compared to hardware
prefetching when using 3 cores.

useful data for the other threads earlier. While it is hard

to isolate such effects in a real system, we can simply

look at the increase in offchip data volume to compare the

efficiency of AREP. We use No Prefetching as the baseline

here to compare AREP with hardware prefetching. Using

the No Prefetching baseline gives us insight into how much

“additional” (useless) data is fetched from the memory when

(any) prefetching is enabled. Figure 17 compares the offchip

data volume increase of AREP and hardware prefetching

with the baseline. The mixes are sorted in ascending order

of data volume increase. Cache bypassing can lower offchip

data requests by up to 50%. On average AREP improves

(lowers) offchip data volume by 22% compared to hardware

374



-60%
-40%
-20%

0%
20%
40%
60%
80%

100%

0 20 40 60 80 100

R
el

. O
ffc

hi
p 

B
an

dw
id

th

runs (%)

AREP HWPF

Figure 16. Offchip bandwidth for AREP remains significantly lower than
hardware prefetching, and lower than No Prefetching (0-axis) in more than
50% of the runs. Figure 4 shows improved performance is correlated to
reduced offchip bandwidth.
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Figure 17. AREP consistently maintains lower offchip traffic than
hardware prefetching, as a result causing less LLC pollution and reduced
offchip bandwidth (Figure 16).

prefetching and 7% compared to the baseline. This signifi-

cant reduction in offchip data volume is a good indicator of

efficient use of LLC space and is very visibly reflected in

reduced offchip bandwidth (Figure 16).

D. Parallel Workloads

To investigate performance for parallel workloads we

looked at 9 benchmarks from SPEC OMP 2000 and NAS

parallel benchmark suite, and parallelized lbm from the

SPEC CPU 2006 benchmark suite (Figure 18). Interestingly,

most of the parallel workloads do not saturate the offchip

bandwidth, even with 4 threads. Only 3, namely applu,

cg and equake, use more than 9 GB/s (70%) of offchip

bandwidth when running with 4 threads. All runs were made

using input set other than the one used for generating soft-

ware prefetch information. Here it should be noted that using

branches per cycle (BPC) is a poor metric for investigating

throughput in parallel workloads, as an application spinning

for a contended lock can increase this metric without making

any forward progress. So, we instead used FLOPS (floating-
point operations per second) as a measure of progress. This

is an appropriate measure here since all studied workloads

are floating point applications.

Across the 10 benchmarks (running with 4 threads) AREP

improved performance for only two (lbm and CG), 3% for

each. Both these benchmarks reuse data from the lower level
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Figure 18. Throughput increase for parallel workloads running 4 threads.
Prefetching improves performance in only two benchmarks.
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Figure 19. Throughput increase for mixes of 2 parallel workloads. Two
workloads, each running two threads were co-scheduled on the processor.
Overall, AREP performs better than hardware prefetching.

caches and benefit from cache bypassing. The slowdowns

for FT, fma3d, DC and apsi is because of their short

running duration (less than 40 seconds at 4 threads) with

several phase changes requiring re-exploration. However,

we found mixed workloads of multi-threaded applications

more interesting. Two workloads in Figure 18 were co-

scheduled, each running with two threads, and all threads

were pinned to separate cores. Figure 19 shows the perfor-

mance of AREP across the 45 mixes (10 choose 2) sorted

in descending order of static-max performance. On average,

AREP improves throughput by 5.4%, whereas static-max

improves by 4.3%. AREP performs significantly better than

the static-max across several mixes. Figure 20 illustrates the

case of one such example, when equake and FT are run

in a mix and hardware prefetching is the static-max (mix

39 in Figure 19). When running alone with two threads the

workloads require 12 GB/s (equake) and 4.2 GB/s (FT) in

offchip bandwidth (Figure 20a). When run together in a mix

the offchip bandwidth remains at 12 GB/s (ideally it should

add up to 16.2 GB/s) which means that both applications

fight for this resource (smax in Figure 20b). AREP adapts

a policy with software prefetching enabled for 30% of the

execution and lowers the offchip bandwidth considerably

(arep in Figure 20b). That results in 5.1% improvement in

performance over hardware prefetching (Figure 20c).
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Figure 20. equake and FT fight for the offchip bandwidth when run
together (each running 2 threads). AREP lowers the offchip bandwidth
demand and improves throughput for this mix by 5%.

E. Quality of Service

In a multicore environment, shared resource hungry ap-

plications can penalize the performance of threads executing

on neighboring cores by using more offchip bandwidth

and LLC space (Sections V-B and V-C). This is especially

the case when workloads that benefit significantly from

prefetching co-execute with workloads that don’t benefit

much. To evaluate the fairness of AREP we look at Quality
of Service (QoS) – the cumulative application slowdown per

workload mix, computed as

QoS = 1−
N∑
i=1

min

(
0,

Performanceappi(prefetching)

Performanceappi(baseline)
− 1

)

where N is the number of co-executing threads. The QoS

metric gives us insight in to how balanced the through-

put increase is compared to the cumulative slowdown of

running applications. To compare AREP with the hardware

prefetcher we assume the original mix with No Prefetching
as the baseline. The No Prefetching baseline helps compare

the unfairness of any prefetching scheme that is introduced

in the system. We look at an example of three integer

benchmarks (bzip2, omnetpp, xalan) which do not benefit

much from prefetching (Figure 1). AREP ensures that when

they co-execute with prefetcher-friendly applications they do

not starve on shared resources and consequently experience

significant slowdowns. Figure 21 shows these benchmarks

executing in three different mixes with shared-resource hun-

gry benchmarks. Despite improved performance of the other

applications, these benchmarks do no not see significant

slowdown with AREP. Hardware prefetching on the other

hand penalizes the performance of these benchmarks sig-

nificantly, while increasing the other threads’ performance

disproportionately. For the three mixes, hardware prefetching

degrades QoS by more than 40% in mix 1 and mix 2, and

more than 25% in mix 3, whereas AREP degrades QoS by

6% at worst. The QoS for AREP is above 94% on average

(Figure 22) across all workloads. Average QoS for parallel

workloads running with 4 threads (p-1x-4t in Figure 22), and

for mixes of 2 with 2 threads each (p-2x-2t in Figure 22) are
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Figure 21. Example mixes showing performance across individual threads
when using AREP and hardware prefetching. The baseline is No Prefetch-
ing. AREP does not penalize performance considerably for the individual
threads and is more fair. Hardware prefetching on the other hand can slow
down individual threads by more than 40%.
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Figure 22. QoS (compared to No Prefetching – higher is better) for mixes
of 4 (4x), mixes of 3 (3x), parallel workloads with 4 threads, and mixes
of 2 parallel workloads (2 threads each). AREP maintains QoS above 94%
on average, whereas hardware prefetching degrades QoS considerably in
mixed workloads.

also shown. The high QoS means that applications in the mix

do not experience significant slowdowns most of the times.

This shows that AREP is very effective at maintaining a high

degree of fairness across the executing threads.

VI. RELATED WORK

Several works in recent years have proposed novel hard-

ware prefetching schemes for improving the utilization of

shared resources (offchip bandwidth and LLC capacity)

in multicores [2, 3, 4, 7, 17, 22]. Liu and Solihin [12]

have proposed analytical models for bandwidth partitioning

to identify when prefetching can help in improving sys-

tem performance. Several other works have used software

prefetching effectively to improve single-thread performance

[13, 14, 15, 18, 23, 24, 25]. The list of prefetching work is

too detailed to cover here, so we discuss the most relevant

prior work that relates to our runtime prefetching approach.

Khan et al. developed a resource-efficient software

prefetching method to scale performance in multicores when

shared resources are constrained [8]. They showed that by

using software prefetching (with cache-bypass hints) instead

of hardware prefetching, performance scales better on a

fully loaded system. However, their method relies entirely

on software prefetching and does not make any use of
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hardware prefetchers at all. We have shown that this is sub-

optimal and performance improves significantly by applying

hardware prefetching. Instead of relying on a static approach

our method dynamically combines hardware prefetching and

applies the best prefetch setting.

Sandberg et al. used reuse-distance based cache modeling

to insert non-temporal prefetch instructions to cache bypass

the data that is not reused from the lower level caches [19].

Similarly, Laurenzano et al. [10] proposed a runtime mech-

anism to find opportunities to insert non-temporal prefetch

instructions in batch applications to conserve LLC space

so that user-facing applications’ performance in datacenters

remains predictable. Lee et al. [11] investigated combining

hardware prefetching and software prefetching for single-

threaded applications, concluding that caution should be

exercised when mixing the two. In contrast to their work we

have shown that hardware prefetching can be combined with

software prefetching in a useful way to increase throughput

performance in multicores.

Jiménez et al. implemented a runtime mechanism for

exploring and adjusting hardware prefetcher configuration

on a POWER7 processor to maximize performance [7]. The

POWER7 processor allows the prefetcher aggressiveness to

be configured at 7 different levels. Their runtime method

explores the best hardware prefetcher settings on per-core

basis (for two cores only) and applies the one that performs

best. Unlike our work, their method avoids interaction

with software prefetching by explicitly disabling software

prefetch insertion.

Several works have proposed hardware solutions for re-

source friendly prefetching [3, 17, 21] and shared resource

management [16, 22]. In this work we propose a runtime

system with the ability to dynamically combine any im-

plementation of software/hardware prefetching to improve

performance on existing commodity processors instead of

introducing a new hardware method.

VII. FUTURE WORK

Our work is focused towards finding a single best

prefetching configuration that maximizes throughput per-

formance for the multicore. However, the selected prefetch

setting may not be the best for all running threads. Prefetch-

ing may be configured at the per-core level to tap even

more performance. Our framework can support such an

exploration, however, there is a large exploration space that

needs to be traversed at runtime. For example, in case of a

4-core processor, there will be 625 prefetch combinations

to be explored. Exploring too many states at runtime is

not feasible with the exploration method we present in this

work. This problem can perhaps be solved efficiently with

a machine-learning algorithm that is trained on the fly and

then used to predict the right prefetch settings. However,

such a study is out of the scope of this paper.

VIII. CONCLUSION

This paper presents a software based approach to alleviate

the issue of inefficient prefetching on modern commodity

processors. Hardware prefetchers on modern high perfor-

mance processors can prefetch significant amount of useless

data and increase the pressure on shared resources. This can

degrade performance significantly when several threads run

in parallel and the shared resources become constrained. To

alleviate this problem we proposed AREP − a method that

improves performance by prefetching data in a resource effi-

cient way. This is achieved by dynamically choosing combi-

nations of hardware prefetching and software prefetching at

runtime. We propose a phase-aware framework that explores

the various prefetch configurations (hardware prefetching

and software prefetching) at runtime and applies the best

performing policy across the processor. Our results show

that AREP can improve throughput by up to 49% at best

and 8.1% on average. In addition to increasing throughput

our method is also fair and maintains high QoS, above 94%.
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