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Abstract—One of the key challenges for improving efficiency
in warehouse scale computers (WSCs) is to improve server
utilization while guaranteeing the quality of service (QoS)
of latency-sensitive applications. To this end, prior work has
proposed techniques to precisely predict performance and QoS
interference to identify ‘safe’ application co-locations. However,
such techniques are only applicable to resources shared across
cores. Achieving such precise interference prediction on real-
system simultaneous multithreading (SMT) architectures has
been a significantly challenging open problem due to the
complexity introduced by sharing resources within a core.

In this paper, we demonstrate through a real-system in-
vestigation that the fundamental difference between resource
sharing behaviors on CMP and SMT architectures calls for a
redesign of the way we model interference. For SMT servers,
the interference on different shared resources, including private
caches, memory ports, as well as integer and floating-point
functional units, do not correlate with each other. This insight
suggests the necessity of decoupling interference into multiple
resource sharing dimensions. In this work, we propose SMiTe,
a methodology that enables precise performance prediction
for SMT co-location on real-system commodity processors.
With a set of Rulers, which are carefully designed software
stressors that apply pressure to a multidimensional space
of shared resources, we quantify application sensitivity and
contentiousness in a decoupled manner. We then establish a
regression model to combine the sensitivity and contentiousness
in different dimensions to predict performance interference.
Using this methodology, we are able to precisely predict the
performance interference in SMT co-location with an average
error of 2.80% on SPEC CPU2006 and 1.79% on CloudSuite.
Our evaluation shows that SMiTe allows us to improve the
utilization of WSCs by up to 42.57% while enforcing an
application’s QoS requirements.

Keywords-quality of service; simultaneous multithreading;
datacenter; warehouse scale computer

I. INTRODUCTION

The geometric growth of computation in the cloud drives

rapidly increasing costs in building and operating warehouse

scale computers (WSCs). Unfortunately, most WSCs oper-

ate at fairly low utilization, often below 30% [1], which

translates to low efficiency and high total cost of ownership

(TCO). This inefficiency can be significantly improved by

allowing co-locations of multiple applications on individual

servers to share hardware resources. However, resource

sharing introduces varying amounts of performance inter-

ference among applications. Therefore, the performance pre-

dictability is negatively affected, posing critical challenges

for guaranteeing that user-facing latency-sensitive workloads

such as web search can meet their strict quality of service

(QoS) targets.
Recently, prior work has proposed techniques to precisely

predict the QoS interference among co-located applications

on chip multiprocessor (CMP) servers [2–6]. Based on

this precise interference prediction, WSC cluster schedulers

can identify ‘safe’ co-locations that bound performance

degradation while improving server utilization. However,

prior techniques only focus on predicting the interference

caused by resource sharing across cores on a multicore

processor. Despite the ubiquitous presence of simultaneous

multithreading (SMT) processors [7, 8] in WSCs, an ap-

proach to perform precise interference prediction on real-

system SMT processors has been an open problem.
Realizing precise prediction for SMT co-locations in

addition to CMP co-locations is a particularly challenging

problem due to significantly more complex interactions

between shared resources within the core and in the uncore.

In addition to the last-level cache (LLC) and memory

bandwidth, which are shared across CMP cores, SMT cores

provide much finer granularity resource sharing on core,

among hardware contexts. The additional shared resources

include private cache(s), memory ports, as well as integer

and floating-point functional units. This fine-grained shar-

ing across a large number of resources leads to greater

performance variability and unpredictability. In addition,

there is diversity in how resources are shared, which further

increases the difficulty of precise interference prediction. For

example, a functional unit cannot be shared concurrently

by multiple hardware contexts, however a cache’s capacity

can be shared simultaneously. In this paper, we demonstrate

that the difference between CMP and SMT resource sharing

calls for a fundamental redesign in the way we model

interference.
This paper first presents a real-system investigation to

better understand how applications interfere on commodity

SMT multicore processors. From the investigation, we have

gained several insights that guide the design of an SMT

interference prediction methodology.

• Firstly, across various shared resources (caches, func-

tional units, memory ports, etc.), contention on each

individual resource alone can cause significant perfor-

mance degradation and the amounts of degradation ex-

hibit high variability across applications and resources.

• Secondly, there is little correlation among application
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contention characteristics for different shared resources.

For example, an application being sensitive to con-

tention for data caches does not necessarily mean that it

is less (or more) contentious (or sensitive to contention)

for the floating-point functional unit.

These observations indicate that a holistic approach such

as those used in prior work for interference prediction on

CMP servers is not suitable for SMT. For example, Bubble-

Up [4] relies on a single monotonic metric to quantify

interference in all shared resources, which fails to capture

the multidimensionality of the resource sharing behavior on

SMT. We must redesign a methodology to model interfer-

ence for SMT co-locations in a manner that the sharing

behavior is decoupled along multiple dimensions of various

types of resources.

Based on these observations, we design SMiTe, a

methodology that enables precise performance prediction on

real-system SMT processors. SMiTe leverages a carefully

designed suite of software stressors, called Rulers, to char-

acterize an application’s contention nature for each shared

resource. Each Ruler in the suite is designed to maximize

the pressure on one specific resource while minimizing

the pressure on all other resources. By co-locating one

application with a Ruler, we measure the performance

degradation of the application as its sensitivity, and the

performance degradation of the Ruler as the application’s

contentiousness on the corresponding resource. A regression

model is then established, using application’s sensitivity and

contentiousness for different resources to precisely predict

the performance interference in SMT co-locations. Based on

the precise prediction, we are able to steer the cluster-level

job scheduler to make co-location decisions that improve the

utilization of a WSC without violating QoS requirements.

This is the first work that enables precise performance

interference prediction on real-system SMT multicore pro-

cessors to provide QoS-awareness and utilization improve-

ment in WSCs. Specifically, this paper makes the following

contributions:

• In-depth Analysis of Performance Interference on

Real-System SMT Processor – Our investigation

demonstrates the low correlation among application

contention characteristics for various shared resources,

which motivates our design of a multidimensional mod-

eling methodology for SMT co-locations.

• Design of Rulers to Decouple Interference Modeling

– We present Rulers, carefully designed software

stressors to put maximum amount of pressure on each

individual resource while incurring minimum pressure

on other resources. These Rulers allow us to capture

an application’s sensitivity and contentiousness for each

shared resource in a decoupled manner.

• Precise Prediction of Performance Interference for

SMT Co-locations – We propose SMiTe, a methodol-

ogy to establish a prediction model using Ruler mea-

surements to combine the sensitivity and contentious-

ness characteristics of each application to precisely
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Figure 1. Execution cluster of Intel Sandy Bridge microarchitecture.
Multiple operations are port-specific (e.g. FP_MUL can only execute on
port 0).

predict performance interference on multicore SMT

processors.

• Scale-out Study – Through a scale-out study that uses

SMiTe’s prediction of the QoS interference to steer

cluster-level scheduling decisions, we demonstrate the

effectiveness of SMiTe methodology in enabling co-

locations to achieve higher server utilization.

Our evaluation demonstrates that SMiTe is able to pre-

cisely predict the performance interference caused by SMT

co-locations. On average, SMiTe achieves 2.80% prediction

error on SPEC CPU2006 [9], and 1.79% error on Cloud-

Suite [10] workloads on Intel Sandy Bridge and Ivy Bridge

servers. In addition, our scale-out study shows that SMiTe-

steered QoS-aware cluster scheduling achieves utilization

improvements ranging from 9.24% at 95% QoS target to

42.57% at 85% target.

II. REAL-SYSTEM INVESTIGATION

In contrast to CMP co-locations where only last-level

cache (LLC) and memory bandwidth are shared among

different cores, hardware contexts co-located on the same

SMT core share a much wider range of resources including

both functional units and the memory subsystem. In this

section, we present an investigation to better understand

application sharing behavior on these various resources

and the resulting performance interference on commodity

multicore SMT processors.

A. Experimental Methodology

One main difference between CMP co-locations and SMT

co-locations is whether on-core resources are shared. In

an Intel Sandy Bridge [11] processor, these resources are

implemented as an execution cluster composed of 6 ports

that perform sets of different operations. As illustrated in

Figure 1, ports 0, 1 and 5 are used for functional units,

whereas ports 2, 3 and 4 (not shown) are for memory

accesses. Note that, in this design, there are many port-

specific operations that can only execute on specific port(s).
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Figure 2. The sensitivity and contentiousness of different workloads on functional unit resources.
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Figure 3. Aggregated functional unit utilization distributions across all the
co-location pairs in SPEC CPU2006 for ports 0, 1 and 5.

For example, FP_MUL can only execute on port 0, FP_ADD

on port 1, FP_SHF on port 5 and INT_ADD on ports 0, 1

and 5.
Taking advantage of these port-specific operations, we

carefully designed a set of stressors to study application

sensitivity and contentiousness on various functional units

for SMT co-locations. In addition to functional units, we also

designed a set of memory stressors to study the interfering

behavior on various levels of cache. The design principles

and details behind these stressors (Rulers) are presented

in Section III-B1.

B. Contention for Functional Units

Modern microarchitectures often include a large number

of functional units to exploit instruction-level parallelism

(ILP). As illustrated in Figure 1, each functional unit is

usually designed to only execute certain types of operations.

When investigating the interference due to sharing functional

units between multiple hardware contexts co-located on an

SMT core, we aim to answer the following questions:

• What is the amount of performance degradation caused

by contention for each type of functional unit?

• Are applications’ sensitivity and contentiousness for the

same resource correlated? The answer to this question

will indicate whether they need to be modeled sepa-

rately.

• What is the variability of an application’s contention

characteristics across different functional units? The

answer to this would indicate whether we need to

characterize each shared resource separately or one

single unified metric is sufficient for all resources.

• Do emerging WSC workloads (e.g. CloudSuite) be-

have differently from traditional workloads (e.g. SPEC

CPU2006) in terms of functional unit contention?

Functional Unit Contentiousness and Sensitivity -

Figure 2 shows applications’ sensitivity and contentiousness

measured by a set of Rulers, each Ruler maximizing the

pressure in one specific functional unit resource, including

FP_MUL at port 0, FP_ADD at port 1, FP_SHF at port 5

and INT_ADD spreading across ports 0, 1, 5. We quantify

an application’s sensitivity as the degradation it suffers from

co-locating with Rulers, while contentiousness is defined

as the degradation it causes to the Rulers. Our findings

are as follows:

• Finding 1. Applications in general are sensitive to

functional unit contention. As shown in Figure 2,

applications suffer 5% - 70% performance degradation

when contending for only one type of functional unit.

• Finding 2. The level of sensitivity to contention for each

functional unit varies across applications. For example,

429.mcf suffers 6% performance degradation due to

port 1 contention, while 444.namd suffers as high as

71% degradation.

• Finding 3. Sensitivity and contentiousness of each ap-

plication for each shared resource do not correlate with

each other, and thus need to be captured separately.

• Finding 4. Each application has various levels of sensi-

tivity and contentiousness for different functional units.

For example, 454.calculix is more contentious to

port 0 while 470.lbm is more contentious to port

1. This suggests the need to capture the contention

characteristics for each functional unit separately.
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Figure 4. The sensitivity and contentiousness of different workloads on memory subsystem resources.

• Finding 5. Emerging WSC workloads’ contention be-

haviors for functional units are similar to SPEC INT

benchmarks.

Due to the variability across applications and across each

type of functional unit, we conclude that an ideal interfer-

ence model needs to capture application contentiousness and

sensitivity separately along each resource sharing dimension.

Functional Unit Utilization - In addition to the sen-

sitivity and contentiousness, we also profile the utilization

of various functional units when applications co-locate

on an SMT core using hardware performance monitoring

units (PMUs). Figure 3 presents the cumulative distribution

function (CDF) for the utilization of ports 0, 1, and 5

respectively, across all pairs of co-located applications. In

Figure 3, utilization is measured as the aggregated utilization

of two co-located applications on an SMT core, where the

shaded area illustrates the percentage of the co-located pairs

that have higher utilization than the median. As shown in the

figure, SPEC FP benchmarks tend to have higher utilization

for ports 0 and 1 than SPEC INT. On the contrary, for port

5, SPEC INT has higher utilization, and this is due to the

higher branch instruction counts in SPEC INT, which are

executed on port 5.

• Finding 6. Ports 0 and 1 have similar utilization

distributions, which are distinctly different from the

utilization distribution of port 5. This also indicates that

applications’ contention behaviors at different func-

tional units need to be measured separately to capture

the variability across ports.

C. Interference in Memory Subsystem

In addition to functional units, private caches (L1 and L2),

shared LLC and memory bandwidth are also shared among

SMT contexts. Compared to CMP co-locations, sharing

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

PORT2 Utilization

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
t
iv
e
D
is
t
r
ib
u
t
io
n
F
u
n
c
t
io
n

All SPEC

SPEC INT

SPEC FP

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

PORT3 Utilization

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
t
iv
e
D
is
t
r
ib
u
t
io
n
F
u
n
c
t
io
n

All SPEC

SPEC INT

SPEC FP

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

PORT4 Utilization

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
t
iv
e
D
is
t
r
ib
u
t
io
n
F
u
n
c
t
io
n

All SPEC

SPEC INT

SPEC FP

Figure 5. Aggregated memory port utilization distributions across all the
co-location pairs in SPEC CPU2006.

private caches adds additional complexity to the SMT co-

locations.

Memory Subsystem Contentiousness and Sensitivity -

Figure 4 presents application sensitivity and contentiousness

measured using a set of memory Rulers co-located with

the applications. We design our L1 and L2 cache Rulers to

be the same binary with different working set sizes. As we

increase the working set size, there is a monotonic increase

in the Ruler’s performance impact.

• Finding 7. Contention behaviors in the memory subsys-

tem are more monolithic than functional units, demon-

strating the basis for prior work to quantify the memory

subsystem pressure using a unified metric. In addi-

tion, there is noticeable variability across applications.

Some applications’ performance heavily relies on one

specific cache level. For example, applications such

as 454.calculix have very similar sensitivity to

contention in L1 and L2 caches, which indicates their

high reliance on the L1 cache and low utilization of the

L2 cache.

• Finding 8. CloudSuite workloads are much more con-

tentious at the L3 cache than SPEC applications,

although they exhibit very similar levels of sensitivity

across three levels of cache.
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Memory Port Utilization - Similarly, we also profile

the aggregated utilization for memory ports across all the co-

location pairs in SPEC as shown in Figure 5, in which port 2

and port 3 are used for memory loads and port 4 for memory

stores. In the figure, we find that memory store port (port 4)

is heavily underutilized, compared to the load ports. This is

supplementary to our finding 6 that applications’ behaviors

across ports vary, and thus need to be captured separately.

D. Correlation Among Sharing Dimensions

We summarize our measurement of application sensitivity

and contentiousness for different resources in Figure 6.

As illustrated in the figure, there is a large variance in

sensitivity and contentiousness in each sharing dimension

across applications. For example, application sensitivity to

port 0 or port 1 ranges from negligible to above 70%.

However, on average, contention in each dimension can

cause significant interference and thus all these dimensions

need to be considered in our interference model. In addition,

there is also a significant difference in terms of contention

behaviors across different sharing dimensions. For example,

applications are more sensitive to contention for port 5

because branch instructions, which can only be executed

on port 5, are critical for performance. In addition, most

applications tend to generate more pressure on L2 than on

L1 and L3 caches.

Furthermore, we quantify the correlation among different

sharing dimensions using Pearson correlation coefficients.

The absolute Pearson correlation coefficients of the con-

tentiousness and sensitivity across all benchmarks in each

of the 7 shared resources are presented in Figure 7. The

absolute value of Pearson correlation coefficient ranges from

0 to 1, where 1 indicates the perfect correlation (both

positive and negative) and 0 indicates no correlations.

• Finding 9. As demonstrated in this figure, there is little

correlation for application sensitivity and contentious-

ness among different sharing dimensions. For example,

as shown in the figure, an application being sensitive to

contention for caches does not necessarily mean that it

is less (or more) contentious or sensitive to contention

for the floating-point functional unit. In fact, 97.96%

of the pairs of sharing dimensions have a correlation

coefficient lower than 0.80, and for the majority of

the pairs the coefficient is lower than 0.50. These low

correlations further suggest the necessity to decouple

and measure each sharing dimension separately.

III. SMITE METHODOLOGY

In this section, we present SMiTe methodology. Designed

based on the findings summarized in Section II, SMiTe en-

ables precise performance prediction for SMT co-locations

on real-system multicore processors.
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Figure 7. The absolute values of Pearson correlation coefficient among all
the sensitivity and contentiousness dimensions. 97.96% of the pairs have a
correlation coefficient lower than 0.80 and the majority of the pairs, lower
than 0.50.

A. Overview

The overview of the SMiTe methodology is presented in

Figure 8, which consists of three main steps.

1) Characterizing Sensitivity and Contentiousness

(Section III-B) – For each application, we quantify its

contention characteristics for shared SMT resources.

A set of Rulers is designed to sense an applica-

tion’s sensitivity and contentiousness along various

sharing dimensions, including functional units and the

memory subsystem. By co-locating the application of

interest with a Ruler, we measure the application’s

performance degradation as its sensitivity to con-

tention in the corresponding sharing dimension, and

the degradation of the Rulers as the application’s

contentiousness in the same dimension.

2) Performance Prediction Model (Section III-C) –

To predict the performance interference between ap-

plications when they co-locate on an SMT core or

CMP cores, we establish a regression-based prediction

model, which combines each application’s multidi-
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Figure 8. Overview of SMiTe methodology. Based on our insight that there is little correlation among applications’ contention characteristics across
multiple resource sharing dimensions, we design a set of Rulers to quantify an application’s sensitivity and contentiousness in a decoupled manner
(e.g., in each sharing dimension). A regression-based prediction model is then established to use an application’s sensitivity and contentiousness
characterizations to make performance prediction for SMT and CMP co-locations.

mensional characteristics quantified by the Rulers to

precisely predict the performance degradation in both

CMP and SMT co-location scenarios.

3) Steering towards Safe Co-locations (Section III-D)

– SMiTe allows us to quickly profile an application,

and precisely predict the level of performance degrada-

tion that applications may suffer from the co-location.

With this prediction ability, a cluster scheduler in a

WSC can identify ‘safe’ job co-locations that would

not violate applications’ QoS requirements, achieving

high server utilization.

B. Quantifying Sensitivity and Contentiousness

In order to make precise performance predictions, we first

characterize an application’s sensitivity and contentiousness.

Several key factors determine the characterization quality,

including our Rulers design and the methodology to

quantify the sensitivity and contentiousness.

1) Ruler Design: We design a set of Rulers to sense an

application’s interfering behavior in each sharing dimension

in a decoupled manner. A good Ruler design needs to

maximize the measurement accuracy while minimizing the

profiling overhead. Here are two key principles that guide

our Ruler design:

• Each Ruler needs to maximize the pressure in

the targeted sharing dimension while minimizing

the impact in all other dimensions. For example, a

Ruler that targets port 0 needs to achieve maximum

pressure on that port while minimizing its pressure

on other functional units and the memory subsystem.

As demonstrated in Figure 7, there is little correlation

across all sharing dimensions. Therefore, minimizing

the overlapping resources that each Ruler stresses

loop:�
� mulps� %xmm0, %xmm0�
� ……�
� mulps� %xmm7, %xmm7�
� ……�
� jmp loop

(a) FP_MUL (PORT0)

#define MASK 0xd0000001u�
#define RAND (lfsr = (lfsr >> 1) ^ (unsigned int)(0 - (lfsr & 1u) & MASK))�
……�
� while (1) {�
� � data_chunk[RAND % FOOTPRINT]++;�
� � ……�
� � data_chunk[RAND % FOOTPRINT]++;�
� }

(e) MEM (L1, L2 Cache)

……�
� first_chunk = data_chunk;�
� second_chunk = data_chunk + FOOTPRINT / 2;�
� while (1) {�
� � for (i = 0; i < FOOTPRINT / 2; i += 64) {�
� � � first_chunk[i] = second_chunk[i] + 1;�
� � }�
� � for (i = 0; i < FOOTPRINT / 2; i += 64) {�
� � � second_chunk[i] = first_chunk[i] + 1;�
� � }�
� }

(f) MEM (L3 Cache)

loop:�
� addps� %xmm0, %xmm0�
� ……�
� addps� %xmm7, %xmm7�
� ……�
� jmp loop

(b) FP_ADD (PORT1)

loop:�
� shufps� %xmm0, %xmm0�
� ……�
� shufps� %xmm7, %xmm7�
� ……�
� jmp loop

(c) FP_SHF (PORT5)

loop:�
� addl� � %eax, %eax�
� ……�
� addl� � %edx, %edx�
� ……�
� jmp loop

(d) INT_ADD (PORT0,1,5)

Figure 9. Implementation of Rulers.

helps decouple the interfering behaviors into indepen-

dent dimensions.

• A linear relationship between the intensity of the

Ruler and the amount of interference it causes on

the corresponding resource is desirable. To character-

ize an application’s sensitivity to contention for a given

resource, we need to measure its performance degrada-

tion under a range of pressure intensities generated by

the Ruler. Having a linear relationship between the
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intensity and the resulting interference is highly useful

for reducing the profiling overhead. Instead of profiling

the entire sensitivity curve by sampling the degradation

under various intensity points, a linear relationship

requires only two samples at both end points of the

sensitivity curve.

It is very challenging to achieve these principles on real-

system SMT processors due to the complexity in a com-

modity processor. Here we present our carefully designed

Rulers.

Functional Unit Rulers - As presented in Fig-

ure 9(a-d), in order to design decoupled Rulers that

stress each resource independently, we design our func-

tional unit Rulers using port-specific instructions [11] (see

Figure 1). In addition, we remove all data dependencies

between consecutive instructions and unroll the loops to

maximize the functional unit utilization. By doing so, we

achieve higher than 99.99% utilization for the targeted

resource, validated using the hardware performance coun-

ters UOPS_DISPATCHED_PORT:PORT0,1,5. In addi-

tion, this design allows us to achieve the desirable linear

relationship between the Ruler intensity and the inter-

ference it causes, because the intensity of our functional

unit Ruler directly translates to the port utilization. Note

that because specialized functional units are commonly used

in modern processors, the design principle of the port-

specific functional unit Ruler can be applicable to other

microarchitectures such as IBM Power7 [12].

Memory Subsystem Rulers - Compared to functional

unit Rulers, it is more difficult to completely decouple the

interference in the memory subsystem because multiple lev-

els of caches can be inclusive. In addition, to issue memory

accesses, a certain amount of computation is unavoidable.

Thus, we design our Rulers to maximize the pressure

on the targeted cache level as an approximation, and rely

on the regression-based prediction model to decouple the

overlapping impact.

As shown in Figure 9(e), the L1 and L2 cache Rulers

randomly access a chunk of data using a lightweight random

number generator: linear-feedback shift register (LFSR). For

the L3 cache Ruler as shown in Figure 9(f), we use stride

access with a 64-byte offset, the size of the cache line, to

maximize the amount of pressure. For both designs, we

also unroll the loops to minimize the number of branch

instructions. The intensity of our memory subsystem Ruler

is defined as the working set size of each Ruler. We

measure the average Pearson correlation coefficient between

the working set size of our Ruler at each cache level and

the performance degradation of all SPEC applications when

co-located with the Ruler, and we observe strong linear

correlations. The Pearson coefficients are 0.92 for L1, 0.89

for L2 and 0.95 for L3 cache. This linear relationship sig-

nificantly reduces our profiling overhead, because the entire

sensitivity curve for all working set sizes can be accurately

approximated by interpolating between 3 Rulers whose

working set sizes being the L1, L2 and L3 cache sizes.

2) Characterizing Contentiousness and Sensitivity: To

quantify an application’s sensitivity and contentiousness, we

co-locate the application with the Rulers on the neighbor-

ing hardware context on an SMT core. For each resource i,
we measure the application A’s performance degradation as

its sensitivity SenA
i via the following equation:

SenA
i =

IPCA
solo − IPCA

co−location/Ruleri

IPCA
solo

(1)

Similarly, we define application A’s contentiousness ConA
i

as the corresponding Ruler’s performance degradation.

ConA
i =

IPCRuleri
solo − IPCRuleri

co−location/A

IPCRuleri
solo

(2)

C. Performance Prediction Model

1) Prediction Model: After characterizing each applica-

tion, to predict the performance degradation of application

A when co-located with application B on an SMT core,

we combine both A’s sensitivity and B’s contentiousness

on each sharing dimension i, using a linear model. The

prediction model is shown in Equation 3.

DegAco−locate/B =
N∑

i

(ci × SenA
i × ConB

i ) + c0 (3)

In this model, the degradation for A in each dimen-

sion is proportional to measured application A’s sensitivity

and the co-located application B’s contentiousness on that

dimension. The linear model reflects the assumption that

an application’s performance degradation from each shared

dimension is additive. The amount (weight) that each sharing

dimension contributes to the total performance degradation

is captured by the coefficient ci. The constant term c0
is introduced to approximate the performance interference

caused by other resources not captured in the model. A

constant is used because the impact of other resources

should have a small variance across applications, based our

assumption that functional units and memory subsystem are

the main contributors for the degradation.

2) Manage Prediction Error: There are two main sources

of potential prediction errors. Firstly, the model can only

capture the interference in a limited number of dimensions.

Other shared resources such as the branch predictor might

also cause performance interference, which are approxi-

mated by the constant c0 in our model. Secondly, in order

to reduce the profiling overhead, we take advantage of the

approximately linear relationship between the intensity of

a Ruler and the performance interference. This approx-

imation might introduce errors in performance prediction.

However, as we will show in our evaluation (Section IV),

our model achieves high precision, demonstrating that the

model has captured the significant resource dimensions.
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3) Predicting Tail Latency: In addition to the average

performance, many modern web service workloads in WSCs

have certain requirements on the percentile latency, often

the tail latency [13]. For example, QoS requirements can be

specified as 90% of the queries need to achieve under-100ms

latency. In addition to service time, the time a query waits

in the job queue before it gets processed also contributes

to the latency. Thus, the percentile latency does not linearly

correlate with the average performance due to this queueing

effect, and needs to be modeled differently on top of the

average performance prediction calculated using Equation 3.

To address this, we model the web service workload using

a simple first-come first-served (FCFS) M/M/1 queueing

system [14], which has a closed-form solution. We use the

M/M/1 model based on two observations:

• Both the service time distribution and the inter-arrival

distribution usually have small coefficients of variance

in practice. This indicates that we can approximate

these distributions using the exponential distribution

and Poisson distribution, respectively, without losing

much precision [15].

• The queueing and the processing usually happen at

the same level (e.g. a per thread queueing strategy

often implies that each job in the queue is handled

by one thread), which indicates that we can model the

system with a single-server model [16]. For example,

rather than having a global queue for all the worker

threads, each thread has its own processing queue in

Memcached. This allows us to model the response

time distribution using the single-server model, because

we are essentially just instantiating multiple copies of

a single-server queueing system, one copy per worker

thread.

In FCFS M/M/1 queueing model, the response time

probability density function (PDF), f(t), can be modeled

as shown in Equation 4, in which λ is the mean value of the

arrival rate distribution Poisson(λ), and μ is the average

rate of the servicing time distribution Exp(μ).

f(t) = (μ− λ)e−(μ−λ)t (4)

Based on the average performance degradation (Deg) in

Equation 3, we can extrapolate the degraded average service

rate μ′.

μ′ = (1−Deg)μ (5)

Taking the integral of the PDF in Equation 4, we can

calculate the cumulative distribution function (CDF) of

the response time. Using the inversion of the CDF and

combining it with the degraded service time estimation in

Equation 5, we estimate the p-th percentile latency tp with

Equation 6.

tp = −
ln(1− p)

(1−Deg)μ− λ
(6)

D. SMiTe in Action

With the ability to precisely predict the average perfor-

mance and percentile latency interference, SMiTe can iden-

tify ‘safe’ co-locations of applications so that the QoS inter-

ference for latency-sensitive applications due to co-locations

is under a given threshold. The advantages of SMiTe over

exhaustive pairwise offline profiling are twofold: 1) SMiTe

characterizes each application individually once and uses the

characterization for performance prediction. This allows the

WSC operators to avoid the complexity of cross-product

characterization for all possible co-locating applications.

Many latency-sensitive applications in WSCs are long run-

ning and well suited for the type of profiling [4]. 2) In

addition to much more efficient offline profiling, SMiTe

has carefully controlled profiling complexity so that each

application’s characterization can be completed in the order

of seconds. This allows us to conduct quick online profiling

for any new application when it arrives at the cluster-level

scheduler before getting scheduled to a suitable server.

IV. EVALUATION

A. Experimental Setup

Table I. MACHINE SPECIFICATIONS IN OUR EXPERIMENTAL SETUP.

Processor Microarchitecture Kernel
Intel Xeon E5-2420 @ 1.90GHz Sandy Bridge-EN 3.8.0
Intel i7-3770 @ 3.40GHz Ivy Bridge 3.8.0

We evaluate our SMiTe methodology on two commodity

multicore SMT processors summarized in Table I. The Linux

perf tool is used to measure the hardware performance

monitoring units (PMUs). We use CloudSuite [10] and

SPEC CPU2006 [9] with ref inputs as our workloads.

To construct the training and testing sets for our predic-

tion model, we divide 29 SPEC benchmarks into 2 sets

based on their even/odd numbering. Four applications from

CloudSuite, including Web-Search, Data-Caching,

Data-Serving and Graph-Analytics, are used to

represent latency-sensitive workloads in modern WSCs.

Throughout this section, the performance degradation

caused by the co-location Degco−location is defined as in

Equation 7, where IPCsolo is the instructions per cycle

(IPC) measurement when the application is running alone

and IPCco−location is the IPC when co-located with other

applications.

Degco−location =
IPCsolo − IPCco−location

IPCsolo
(7)

The performance prediction error is reported as the ab-

solute error between the measured performance degradation

and the predicted degradation as shown in Equation 8.

Error =
∣∣∣Deg

predicted
co−location −Degactualco−location

∣∣∣ (8)
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Figure 10. Performance prediction accuracy for SMT co-location on SPEC
CPU2006 benchmarks, where the average prediction error of PMU based
approach is 13.55% and SMiTe is 2.80%.
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Figure 11. Performance prediction accuracy for CMP co-location on SPEC
CPU2006 benchmarks, where the average prediction error of PMU based
approach is 9.43% and SMiTe is 2.80%.

B. Performance Interference Prediction

1) SMiTe Prediction for General Purpose Workloads:

We first investigate the prediction accuracy of SMiTe using

SPEC benchmarks on an Intel Ivy Bridge server. All even-

numbered benchmarks are used as training set for the per-

formance prediction model, and odd-numbered benchmarks

as testing set. The model is trained using the sensitivity and

contentiousness measurements of each application as well

as the performance degradation profiling of each co-locating

pairs in the training set. Then the trained prediction model

takes application’s sensitivity and contentiousness from the

testing set to predict the performance degradation of co-

locating pairs.

In this experiment, we also compare our Ruler based

prediction model against PMU based models. PMU based

models have been commonly used for scheduling optimiza-

tion [17] and power modeling [18] on SMT processors.

Since there is no prior work providing techniques for precise

performance prediction on real-system SMT processors, we

carefully designed several PMU based model for predicting

performance and selected the best one as our baseline to

evaluate the viability of a PMU based model. Specifically,

after experimenting with a number of PMUs and various

regression strategies including linear regression, decision

tree, higher order polynomial regression, we found the best

performing model to be a linear regression model using 11

PMU measurements: instructions/cycle, iTLB-misses/cycle,

dTLB-load-misses/cycle, dTLB-store-misses/cycle, i-cache-

misses/cycle, L1D-hits/cycle, L2-hits/cycle, L2-misses/cycle,

L3-hits/cycle, MEM-hits/cycle, branch-mispredictions/cycle.

The linear regression is established using Equation 9 to

predict the performance degradation on SMT and CMP co-

locations.

DegAco−locate/B =

N∑

i

(cAi PMUA
i + cBi PMUB

i ) + c0 (9)

The prediction accuracy of SMiTe and the PMU based

model is reported in Figure 10 for SMT co-locations and

Figure 11 for CMP co-locations. As shown in the figure,

the average measured performance degradations of each

benchmark when co-located span a wide range, from 11.74%

to 53.14%. In the figure, the bars labeled as PMU Prediction

Error present the average prediction error of the PMU based

prediction model when each benchmark co-locates with all

the other benchmarks in the testing set. The average error

for the PMU based model is 13.55% for SMT co-locations

and 9.43% for CMP co-locations. Compared to PMU based

approach, SMiTe provides significantly higher precision,

predicting both SMT and CMP co-locations with an average

error of 2.80%.

2) SMiTe Prediction for Cloud Workloads: In this section,

we evaluate our methodology on CloudSuite benchmarks,

which are used to represent latency-sensitive applications

running in modern WSCs.

In contrast to the SPEC workloads, Cloudsuite applica-

tions are usually multithreaded and span more than one

core. Thus, we set up this experiment differently on our

Sandy Bridge-EN machine, which has 6 cores with 12 SMT

hardware contexts on each socket. To half load the server as

a baseline, we configure the cloud applications to run with 6

threads for SMT co-location experiment such that each core

has one SMT context busy and the other one idle. Similarly,

3 threads are used for the CMP co-location experiment with

3 out of 6 cores are left completely idle as the baseline.

Accordingly, we use 6 instances of the same Ruler for

SMT experiment and 3 instances for CMP experiment when

measuring the sensitivity and contentiousness of the cloud

applications. We use odd-numbered benchmarks from SPEC

as the training set and even-numbered benchmarks as the

testing set. Both PMU based and SMiTe prediction models

are trained using the SPEC training set, and tested on

co-locations between CloudSuite applications as latency-

sensitive applications and SPEC testing set as batch appli-

cations.

The prediction errors for both SMiTe and PMU based

approaches are presented in Figure 12. The bars labeled as

Measured present the maximum, average and minimum mea-

sured performance degradation, ranging from co-locating

with 1 instance to 6 instances of the batch applications (x-
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Figure 12. Performance prediction accuracy for SMT and CMP co-location on CloudSuite benchmarks (Web-Search, Data-Caching,
Data-Serving and Graph-Analytics), where the average prediction error of PMU based approach is 17.45% for SMT co-location, 27.01%
for CMP co-location and SMiTe is 1.79% and 1.36% respectively.

axis) for SMT co-locations, and 1 to 3 instances for CMP co-

locations. As shown in the figure, the PMU based model has

an average prediction error of 17.45% for SMT co-locations

and 27.01% for CMP co-locations, while SMiTe can pre-

cisely predict the performance degradation with 1.79% and

1.36% average errors respectively.
As demonstrated by our experiments, the PMU based

prediction model performs poorly on both SPEC and Cloud-

Suite applications. We observed a few possible sources that

may contribute to the inaccuracy:

• Some PMUs are designed to be core counters, e.g.

UOPS_EXECUTED.PORT2_CORE, and there are no

counters available to measure the corresponding events

at per SMT context granularity [19].

• Some PMUs are known to contain bugs and may report

inaccurate measurements [20].

• There are limited numbers of PMUs available on the

real system, and they may not fully expose the resource

usage information that is needed for the precise predic-

tion.

3) SMiTe’s Prediction Accuracy for Tail Latency: We

evaluate our prediction model for 90th percentile latency us-

ing Web-Search and Data-Caching (Data-Serving

and Graph-Analytics do not report percentile latency

statistics). We use the profiled performance degradation

and 90th percentile latency of CloudSuite application when

co-located with Rulers to train our latency prediction

model using Equation 6. In Figure 13, the measured perfor-

mance degradation and 90th percentile latency are measured

when Web-Search and Data-Caching are co-located
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Figure 13. Prediction accuracy for 90th percentile latency when latency-
sensitive application represented by CloudSuite co-locate with batch appli-
cations. The average absolute prediction error on Web-Search is 4.61%
and 6.17% for Data-Caching.

with applications from the SPEC testing set. The figure

demonstrates that our queueing model is able to capture

the correlation between the performance degradation and

the 90th percentile latency. The average prediction error

of our model is 4.61% for Web-Search and 6.17% for

Data-Caching.

C. Scale-out Study: Improving Utilization while Guarantee-

ing QoS

With SMiTe’s precise prediction, we can enable ‘safe’

co-locations in order to improve utilization without violat-

ing the QoS requirement. In this experiment, we assume

a cluster composed of 4,000 servers and each 1,000 of

them are running one of the four latency-sensitive appli-

cations from Cloudsuite (Web-Search, Data-Caching,
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Figure 14. Utilization improvement when we allow SMT co-location under
different QoS targets defined as average performance. SMiTe improves the
utilization by 9.24%, 25.90% and 42.97%, at 95%, 90% and 85% QoS target
respectively, which is very close to the Oracle co-location policy as 9.82%,
26.78% and 43.75%.

98.0% 95.0% 90.0% 85.0% 98.0% 95.0% 90.0% 85.0%

QoS Target

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

P
e
rc
e
n
ta
g
e
o
f
Q
o
S
V
io
la
ti
o
n

Random SMiTe

QoS Violated 0.0%-2.0%

QoS Violated 2.0%-4.0%

QoS Violated 4.0%-6.0%

QoS Violated 6.0%-8.0%

QoS Violated 8.0%-10.0%

QoS Violated 10.0%-12.0%

QoS Violated 12.0%-14.0%

QoS Violated 14.0%-16.0%

QoS Violated 16.0%-18.0%

QoS Violated 18.0%-20.0%

QoS Violated 20.0%-22.0%

QoS Violated 22.0%-24.0%

QoS Violated 24.0%-26.0%

Figure 15. Percentage of QoS violation in all scheduled co-locations
under SMiTe co-location policy and Random co-location policy when
QoS is defined as average performance. In order to achieve same amount
of utilization gain, Random co-location policy violates up to 26% QoS
requirement while the largest violation from SMiTe is only 1.67%.

Data-Serving and Graph-Analytics). We use our

performance prediction model to guide the cluster-level

scheduler to co-locate latency-sensitive applications with

batch SPEC applications. Our evaluation baseline disallows

SMT co-locations, which is the state-of-the-art approach to

guarantee QoS in modern WSCs without a precise prediction

mechanism, leaving one out of the two SMT contexts on

each core idle. Thus, we have 6 latency-sensitive application

threads running on 6 cores, and we could potentially co-

locate from 0 to 6 instances of batch applications on each

server. In addition to SMiTe, we measure application’s

actual performance degradation and use these measurements

to construct an Oracle co-location policy for comparison.

Figure 14 shows the utilization improvement when apply-

ing different co-location policies. SMiTe achieves 9.24%,

25.90% and 42.97% utilization improvement at 95%, 90%

and 85% QoS targets respectively. Compared to the Oracle

policy, which improves the utilization by 9.82%, 26.78% and

43.75%, SMiTe is very efficient and achieves utilization that

is very close to the Oracle.

Due to the potential inaccuracy the prediction model has,

in rare cases, the co-location decisions made by SMiTe

might slightly violate the targeted QoS requirement. We

quantify the violations compare it against an interference-

oblivious policy that achieves exactly the same amount of

utilization gain through randomly co-locating applications.

In this experiment, the percentage of QoS violations is

defined as the number of violations divided by the number of

co-locations ( serverviolated

serverco−located
), and the amount of violations
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Figure 16. Utilization improvement when we allow SMT co-location under
different QoS targets defined as 90th percentile latency. SMiTe improves
the utilization by 0%, 10.72% and 22.03% at 95%, 90% and 85% QoS target
respectively, which is relatively close to the Oracle co-location policy as
0.59%, 12.50% and 24.99%.
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Figure 17. Percentage of QoS violation in all scheduled co-locations
under SMiTe and Random co-location policy when QoS is defined as
90th percentile latency. To improve the same amount of server utilization,
Random policy suffers from up to 110% QoS violation while the largest
violation from SMiTe is only 0.96%.

is defined as the normalized violation (
QoStarget−QoSactual

QoStarget
).

The QoS violations are shown in Figure 15. To achieve

the same amount of utilization gain as SMiTe at each QoS

target, the Random policy suffers from up to 26% QoS

violation while the biggest violation using SMiTe is only

1.67%. In addition, as shown in the figure, SMiTe reduces

78.57% QoS violations on average compared to the Random

policy.

D. Scale-out Study: Tail Latency

In this section, we evaluate the utilization improvement

and QoS when the cluster-level scheduler uses SMiTe’s pre-

diction for tail latency to steer scheduling. Similar to the pre-

vious scale-out experiment, we assume a cluster composed

of 4,000 machines with half-loaded latency-sensitive work-

loads composed of Web-Search and Data-Caching.

The QoS requirement in this experiment is defined as the

90th percentile latency, which is more challenging to meet

than the average performance. This is because the tail

latency grows super-linearly with the average performance

degradation due to the queueing effect. However, SMiTe

is able to achieve 10.72% utilization improvement at 90%

QoS requirement and 22.03% at 85% QoS requirement

(90th percentile query latency is affected by 10% and 15%

respectively), which is relatively close to the Oracle policy

of 12.50% and 24.99% improvement as shown in Figure 16.

In addition, compared to the Random policy shown in

Figure 17, which suffers up to 110% QoS violations, the

most serious violation SMiTe experiences is only 0.96%.
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Figure 18. Total cost of ownership (TCO) improvement under different
QoS requirements normalized by disallowing SMT co-location. SMiTe can
save up to 21.05% cost under average performance requirement and up to
10.70% under 90th percentile latency requirement.

E. TCO Analysis

By improving the server utilization through co-locations,

we improve the energy efficiency and also reduce the total

cost of ownership (TCO) for building and operating the

WSCs. Because we can provide the same amount of com-

putation with fewer servers through co-locations, we reduce

the number of servers needed, the required power provi-

sioning, the datacenter area and the maintenance expenses

consequently. In this section, we quantify the TCO saving

by applying SMiTe methodology in WSCs under various

QoS requirements.

In the baseline configuration, we assume the WSC has

half of the machines running latency-sensitive applications

and the other half running batch applications. By applying

SMiTe methodology, we can co-locate batch applications

together with latency-sensitive applications on the same

server if the QoS requirement can be met based on the

prediction. The analytical methodology introduced in [21]

is applied to study the impact of SMiTe on the 3-year TCO.

We use the latest PUE statistics published by Google [22]

as part of the input to the TCO model.

Figure 18 presents the results of our TCO analysis.

SMiTe improves the TCO by up to 21.05% when targeting

the average performance QoS requirement. Although 90th

percentile QoS requirement is more challenging because

the tail latency grows super-linearly due to queueing effect,

SMiTe still achieves up to 10.70% improvement.

V. RELATED WORK

There has been a large amount of work on resource man-

agement for multicore SMT processors [17, 23–28]. Feliu et

al. [17] proposes a method to improve the overall throughput

by balancing L1 bandwidth usage, however there is no

performance guarantees. Eyerman et al. present probabilistic

job symbiosis [23], which employs specialized performance

accounting hardware to facilitate modeling the performance

impact for SMT co-locations. Cazorla et al. [24, 25] propose

a hardware mechanism to track and adjust shared resource

usage, then leverage that mechanism to dynamically adjust

the resources to meet application QoS targets.

As an alternative to predicting the impact of SMT co-

locations, others have used competition heuristics to achieve

efficient scheduling. Snavely and Tullsen [26] and De Vuyst

et al. [27] use a sampling phase to discover the performance

interference due to co-locations in order to schedule jobs

on SMT processors. Vega et al. [28] present a competition

heuristic to decide whether multiple threads should be

consolidated to the SMT contexts on the same core for

multithreaded workloads.

There are also a number of prior works on hardware

or application characterization and modeling using micro-

benchmarks [4, 18, 29–31]. Mars et al. [4] present a

methodology that uses tunable memory micro-benchmarks

to quantify the sensitivity and contentiousness of an ap-

plication for the last level cache and memory bandwidth

contention. However, their approach is designed only for

uncore-level resource sharing. Bertran et al. [18] present

an approach to automatically generate micro-benchmarks

to study the energy-performance trade-offs for multicore

SMT processors, in which they use the micro-benchmarks to

obtain energy-related platform characterization. Delimitrou

et al. [31] describe a micro-benchmark suite that can be

used to detect resource contention for a number of shared

resources in a CMP machine to facilitate intelligent cluster-

level scheduling decisions.

Others have studied the performance interference on

multicore processors without considering SMT co-locations.

Delimitrou et al. [5] manage various co-location scenarios in

order to improve the resource utilization without violating

the QoS target. Tang et al. present a compiler [32] and a

compiler-supported runtime framework [3] to control low-

priority application’s contentiousness and ensure the QoS

of high-priority application, in order to improve the system

throughput. Yang et al. [2] improve resource utilization

by dynamically probing and controlling the execution of

low-priority applications to guarantee the QoS of the high-

priority applications.

VI. CONCLUSION

In this paper, we present SMiTe methodology, which

enables precise performance interference prediction on mul-

ticore SMT processors. Based on our observation that there

is very little correlation for an application’s contention

characteristics across different shared resources, we design

a set of Rulers to quantify application’s sensitivity and

contentiousness in a decoupled manner. We then establish

a regression model that combines the sensitivity and con-

tentiousness measurements to predict the performance inter-

ference under various co-location scenarios. With SMiTe,

we are able to predict SMT co-locations with 2.80% average

error for SPEC CPU2006 benchmarks and 1.79% average

error on CloudSuite. Based on the precise performance

prediction our methodology provides, we can improve the

server utilization by up to 42.57% through co-locations

while enforcing the QoS requirement.
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