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Abstract

With the ever growing popularity of cloud computing and
web services, Internet companies are in need of increased
computing capacity to serve the demand. However, power
has become a major limiting factor prohibiting the growth
in industry: it is often the case that no more servers can be
added to datacenters without surpassing the capacity of the
existing power infrastructure.

In this work, we first investigate the power utilization in
Facebook datacenters. We observe that the combination of
provisioning for peak power usage, highly fluctuating traffic,
and multi-level power delivery infrastructure leads to signif-
icant power budget fragmentation problem and inefficiently
low power utilization. To address this issue, our insight is that
heterogeneity of power consumption patterns among differ-
ent services provides opportunities to re-shape the power
profile of each power node by re-distributing services. By
grouping services with asynchronous peak times under the
same power node, we can reduce the peak power of each
node and thus creating more power head-rooms to allow
more servers hosted, achieving higher throughput. Based on
this insight, we develop a workload-aware service placement
framework to systematically spread the service instances
with synchronous power patterns evenly under the power
supply tree, greatly reducing the peak power draw at power
nodes. We then leverage dynamic power profile reshaping
to maximally utilize the headroom unlocked by our place-
ment framework. Our experiments based on real production
workload and power traces show that we are able to host
up to 13% more machines in production, without changing
the underlying power infrastructure. Utilizing the unleashed
power headroom with dynamic reshaping, we achieve up to
an estimated total of 15% and 11% throughput improvement
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1 Introduction

As cloud computing and Internet services become increas-
ingly popular, datacenter loads are rapidly growing [1, 3].
The power budget supplied by the power delivery infrastruc-
ture in datacenters, however, often constrains the amount of
server that can be added to handle the ever growing load. In-
deed, the power budget [38, 51] has become one of the most
contentious resources in datacenter management. Building
new datacenter facilities and new power infrastructures
would help alleviate the problem, but they are costly and
time-consuming. Datacenter operators need new techniques
to maximize utilization of the existing power infrastructure.

We investigate the power delivery infrastructure at Face-
book production datacenters, and observe that the power
provisioning in these datacenters faces two major challenges:
Challenge 1: Peak provisioning leads to low power bud-
get utilization. For modern large-scale datacenters that
mostly serve user-facing workloads, their total power con-
sumption usually follows a diurnal pattern 35, 39], which
reflects the highly fluctuating user activity level throughout a
day. To ensure sustainability and safety, datacenter managers
need to ensure that the peak aggregate power consumption
can be accommodated under the given, fixed power budget
supplied by power infrastructure. Peak provisioning, how-
ever, usually leads to highly underutilized power budgets
during the rest of the day.
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Figure 1. Grouping servers with synchronous power con-
sumption patterns together often lead to rapid local peaks,
which consume the local power budgets quickly and cause
significant power budget fragmentation.

Challenge 2: Multi-level power delivery infrastructure
leads to power budget fragmentation. Most modern dat-
acenters deploy a multi-level power delivery infrastructure.
These infrastructures have a tree-like structure, each node be-
ing a power delivery device, or we call a power node. Servers
are directly supplied by lowest-level (leaf) power nodes,
which are supplied by higher-level power nodes. Such hier-
archical infrastructure improves reliability and is a common
practice in large-scale datacenters. Unfortunately, it also
leads to negative effects on power budget utilization because
peak provisioning occurs at all levels of power nodes. Power
budget fragmentation problem, as illustrated in Figure 1,
frequently occurs in multi-level power infrastructures. For
instance, in Figure 1, we show two simplified datacenters,
each of which is equipped with a two-level power infras-
tructure, and the same set of servers and service instances.
The only difference between these two datacenters is how
service instances are placed under the leaf power nodes. In
the first datacenter, servers having synchronous power con-
sumption patterns are connected to the same leaf node. This
creates rapid peaks with high amplitudes at the leaf nodes,
which consume the local power budget quickly. In such a
datacenter, while there is still an abundant amount of power
headroom at the root node, there is no room to connect any
more servers to these leaf power nodes. Since servers can
only be supplied by the leaf power nodes, if the power budget
is highly fragmented at the lower level of power delivery in-
frastructure, the abundant power headroom at the root node

can never be utilized, making the datacenter inefficient. In
the second datacenter, on the contrary, servers are mixed
in a manner that service instances with synchronous power
consumption patterns are spread out. Our insight is when
carefully spreading out synchronous service instances, rapid
peaks at leaf power nodes are eliminated, and power head-
rooms at the leaf nodes are increased. These increased local
power headrooms allow more servers to be supplied, which
improves the utilization of the power budget and the overall
datacenter efficiency.

A large body of prior solutions, including power capping
[6, 8-10, 14, 18, 23, 29, 40, 42, 50, 51], were proposed to solve
Challenge 1. When applying these prior works in a datacen-
ter with oblivious service placement, however, their poten-
tials are largely limited by power budget fragmentation. In
such a datacenter, instances of the same services are typi-
cally placed together. Since these instances reach their peaks
around the same time, the corresponding leaf nodes that
supply these latency-critical servers consume their power
budgets much faster than the other leaf nodes. In this case,
unfortunately, they need to be largely capped, even when
there are still ample amounts of power headroom at other
leaf nodes. A few techniques [16, 20, 28, 38] were proposed
to address Challenge 2 in order to make power capping more
efficient. These solutions, however, either require modifica-
tions to the power infrastructure [20, 28, 38], or due to the
battery capacity can only handle peaks that span at most
tens of minutes, making it unsuitable for Facebook type of
workloads whose peak may last for hours. [16].

In this work, we aim to improve the efficiency of power
usage in datacenters, allowing datacenters to achieve higher
throughput without changing the existing power infrastruc-
ture. To this end, we propose SmoothOperator, a frame-
work that analyzes the temporal heterogeneity of power
consumption patterns and derives a highly power efficient
service placement. SmoothOperator leverages a novel ap-
proach to systematically model and score the temporal het-
erogeneity among different services. Based on the analysis,
SmoothOperator uses a clustering-based approach to identify
instances that create high peaks when being placed together,
and spreads them out across the datacenter.

This framework increases power headroom at all levels of
the power delivery infrastructure, allowing hosting more
servers and increasing the throughput of the datacenter.
Meanwhile, we also observe that simply adding servers in a
straightforward way can lead to resource underutilization
and there are further opportunities to improve the through-
put. We leverage a new type of disaggregate servers that
decouple the compute and the storage components, recently
deployed in production. We design a set of history-based
server conversion and proactive throttling and boosting poli-
cies to fully utilize the newly-added servers to further in-
crease the resource and power utilization.

Specifically, the contributions of this work include

1. We identify the power budget fragmentation problem
in production datacenters: since the number of servers
a power node can support depends on peak aggregate
power of theses servers, placing the service instances
that have synchronous power consumption patterns



under any power node leads to rapid peaks, degrading
the overall power budget utilization. We then char-
acterize and identify the opportunity for solving this
problem based on real production power data.

2. We propose a workload-aware service instance place-
ment and remapping framework to mitigate power
budget fragmentation problem, utilizing previously
wasted power budget at higher level power nodes. The
key insight is that when service instances do not reach
their peak power usage at the same time, the aggregate
power consumption pattern has a lower peak value at
the low-level power nodes, enabling improved utiliza-
tion of the overall power budgets.

3. To further utilize the additional power headroom, we
leverage storage-disaggregated servers [26] and de-
sign dynamic power profile reshaping techniques to im-
prove throughput. The dynamic power profile reshap-
ing technique is composed of a history-based server
conversion policy and a proactive throttling and boost-
ing policy. The results indicate that we could achieve
additional throughput improvement without changing
the underlying power delivery infrastructure.

We conduct our experiments based on data collected from
three production datacenters. The results show that our
workload-aware service instance placement improves the
power budget utilization by up to 13%, allowing extra servers
to be housed without modifying the existing power infras-
tructure. The server addition leads to throughput improve-
ment for latency-critical services by 13%. By applying server
conversion to the workload-aware placement, we achieve
additional 8% throughput improvement for batch service.
When we further apply proactive throttling and boosting, we
achieve an estimated 15% and 11% throughput improvement
for latency-critical services and batch services, respectively.

2 Power budget fragmentation and
inefficiency
2.1 Multi-level power infrastructure in datacenters

Multi-level power infrastructure is commonly deployed in
large-scale, production datacenters. At each level, the total
power budget of a power node is shared among its children
nodes. This type of tree-like multi-level power infrastructure
is designed to avoid a single point of failure and for the
convenience of management.

Facebook datacenters feature four-level power infrastruc-
ture, consistent with Open Compute Project specification
[2, 51], as shown in Figure 2. Each datacenter is composed of
several rooms, which we call suites. Servers are placed onto
rows of racks, allocated into these suites. A suite is equipped
with multiple top-level power nodes, i.e., main switching
boards (MSBs), each of which supplies some second-level
power nodes, switching boards (SBs), which further feeds to
a set of reactive power panels (RPPs). Finally, the power is
fed into racks, each composed of tens of servers. The power
budget of each node is approximately the sum of the budgets
of its children.

Datacenter

Figure 2. Multi-level power delivery infrastructure deployed
in Facebook’s datacenters.
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Figure 3. Careful service instance placement can further
utilize power headroom for housing more servers, improving
the overall computing capacity of the datacenter without
changing the underlying power infrastructure.

2.2 Power budget fragmentation

Power budget fragmentation exists because servers hosting
the services with synchronous power consumption patterns
are grouped together under the same sub-tree of the multi-
level power infrastructure. Such a placement creates rapid,
unbalanced peaks with a high amplitude, which consumes
the power budget of the supplying power node fast. When
the aggregate power at a power node exceeds the power
budget of that node, after a short amount of time, the circuit
breaker is tripped and the power supply for the entire sub-
tree is shut down. These local power limits, therefore, make
it harder to efficiently utilize the total power budget that is
supplied to the entire datacenter.

For example, in Figure 3, we have a simplified datacenter
with a 2-level power infrastructure and 4 service instances to
be placed under the leaf power nodes. We assume that service
instance 1 and 2 have an identical (perfectly synchronous)
power consumption pattern, and service instance 3 and 4
have perfectly out-of-phase patterns. To avoid tripping the
circuit, the limiting factor of the number of servers that can
be supplied under a power node is the peak power (maximum
aggregated power across all servers supplied by the same
node). When synchronous servers are placed together, as
shown in the left sub-figure of Figure 3, it leads to a higher
peak power at the supplying power node than the optimal
placement. This higher peak curtails the number of servers
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Figure 4. Power Slack, defined as the difference between the
current power consumption at time t and the power budget.
It quantified the power utilization efficiency.

that can be supplied by the datacenter, which indicates a
lower power utilization.

In the following, we define two metrics to quantify the
level of power budget fragmentation and inefficiency of
power budget utilization. In this work, we focus on improv-
ing these two metrics:

1. Sum of peaks: Sum of the peaks of the power nodes
in a datacenter is an important indicator of the level
of power budget fragmentation. With the same set of
service instances, poor placements can produce very
a high peak power value at leaf nodes, indicating the
peaks of the service instances are not evenly spread
out. The sum of the power node peaks is, therefore,
much larger than that in the optimal placement.

2. Power slack and energy slack: Power slack and en-
ergy slacks are indicators for power budget utilization.
As illustrated in Figure 4, power slack is a measurement
of the unused power budget at a point of time, and is
defined as

Pslack,t = Pbudget - Pinstant,t: (1)

where Pi,stant,; is the instant power consumption of
the power node at time ¢, and Pyyqge; is a constant
number representing the given power budget of this
power node. The lower the power slack, the higher
proportion of the power budget is utilized at that point
of time. Energy slack is simply the integral of power
slack over a timespan T.

Eslack,T Z/Pslack,tdt (2)
T

A low energy slack means the power budget is highly
utilized over the corresponding timespan.

In the following sections, we will use these two metrics
to guide the development of our solutions and measure the
quality of our result.

2.3 Peak heterogeneity in datacenters

Modern datacenters often provide a wide spectrum of ser-
vices. Even in highly web-centric companies such as Face-
book, to support a variety of data-centric features and the
high visit rate, a significant proportion of servers in their
production datacenters are provisioned to serve hundreds to
thousands of internal services. Figure 5 presents the break-
down of 30-day average power consumption of the top 10

power consumer workloads measured in the three datacen-
ters under study:.

We observe that the power usage patterns are heteroge-
neous across these services. Such heterogeneity indicates
abundant opportunities to mitigate the power budget frag-
mentation problem by grouping services with complemen-
tary power consumption patterns under the same power
node. Figure 6 shows the diurnal patterns of three of the ma-
jor services that are hosted in one of Facebook datacenters:
web, db, and hadoop. The bands indicate the percentiles of
the power reading among all the servers hosting that service.
For example, the darkest band in the top-most sub-figure
indicates the range between the 45th-percentile and the 55th-
percentile power consumption readings among all the web
servers at any given time. From this figure we show that
servers hosting different services have very different power
consumption patterns.

The web clusters serve the traffic coming directly from
the users and hitting the production web site. This type of
clusters, including web and cache servers, is the major part
of Facebook datacenters, and is one of the largest consumers
of the power budget. Because of its user-facing nature, the
servers in these clusters have highly synchronous power
patterns, which follow the typical user activity level. Mean-
while the latency requirement for this type of workload is
high because it directly affects user experience.

The db clusters are the backend of the web and cache
clusters. What distinguishes backend servers from these
front-end servers is that query only hits db servers when
the data needed are missing in the cache servers. Compared
to front-end servers, these servers are more I/O bound, thus
not exhibiting high power consumption even when the fron-
tend servers are experiencing peak usage during daytime.
However, these servers perform daily backup at night, which
involves a lot of data compression. Therefore, as shown in
Figure 6, while these servers also have predictable diurnal
pattern, their peaks occur during the night time.

The hadoop clusters serve batch jobs that aim to improve
the quality of data that are needed by the website or the
company. Since users don’t directly interact with this type of
servers, these services are not bound by latency requirement;
instead, they are optimized to provide high throughput. To
achieve satisfactory throughput, the execution of this type
of jobs highly relies on the job scheduler’s policy, and the
server are running at higher settings of CPU frequencies.
Consequently, we find in Figure 6 that their power consump-
tions are constantly high and less relevant to the user activity
level.

We see from the above that there are abundant opportuni-
ties to improve the datacenter power budget utilization if the
datacenter operators take advantage of different characteris-
tics of different workloads. Recognizing such opportunities,
we design SmoothOperator to capture and leverage the peak
heterogeneity identified among these production services,
in order to mitigate the power budget fragmentation prob-
lem by intelligently grouping the servers with asynchronous
power consumption patterns. We will introduce how we
design SmoothOperator in Sections 3 and 4.
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Figure 6. Servers serving different types of workload have
very distinctive diurnal patterns. The bands indicate the
percentiles of the power reading among all servers hosting
one service type. Y axis is normalized to the maximum power
reading observed on a single server in the datacenter.

3 Workload-aware service instance
placement and remapping

In this section, we address the power budget fragmentation
problem found in production datacenters, and introduce our
workload-aware service instance placement and remapping
framework. Our framework takes advantage of the service-
level and service-instance-level heterogeneity, and spreads
out service instances with synchronous power patterns un-
der different power nodes.

3.1 Service and service instance

Facebook datacenters house thousands of web and data pro-
cessing services. Similar to Microsoft datacenters[53], for
major services, each service team manages its own service
on a separate set of physical servers, and different major

services do not share physical servers. A service is a collec-
tion of hundreds to thousands of service instances. Each of
these service instances is a process that runs a copy of the
service or a part of the service. For example, service such
as Memcached runs on thousands of machines, and each
Memcached process on a server is a service instance. Face-
book deploys service instances as native processes instead of
virtual machines. This policy not only reduces operational
complexity, but also minimizes the variability caused by the
interference due to co-scheduling and colocation.

3.2 Overview of placement framework

We illustrate our framework in Figure 7, which includes four
major steps:

1. Collect traces and extract representive traces We
first collect and construct multi-weeks of power traces
for each service instance, which we call instance power
trace, of the target datacenters (PI; in Figure 7). We use
these instance-level traces to further construct a service
power trace (PS;) for each of the top power-consuming
services. Each service power trace exhibits the repre-
sentative temporal patterns of a service aggregated
across all its instances. The service-level traces then
serve as a set of bases that facilitates the evaluation
of dissimilarity between instance-level power traces
(Section 3.3).

2. Calculating asynchrony scores We then identify
synchronous service instances, namely, the instances
whose power consumption peak at the same time. To
achieve that, we calculate a vector of asynchrony scores
for each service instance based on the corresponding
instance power trace and the service power traces
of all the services (Section 3.4). We use the vectors
of asynchrony scores to estimate the impact to the
aggregated peak when two or more service instances
are grouped together. This step transforms each server
into a data point in a high dimensional space spanned
by the asynchrony scores.

3. Clustering We then apply a clustering method (Sec-
tion 3.5) on these service instances based on their asyn-
chrony score vectors, identifying the ones with syn-
chronous power consumption behavior.

4. Placement We place the service instances based on
the clustering result, aiming to maximize the asyn-
chrony score of each power node (Section 3.5).

After the initial application, our framework can be contin-
uously applied to the datacenter to fine-tune the placement
when power consumption patterns start to exhibit middle-
term or long-term (e.g., in weeks or longer) shifts or changes.

Note that workload-aware service instance placement also
provides benefits from the power safety aspect of datacen-
ter. In the optimized placement, service instances that have
highly synchronous behaviors are now spread out evenly
across all the power nodes. When bursty traffic arrives, the
sudden load change is now shared among all the power nodes.
Such load sharing leads to a lower probability of high peaks
aggregates at a small subset of power nodes, and therefore de-
creases the likelihood of tripping the circuit breakers inside
certain heavily-loaded power nodes.
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Figure 7. The overview of workload-aware service placement.

3.3 Constructing power traces

To be able to derive a workload-aware instance placement
for datacenters, we need to capture the power consump-
tion patterns of service and service instances. As shown in
Section 2.3, services exhibit a diversity of power consump-
tion patterns [17, 53] and such service-level power hetero-
geneity provides abundant opportunities for mitigating the
fragmentation problem. In fact, in addition to service-level
heterogeneity, we observe from the production data signif-
icant amounts of instance-level heterogeneity, even within
the same service. Such heterogeneity usually stems from
imbalanced accessing pattern or skewed popularity among
different instances of a same service. SmoothOperator aims
to capture both of these two types of heterogeneity by con-
structing instance power traces and service power traces. In
the following, we introduce the details of these two types of
power traces.

Constructing Instance Power Traces For every service
instance in the datacenter, we construct a log of power read-
ings, i.e., an instance power trace (I-trace), to represent the
corresponding service instance’s history of power consump-
tion. Each of these I-traces is a time series, which is a vector,
containing seven days of the exact power reading recorded
by the power sensor on the corresponding machine, one
reading per minute.

PI,"W = (pi,t S TW>, (3)

where PI; ,, is the instance power trace of server instance i
of week w, and p; ; is the power reading of instance i at time
t, and T,, is the series of timestamps within week w during
which the power readings are logged. We choose the length
of 7 days because, in large-scale user-facing datacenters,
user traffic has strong day-of-the-week activity patterns [5,
43]. Note that, since power traces are simply vectors, vector
arithmetic can be directly applied.

SmoothOperator focuses on balancing the power load
of the power nodes by investigating the service instances’
middle-term (e.g., hourly, daily) to long-term (e.g., weekly
or longer period) power consumption patterns. To prevent
SmoothOperation from overfitting its decisions to any spe-
cific week in which significant unusual short-term variations
exist (e.g., bursty traffics due to power failure of neighboring
datacenters), we collect 2-3 weeks of I-traces for each service
instance, and use vector arithmetic to calculate the averaged

instance power trace for each service instance. That is,

pr, = Zwew Pliw (4)
W
Each of these averaged I-traces remains to be a 7-day-long
vector; each element of this averaged instance trace is the
average of the power reading recorded at the same time-of-
week across these multiple weeks.
Constructing Service Power Traces. We then construct
service power traces (S-traces), one for each of the top power-
consumer services running in the datacenters. For service Y,
we calculate the vector sum of the PI’s of all of Y’s instances,
and divide the vector sum by the number of instances of
service Y. This calculation is formulated as follows:
PSY _ Zservlce(l) YPI ) (5)
Y]
where PSy is the service power trace of service Y, and |Y|
is the number of instances of service Y. These S-traces rep-
resent the most significant power consumption patterns ob-
served in the datacenters; it means that, when randomly
sampling any large enough group of service instances from
the datacenter, the aggregate power trace of this group of
service instances will be close to a linear combination of
these top-consumer S-traces. When considering adding an
extra service instance to a group of instances, we use these
S-traces to evaluate whether the new instance’s power con-
sumption pattern will add significantly to the peak of the
aggregate power trace of that group.

3.4 Asynchrony score function

To measure how the peaks of the power traces of a set of
service instances spread out over time, we define a metric,
namely asynchrony score. We use an asynchrony score func-
tion to evaluate the asynchrony score over a set of power
traces M, which is defined as follows:

2jem peak(P;)
peak(Xjem Pj)’
For example, if we want to evaluate whether two service
instances a and b should be placed together, we would like
to know if they peak asynchronously or not. Since an I-

trace is a power trace, we can calculate asynchrony score
function over two I-traces. This is done by calculating the

Am = f(M) = (6)



following ratio for PI, and PI,, and the aggregate power

trace P(, p) = PI, + PI}:

peak(PI,) + peak(PI})
peak(P(q,})

Ay = f({a, b}) = (7)

where Ay, 3} is the asynchrony score between service instance
a and service instance b, and peak(P;) is the peak value of the
power trace P;. The lower the asynchrony score, the more
overlapping the peaks of the component power traces, and
therefore the worse the group is; the higher the score, the
less the overlap. For example, in the poor placement case in
Figure 3, each leaf node has a asynchrony score of 1.0. If we
exchange server 2 and server 3, each of the leaf power nodes
will have a asynchrony score close to 2.0.

For a set of power traces M, the lowest possible Ay is 1.0,
meaning that every component power traces peaks at the
same time. The highest asynchrony score, |[M|, occurs when
every instance has the same peak value p and the peak of
the aggregate power trace of M is also p, meaning that the
aggregation of this group of instances has zero impact on
the peak. This scenario represents the most efficient use of
the power budget.

3.5 Service instance placement

Our workload-aware service instance placement mechanism
relies on iterative calculation of asynchrony scores to derive
a placement of service instances that leads to more stable,
less varying aggregated power consumption under power
nodes. The resulting placement has a high asynchrony scores
at all levels of power nodes, which maximizes the power
headroom and mitigates fragmentation in the datacenter, as
we described in Section 2.2. In the following, we dive into
the details of our service instance placement mechanism.

Calculating asynchony score vectors for service instances.

We first calculate a asynchrony score vector v; for each service
instance i. We do this by calculating the asynchrony score
of the averaged I-trace of instance i against all the S-traces;
each element of this asynchrony score vector which is an
asynchrony score between the averaged I-trace of i and one
of the S-traces, which we call an instance-to-service (I-to-S)
asynchrony score. This vector evaluates how adding this ser-
vice instance to a large mix of other instances potentially
impacts the aggregate peak of this group.

We choose to use I-to-S asynchrony scores, instead of
instance-to-instance (I-to-I) asynchrony scores, for the eval-
uation because of two reasons: 1) the pair-wise I-to-I asyn-
chrony score calculation could take an unacceptable amount
of time since there are tens to hundreds of thousands of ser-
vice instances in a datacenter, and 2) after doing the embed-
ding in the next step, these I-to-I asynchrony score vectors
will span a sparse high-dimensional space (> 10*), which
can lead to overfitting and is not ideal for clustering [44].
Classifying and placing instances. Suppose B is the set
of the top power-consumer services, we extract |B| S-traces.
Each service instance, hence, has an asynchrony scores vec-
tor of length |B|. We can then embed all the service instances
as data points in a |B|-dimensional space spanned by the
|B| asynchrony scores. We then apply k-means clustering

K-Mean-clustered servers projected via t-SNE

Figure 8. The production service instances in one of
the suites of DC1 are embedded into the |B|-dimensional
asynchrony-score space. k-means clustering is applied to
classify asynchronous servers (shown in different colors).
This figure shows the projected result onto a 2-dimensional
space via t-SNE [33].

to these points to classify the service instances into highly-
synchronous groups. An example of the clustered result is
demonstrated in Figure 8. We then select service instances
using a round-robin like heuristic and allocate the instances
to the power nodes from the top level of the power infras-
tructure to the bottom.

For example, assume that we want to place a set of service
instances I into the datacenter. We start from the top level
Iy and want to allocate service instances to g second-level
nodes. The first step is to extract |B| S-traces out of these
servers. For each server, we calculate one asynchrony score
against each S-trace, and have | B| asynchrony scores for each
service instance in the end. Each server is then considered
as a data point in the |B|-dimensional space spanned by the
asynchrony scores. We then apply k-means clustering to
these data points and obtain a set of h clusters, denoted as
C = {cy, ¢, 3, ...,cp, }. We configure h to be a multiple of g.
Each of these clusters have the same number of instances.
For each second-level power node, we iterate through all the

N Cj . . .
clusters, and assign % service instances from cluster j to

that power node, and so on, until all the service instances
are assigned to the second level power nodes. The process
repeats and terminates when all the service instances are
assigned to the last-level power nodes.

3.6 Adapting to workload changes

In datacenters, traffic and workload can change over time.
Short-term workload uncertainties such as power spikes
caused by traffic bursts are handled by commonly deployed
emergency measures such as power capping solutions [51],
and is out of the scope of this paper. On the other hand,
mid-term to long-term workload changes are what we care
the most about. These changes are usually caused by the
change of accessing patterns, which might gradually make



the power efficiency of the current deployment suboptimal.
Although, according to the past data in Facebook datacen-
ters, significant changes rarely occur within months, we
want to be able to identify when the current placement be-
comes suboptimal and apply incremental adjustment to it.
To address this issue, our framework continuously records
the I-traces and the S-traces, and dynamically re-evaluate
the severity of the fragmentation problem by monitoring
the sum of peaks of power traces at each level of power in-
frastructure. When the placement becomes suboptimal with
respect to the changing workload, we identify the power
nodes with the most severe fragmentation problem (i.e., the
node with the lowest asynchrony score or largest sum of
peaks), and calculate a differential asynchrony score for every
server. A differential asynchrony score is calculated between
the I-trace of a service instance and the averaged aggregate
power trace of a large group of server. We define

Yiesnnjei) PLj
|Sn — 1

to be the averaged aggregate power trace of service instance i
against power node N, where i is the service instance we are
evaluating, and Sy represents the set of servers supplied by
power node N; we define the differential asynchrony score
of instance i against power node N to be

_ peak(P_Il) +peak(P_Ai’N)
a peak(P_Ii + PAi,N)

we can then choose the service instance having the worst
(lowest) differential asynchrony score, and swap it with some
other service instance from another power node, if and only

if that swap make the differential asynchrony scores higher
at both of the two power nodes involved.
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4 Exploiting power budgets with dynamic
power profile reshaping

In the previous section, we explore how workload-aware ser-
vice instance placement based on temporal power behaviors
would help alleviating power budget fragmentation. Such
mitigation of fragmentation allows datacenters to host more
servers and improve throughput. In this section, we further
explore the opportunities of achieving additional throughput
increase by carefully utilizing the extra servers.

Based on our investigation of production power traces,
we design a proactive dynamic power profile reshaping
approach, which includes two steps: (1) history-based server
conversion and (2) history-based proactive throttling and boost-
ing to further utilize the power headroom. In the rest of the
sections, we first discuss the challenges of fully utilizing the
unleashed power budget achieved by service placement. We
then show how we leverage server conversion with storage
disaggregated servers [26, 27] to improve the throughput by
keeping these extra servers well utilized at all times. Lastly,
we show how proactive throttling and boosting intelligently
manage power budget allocation, allowing us to deploy extra
conversion servers inside datacenters.

In the rest of the section, we denote latency-critical work-
load using LC, and non-latency critical, throughput-oriented
workload using Batch.

4.1 Challenges

To utilize the unleashed power headroom we can add extra
service-specific servers. This approach, although can im-
prove throughput for the specific service, leaves throughput
opportunities on the table. For example, assuming that we
add LC-specific servers to a datacenter to use the unleashed
power headroom and accommodate extra traffic. During the
off-peak hours, even with the increased traffic, however, the
original set of LC servers are likely to be sufficient to handle
the burden without hurting the QoS of LC servers. In other
words, newly added LC-specific servers will be underutilized
during those hours. To address the low utilization issue, we
want the set of "extra servers” to be able to host batch ser-
vices to further improve batch throughput during off-peak
hours.

4.2 History-based server conversion

Conversion with storage-disaggregated servers Our in-
sight is that the recently proposed storage-disaggregated
servers [26, 27] is an ideal platform for solving the above
issue. Storage-disaggregated servers are recently widely de-
ployed in Facebook datacenters. In storage-disaggregated
servers, the main storage components (i.e., Flashes) are sep-
arated from the compute counterparts (i.e., CPUs and mem-
ory). The compute nodes access the storage nodes over a
high-bandwidth in-datacenter network instead of local PCle
links. This disaggregate approach incurs minimum overhead
because the network access latency (microsecond-level) is
small compared to disk access latency (millisecond-level)
[26].

Benefits of server conversion Using storage-disaggregated
servers, we can design server conversion to fully utilize the
newly-added servers during both peak and off-peak hours.
Server conversion switches the service a server hosts, be-
tween LC service and batch service, adaptively based on the
load. Server conversion with storage-disaggregated servers
offers several advantages. First, it allows us to accommodate
the increased LC traffic at peak hours by hosting only LC
service and improve the Batch throughput during off-peak
hours. Second, these storage-disaggregated servers allow
us to maintain a better overall resource utilization while
maintaining the data availability. This is one key advan-
tage of using storage-disaggregated servers. Because data
reside in their dedicated storage nodes, and is intact and still
accessible by other Batch servers even when the server is
converted to LC servers during peak time. Third, the server
conversion process is low overhead and does not require
time-consuming data migration. Last but not least, because
server conversion does not require any OS reboots, the OS
is always running, meaning that even during conversion,
the converted servers are still controllable by other runtime
monitors, which ensures that the power safety is maintained
during the conversion process.

Design of conversion policy Inspired by prior proposals
[7, 32, 34] which leverage workload colocation on leaf ma-
chines to improve node-level resource utilization, we design
a server conversion policy to allow LC and Batch workloads
to safely share the available power budget throughout the
hierarchy of the power infrastructure. We are also inspired



by previous works [53] and design our conversion policy by
taking advantage of the clear patterns found in historical
LC load data. The server conversion policy is designed to
be applied on the set of conversion servers econ. as follows:
First, we learn the guarded per-LC-server load level from the
historical data (training data), namely the load level of each
server when LC achieves satisfactory QoS and define this
load level as the conversion threshold (L;on,). During run-
time, we continuously monitor the LC server load over each
original set of LC servers. Based on the average load level, we
distinguish two phases: a Batch-heavy Phase and a LC-heavy
Phase. When the average LC server load over the original
LC server is smaller than L.,,., this datacenter is in Batch-
heavy Phase. When this average LC load increases to a level
close to L¢onov, our server conversion demands the conver-
sion servers to be converted to LC instances, and we enter
LC-heavy Phase. The threshold L;,n, is also used to manage
the load on each LC server. If any of the LC servers experi-
ences a load higher than L,,,, then our server conversion
process will stop sending queries to this server, and, instead,
send the next query to other LC servers or a conversion
server.

We can further maximize the throughput improvement
by throttling the Batch clusters’ power consumption during
peak hours. Such throttling proactively creates additional
power headroom during the peak hours, allowing us to house
an additional set of conversion servers e, in the datacenter.
To achieve further throughput improvement, we augment
the previous policy to leverage this set e;;, of conversion
servers. We monitor the load of the original set of LC servers
and of the LC servers in e;,ny, comparing the load with the
same conversion threshold L.y, . In this augmented policy,
the definitions of LC-heavy Phase and Batch-heavy Phase
remain unchanged. One distinction between this augmented
policy and the previous policy is that, when the average LC
load over the original LC servers and the LC servers in econo
approaches to L¢ony, we now first throttle the Batch clusters,
and then it starts to convert servers in e; into LC servers.
Another distinction is that, during Batch-heavy Phase, we
boost the performance of Batch servers to compensate for
the loss of throughput caused by the throttling.

5 Evaluation
5.1 Experimental setup

In this work, we conduct our experiments using the power
traces measured in three of Facebook’s largest datacenters.
All of these three datacenters are power supplied by the
multi-level power infrastructure described in Section 2. Each
datacenter consists of four suites and tens of thousands of
servers. For every server housed in these three datacenters,
we measure and log three weeks of power trace. The aver-
aged instance power traces constructed by taking the average
of the first two weeks of instance power traces serve as our
training data. The third week of power traces serve as our
testing data. We derive SmoothOperator’s power-efficient in-
stance placement and power profile reshaping policies based
on the training data, and evaluate the benefit of each these
two components using the testing data. The time interval
of a week serves well as the unit of evaluation because, in
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Figure 9. The comparison between the children power trace
generated by the oblivious and workload-aware placement
in a production suite of DC1. The workload-aware place-
ment generates smoother power traces, greatly alleviating
fragmentation. Power peaks are reduced at the child node
thus more servers can be supported at each node.

large-scale user-facing datacenters, user traffic has strong
day-of-the-week activity patterns [5, 43].

5.2 Results

In this section, we present evaluation results that demon-
strate the effectiveness of SmoothOperator on improving the
efficiency of power usage and on achieving higher through-
put in the three target datacenters. Specifically, we present
the following two studies: 1) We show that SmoothOpera-
tor’s workload-aware service instance placement framework
reduces the peak power at different levels of power nodes,
mitigating the power budget fragmentation problem and
allowing datacenter operators to host more servers under
the same power budget. 2) We show that, with SmoothOper-
ator’s dynamic power profile reshaping policy, we improve
the power utilization during non-peak hour, which further
improves service throughputs.

5.2.1 Peak power reduction by workload-aware
service placement

We start with the study that shows how SmoothOperator’s
workload-aware service instance placement reduces the peak
power and mitigates the power budget fragmentation prob-
lem. As we described in the previous sections, the distinc-
tive diurnal patterns of services and the service-level and
instance-level heterogeneity provide abundant opportuni-
ties for improving the efficiency of power utilization in these
datacenters.

Figure 9 presents how our framework reduces fragmenta-
tion using production power traces. In this figure, we apply
SmoothOperator’s workload-aware instance placement to
the sub-tree rooted at a middle-level power node N, includ-
ing node N and all the descendent power nodes and the
service instances supplied by N. We demonstrate in the top
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Figure 10. The peak-power reduction achieved at each level
of the power infrastructure in the three datacenters under
study. There is significant peak reduction at RPP level, which
directly translates to the percentage of extra servers that can
be hosted.

graph in Figure 9 the power trace N. In the middle graph,
we show the power traces of the children power nodes of
N, one for each child, before we apply the workload-aware
service instance placement on N. In the bottom graph, we
show the power traces of N’s children nodes after we apply
our workload-aware service instance placement to N. Note
that the power trace at N is not changed by SmoothOperator
because, in the example, our placement policy does not move
service instances into or out of the subtree rooted at N. This
figure shows that SmoothOperator, with the placement step
alone, makes the power traces of the children power nodes
less varying and more balanced, and reduces the peak power
of the children power nodes.

Peak power reductions achieved at different levels of
power infrastructure We present the peak power reduc-
tion at all levels in all three datacenters in Figure 10. Recall
from Section 2 that, for a same power delivery tree, the sum
of peak powers of power nodes at a certain level is an impor-
tant indicator of the severity of power budget fragmentation
at that level. As shown in Figure 10, we find our workload-
aware service instance placement can reduce the RPP-level
peak power by 2.3%, 7.1% and 13.1% for the three datacen-
ters, respectively. At higher levels, SmoothOperator achieves
less significant reduction. The reason is that each of these
higher level power nodes indirectly supply a group of up to
thousands of service instances with higher degree of hetero-
geneity within them than the leaf nodes. Note that, however,
the leaf power nodes suffer from fragmentation significantly.
In other words, peak power reductions at the lowest level
are of the utmost importance, as servers can only be directly
power supplied by the low-level power nodes. These reduc-
tions translate to the proportion of extra servers allowed to
be housed under the same power infrastructure.

While we can extract power headroom in DC3, the benefit
we get in DC1 is smaller. The reasons are two-fold: First, the
degree of heterogeneity among instances power traces found
is DC1 is much smaller than that in DC3. Second, due to the
lower degree of heterogeneity, the baseline (original) place-
ments in DC1 suites are more balanced compared to DC3.
For DC3, synchronous service instances are largely placed
under the same sub-trees of the power infrastructure in the
original placement, allowing us to achieve improvement.

We compare our approach to a previous work [20]. This
work aims to optimize the provisioning of the capacity of

B StatProf(0, 0) = StatProf(5,0.05) [ SmoOp(0, 0) B SmoOp(5, 0.05)
BN StatProf(1,0.01) [ StatProf(10,0.1) =1 SmoOp(1,0.01) EEE SmoOp(10,0.1)

Normalized power budget required at each level

Figure 11. Required power budget achieved by previous
work and SmoothOperator. StatProf(u, ) refers to the result
of previous work with a degree of under-provisioning u
and a degree of overbooking §. SmoOp(u, §) refers to the
SmoothOperator counterpart.

power nodes in datacenters. It models power pattern of in-
stances and power nodes as cumulative distribution func-
tions (CDFs), and relies on leveraging these probability distri-
butions to aggressively under-provision and overbook power
nodes.

For example, to power supply a set of service instances M,
this previous work models the power profile of each instance
iin M as a ¢; and defines a degree of under-provisioning u.
The budget of the power node that supplies M will be set
to X ;em Ci.us Where c¢; , denotes the (100 — u)-th percentile
power of instance i’s power profile c;. This work also recog-
nizes that, at datacenter-level, they can take advantage of
the heterogeneity among the instances with overbooking,
and defines a degree of overbooking §, which further reduces
the datacenter-level provisioning requirement. Suppose the
datacenter-level power capacity was ) ;¢4 Ci,u; With 6, the
capacity can be further reduced to }};cq. ¢iu/(1 + ).

The comparison can be found in Figure 11, which shows
the power budget provisioning required by the three data-
centers after applying the two approaches. Since the under-
provisioning and overbooking techniques used in the prior
work is independent with our techniques, in our experi-
ment, we also add several configurations of SmoothOperator
(SmoOp) in which under-provisioning and overbooking are
allowed. We denote StatProf(u, &) as the configuration
of previous work with a degree of under-provisioning u
and a degree of overbooking §, and SmoOp(u, &) as the
SmoothOperator counterpart. Note that, with such notation,
SmoOp(0, 0) represents using SmoothOperator alone without
any under-provisioning nor overbooking.

We can see that SmoOp(0, 0) achieves >12% of reduction
in the required power budget provisioning in all cases, and
it achieves higher level of improvement over the prior work
as we go down the hierarchy of power infrastructure. When
compared to StatProf, across all the levels, SmoOp(0,0) almost
always outperforms or is on par with the most ambitious
StatProf (i.e., StatProf(10, 0.1)). If we allow SmoothOperator
to under-provision and overbook, across all levels and dat-
acenters, it always requires less power budget provisioned
than the StatProf counterpart, by up to >10%. For instance, in
DC3, while StatProf(10, 0.1) achieves only 13% of reduction,
SmoOp(0, 0) achieves 20% and SmoOp(10, 0.1) achieves 24%.
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Figure 12. Server conversion’s impact on per-LC-server
load, LC and Batch throughput.

These results show that, by intelligently leveraging tem-
poral heterogeneity among instance power traces, SmoothO-
peartor lowers the peak of the power profiles at power nodes,
creating the extra headroom that was not available to the
prior work. Moreover, since SmoOp(0, 0) always outperforms
StatProf(10, 0.1), we conclude that the benefit we get from
SmoothOperator does not need to rely on probabilities, im-
plying higher level of safety guarantee at power nodes.

5.2.2 Benefit of dynamic power profile reshaping

In this subsection, we present evaluation results demonstrat-
ing the benefit of using dynamic power profile reshaping
to utilize the power budget unleashed by SmoothOperator’s
workload-aware service instance placement.

Impact of server conversion We present a segment of our
experiment (Figure 12) to highlight the server conversion’s
impact on Batch throughput, LC throughput, and the load
per LC server. In this example, the DC optimized by the
workload-aware service instance placement has 11% of extra
power headroom to accommodate extra traffic. If we add
only LC-specific servers, this datacenter can achieve 11%
extra LC throughput. If we use conversion servers to fill
in the power gap, we gain extra benefit for Batch services.
As shown in the top subgraph in Figure 12, during Batch-
heavy Phase, the per-server load for LC-servers is low and
the original set of LC servers are underutilized. During this
time, we do not need extra computing power to handle the
incoming LC queries. As long as the LC servers are under a
specified guarded load level, the added conversion servers
can be converted to Batch service instances to perform Batch
workload, as shown in the middle subgraph of Figure 12. On
the other hand, during LC-heavy phase, the original set of
LC servers do not have the capacity to handle the increased
LC traffic. This is when conversion servers need to kick in
to help reduce the per-server load for LC servers. In the top
subgraph of Figure 12 we see such an impact.
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Figure 13. The breakdown of throughput improvement of
LC and Batch services.
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Figure 14. Average power slack reduction and off-peak
phase power slack reduction achieved at three of Facebook’s
production datacenters.

Figure 13 presents the throughput improvement achieved

by both server conversion and proactive throttling and boost-
ing policies throughout the entire experiments. It shows that,
with server conversion alone, we are able to utilize the 13%
unlocked power budget to trade for up to 13% LC throughput
plus 8% Batch throughput at the same time.
Impact of proactive throttling and boosting In this sec-
tion, we evaluate the benefit we obtain from applying proac-
tive throttling to the Batch instances. The throttling and
boosting policy proactively throttles the Batch services to
increase the power budget allocation for LC services during
LC-heavy Phase; during the Batch-heavy Phase, it only in-
creases the allocation and boosts the performance of Batch
instances, but does not throttle the LC services.

Figure 13 demonstrates the extra throughput improve-
ment achieved by the proactive throttling and boosting pol-
icy on top of server conversion. The improvement of Batch
throughput here is small, 1.6%, 1.2%, and 2.4%, for the three
datacenters, respectively. This is as expected because the gain
brought by the extra conversion server barely compensates
the loss caused by aggressive throttling during LC-heavy
Phase. On the other hand, we largely improve the capacity
of the LC service in 2 of the 3 datacenters during the peak
hours. The extra improvement of LC throughput is 7.2%, 8%,
and 1.8% for DC1, DC2, and DC3, respectively, which trans-
lates to a capacity gain that can accommodate multi-millions
extra queries per second.

Power slack reduction In Figure 14, we present the result
of average power slack reduction and off-peak hour power
slack reduction of the three datacenters. The reduction of
power slack means that the power budget available during
off-peak hours is used to do more work. From Figure 14 and
Figure 13 we find that the benefit gained in DC3 is smaller
compared to the other two datacenters. The reason of this
is that DC3 has a large proportion of LC service instances
among the top power consumers compared to the Batch type
counterpart. Therefore fewer Batch service instances can be



Table 1. Comparison between SmoothOperator and prior approaches for improving datacenter power efficiency

Power Routing [38] [ Stat. Multiplexing [20] | DistributedUPS [28] | SmoothOperator
Using temporal information 4 4
Using existing power infra. v v
Automated process v v v v
Balancing local peaks v v
Proactive planning v

throttled for LC to borrow power budget from, limiting the
improvement of Batch throughput. In other two datacenters,
power slack reduction are achieved. As shown in Figure 14,
the dynamic power profile reshaping achieves 44%, 41%, and
18% average power slack reduction, respectively in the three
datacenters.

6 Related Work

Aside from prior proposals focusing on improving node-
level power and energy efficiency [24, 31, 32], there has
been a large body of previous works addressing power and
energy efficiency problems in datacenters from a system
architecture’s perspective.

One class of solutions tries to address the power bottleneck
by reducing the power consumption of computation. Power
management problems at server level and small cluster level
have drawn significant attention [8, 11, 13, 15, 19, 25, 30, 36,
37, 40, 41, 45-47]. A popular approach among them relies on
using virtual machines (VMs) to achieve work consolidation
and performance isolation among different workloads, and
treats VM consolidation as a resource allocation problem
[8, 15, 30, 37, 40, 47]. However, due to strict latency require-
ment and simplicity of management, large-scale production
datacenters, such as Facebook’s and Microsoft’s [53], deploy
their datacenter without virtualization in a more autonomous
manner. In this type of datacenters, each service team deploy
their service on their own, separate set of physical servers,
and different major services do not share physical servers.
This consolidation-based approach is not directly applicable
in this type of datacenters.

Recently, researchers started to consider intelligently charg-
ing and discharging energy storage devices (ESDs) to enable
temporary excessive power draw at power nodes during
power emergencies [4, 21, 22, 28, 49, 52]. The problem of
this type of approach is similar to power-capping-based ap-
proaches, in that the unbalanced peaks across the datacenter
can make the sharp peaks at some of the nodes deplete the
ESDs quickly, while at some power nodes the power draw
never entails the extra capacity.

There are other proposals of flexible power infrastruc-
ture focusing on temporarily extending (or reallocating) the
power budget among power nodes [12, 38] to adapt to dy-
namism of power consumption. Among them, power rout-
ing [38] suggests dynamically connecting rows and racks
of servers to different power nodes, in order to balance the
load among power nodes. Dual-corded power supply, how-
ever, only provides limited flexibility (degree of 2) for power
routing purpose. To maximize the flexibility, normal fault-
tolerant dual-corded power supply architecture must be ex-
panded to enable richer connectivity. The costly upgrade
to the infrastructure and a significant change to the power

supply topology required by their solution can further lead
to long service down time during the installation and setup
process.

Several prior works [14, 20, 48] showed that by statistically
multiplexing the probability distributions (PDFs) of power of
different workloads, datacenters can overbook and/or under-
provision safely. These works, however, do not take advan-
tage of time-series power information of workloads. Our
insight is that, the strong diurnal patterns and the asynchro-
nous power behavior across workloads provide significant
opportunities for de-fragmenting power budget. Also, their
techniques degrade the performance of user-facing services
significantly during the peak time, which is not ideal for
user-facing datacenter.

In fact, SmoothOperator and a lot of the works mentioned
in this section are not mutually exclusive. The workload-
aware service instance placement framework is complemen-
tary to many of the prior solutions.

7 Conclusion

In this work, we investigate three of Facebook’s datacenters
and aim to solve the power budget fragmentation problem
found in them. We leverage the knowledge of the temporal
heterogeneity of power consumptions of different workloads,
and apply our workload-aware service instance placement
technique to unlock the wasted power budget, and evaluate
the effect of server-conversion-based dynamic power profile
reshaping runtime in production environment. Our result
shows that we are able to host up to 13% more servers in
production environment by applying our placement tech-
nique, without making modification to the underlying power
infrastructure. To this end, we reduce up to 44% of average
power slack inside datacenters. Without incurring signifi-
cant burden on latency-critical servers, we achieve up to 13%
plus 8% throughput improvement for latency-critical service
and batch service, respectively, by using server conversion
alone; or 15% and 11% throughput improvement with the
help of DVFS.
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