a2 United States Patent

Hundt et al.

US009563532B1

US 9,563,532 B1
Feb. 7,2017

(10) Patent No.:
45) Date of Patent:

(54) ALLOCATION OF TASKS IN LARGE SCALE
COMPUTING SYSTEMS

(75) Inventors: Robert Hundt, Piedmont, CA (US);
Lingjia Tang, Charlottesville, VA (US);
Jason Mars, Charlottesville, VA (US)
(73) Assignee: Google Inc., Mountain View, CA (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1150 days.
(21) Appl. No.: 13/310,054
(22) Filed: Dec. 2, 2011
(51) Imt.CL
GO6F 15/173 (2006.01)
GO6F 11/34 (2006.01)
(52) US. CL
CPC ... GO6F 11/3409 (2013.01); GO6F 11/3466
(2013.01)
(58) Field of Classification Search
CPCcccee. GO6F 11/3409; GO6F 11/3466; GOGF
2201/88; GOGF 2201/86
USPC ittt 709/224
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

5,729,472 A * 3/1998 Seiffert et al. 702/188
6,185,659 B1* 2/2001 Milillo et al. GO6F 12/0862
710/34

6,560,648 B1* 5/2003 Dunn et al. 709/224
6,889,159 B2* 5/2005 Klotz et al. GO6F 11/263
702/120

7,028,096 B1* 4/2006 Lee ..o 709/231
7,065,676 B1* 6/2006 . G11C 29/56
714/32

200

Ferformance (%)
A

100

/‘ 201

80

60

40

7,533,241 B2* 5/2009 Begon et al. GOGF 12/0802

711/207

7,539,839 B1* 5/2009 Rhoten GO6F 11/22

711/171

7,552,396 B1* 6/2009 Bicheno et al. GOG6F 11/324

715/736

7,577,701 B1* 8/2009 Johns et al. 709/203

7,610,523 B1* 10/2009 Singhccccecvenne. G11C 29/42

365/200

7,624,225 B2* 11/2009 Gower et al. G11C 5/04

711/105

7,805,706 B1* 9/2010 Lyetal. GOG6F 9/5083

709/221

8,018,357 B1* 9/2011 Tsai .c.ccooevvvvnviennenn HO3M 5/20

341/56

8,239,182 B2* 82012 Kanade GOGF 17/5045

703/13

8,863,022 B2* 10/2014 Rhodes et al. 715/781

8,966,454 B1* 2/2015 Michelsen et al. 717/133

9,110,496 B1* 82015 Michelsen GO6F 1/00

2002/0099821 Al* 7/2002 Hellerstein et al. 709/224
(Continued)

Primary Examiner — Hieu Hoang
(74) Attorney, Agent, or Firm — Fish & Richardson P.C.

(57) ABSTRACT

Aspects of the invention may be used to allocate tasks
among computing machines in large scale computing sys-
tems. In one aspect, the method includes executing a first
task in the plurality of tasks on a first computing machine
and determining a performance degradation threshold for the
first task. The method further includes calculating a pre-
dicted performance degradation of the first task when a
second task is executed on the first computing machine,
wherein the predicted performance degradation is deter-
mined by comparing a performance interference score of the
second task with a performance sensitivity curve of the first
task. The method further includes executing the second task
on the first computing machine when the predicted perfor-
mance degradation of the first task is below the performance
degradation threshold.

24 Claims, 8 Drawing Sheets

P

»

10 . ,
* Performance interference

Score

US 9,563,532 B1

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2002/0183972 Al* 12/2002 Enck et al.ccoceeneee 702/186
2003/0005380 Al* 1/2003 Nguyen et al. GOGF 11/273
714/736
2003/0046396 Al* 3/2003 Richter et al. GO6F 9/505
709/226
2003/0158884 Al* 82003 Alford, Jr. ..ccccooennene 709/104
2005/0046705 Al* 3/2005 Smith 348/231.2
2005/0108327 Al* 5/2005 Hama 709/203
2005/0169185 Al* 82005 Qiu et al. 370/241
2005/0193376 Al* 9/2005 Harrison GOGF 11/328
717/127
2006/0059253 Al* 3/2006 Goodman et al. 709/223
2006/0072674 Al* 4/2006 Saha et al. HO4N 19/51
375/240.25
2006/0085597 Al* 4/2006 McNeillccccceevnne 711/118
2008/0019278 Al* 1/2008 Niemczyk et al 370/238
2008/0027769 Al* 1/2008 Ederccvvvnininn 705/7
2009/0328047 Al* 12/2009 Lietal ... GOG6F 9/5033
718/102
2010/0198960 Al* 82010 Kirschnick
etal. .ooocovnn GOGF 11/3414
709/224
2010/0223237 Al* 9/2010 Mishra et al. GOGF 9/30156
707/693
2011/0098973 Al1* 4/2011 Seidman 702/179
2012/0089664 Al* 4/2012 Igelka 709/203
2012/0124606 Al* 5/2012 Tidwell et al. 725/17
2014/0215176 Al* 7/2014 Iga ...ccccoovvvvnvecee. GOGF 11/008
711/170

* cited by examiner

U.S. Patent Feb. 7, 2017 Sheet 1 of 8 US 9,563,532 B1

e
L.
Lo

|

Task

103 ‘
/ Cluster Manager
101
108 —\
[Latency-Sensitive N\
A\ Task
107 0\ L l /
f Machine K Machine

FIG. 1

U.S. Patent Feb. 7, 2017 Sheet 2 of 8

2
o

Performance (%)

I

100

/- 201

80

51 C N

40

20

US 9,563,532 B1

F YR S
[« T TR ——

FIG. 2

.
»

10 Ferformance interference

Score

U.S. Patent Feb. 7, 2017 Sheet 3 of 8 US 9,563,532 B1
300
4 Y I)
301
Processor | Processor Processor
4 N Memory
i Application Expandable
/ Application
207 _ / o J 305
/ /’—\\\,/ \\,’—‘
-1 ek d - N~
e A =N
a (Shared Cache 7~
307 f nl I
\\ /\\ ,___,//
KS“ES Tt S)
309
/ [DRAM j
311

FIG. 3

U.S. Patent Feb. 7, 2017 Sheet 4 of 8 US 9,563,532 B1

B
[}

f Execute a first application on a computing

machine
401
Execute a memory expandable application
f on the computing machine
403
A
Vary the working size set of the memaory
/ expandable application
405

Plot performance of first application as
f function of working set size of maemory
407 aexpandable application

FIG. 4

U.S. Patent Feb. 7, 2017 Sheet 5 of 8 US 9,563,532 B1

500
e Yo))
501
Processor | Processor Processor
s ~)
. Reporter
/’ Application Appiication \
505
503 \ \ / \ Z /
/ r%—v_\—-\\ (_,'-v_\—-(\
- / - /
) [§)
/ 515 Shared Cache 543
507
N J
509
/ [DRAM]
511

FIG.5

U.S. Patent

601

603

645

607

Feb. 7, 2017 Sheet 6 of 8

)]
D
L]

US 9,563,532 B1

Execute a reporter application on a
computing machine

Execute a first application on the
computing machine

A

Determine performance degradation of
reporter application

Assign first application a performance
interference score

FIG. 6

U.S. Patent

TO7A

708A

Feb. 7, 2017 Sheet 7 of 8 US 9,563,532 B1

"“'«f
jus]
Lo

Task

703
Task

K Cluster Manager
701

0% 7141
N N

/~ Latency-Sensitive Batch Task\

A\ Task

\. i i /
Machine //, Machine

U.S. Patent

801

803

805

807

808

Feb. 7, 2017 Sheet 8 of 8

o0
-]
L]

Allocate a first task to a computing
machine within a cluster

l

Feceive a second task at the cluster
manager

Find performance information for the first
task

4

Calculate predicied performance
degradation of first task if a second task is
executed on the same computing machine

Execute second task on the computing
machine if predicted performance
degradation of first task is below the
performance degradation threshoeld of the
first task

FIG. 8

US 9,563,532 B1

US 9,563,532 Bl

1
ALLOCATION OF TASKS IN LARGE SCALE
COMPUTING SYSTEMS

FIELD OF THE DISCLOSURE

The present disclosure relates generally to large scale
computing systems and in particular to allocating tasks
among computing machines in large scale computing sys-
tems.

BACKGROUND OF THE INVENTION

Large scale computing systems, sometimes called ware-
house scale computers, are computing environments that are
designed to host large scale services like cloud storage, web
searching, and other data or computationally intensive appli-
cations. Large scale computing systems include multiple
clusters of computing machines, each having a cluster
manager. The cluster manager receives tasks from the large
scale computing system and allocates the tasks among the
computing machines in its cluster. Each computing machine
houses a number of processors, or cores, in a number of
central processing units (CPUs). For example, a computing
machine may have 2-4 CPUs, and each CPU may have 4-8
processors.

Each task in a large scale computing system is a particular
instance of an application, or executable binary code, in the
large scale computing system. The task also includes a
configuration file that specifies the machine level resources
required by the application. The resources may include the
number of processors, amount of memory, and disk space
that is allocated to the application. Some applications may
be latency sensitive, meaning that they have high quality of
service standards and cannot tolerate substantial perfor-
mance degradation. Examples of latency sensitive applica-
tions include Internet searches, online map functions, and
e-mail services. Other applications are not latency sensitive
and can tolerate greater interruptions in the quality of
service. These applications are called batch applications, and
some examples of batch applications include file backup,
offline image processing, and video compression.

The cluster manager is responsible for allocating tasks
among computing machines. Several tasks may be executed
on one computing machine. However, as the number of tasks
on a computing machine increases, each task may suffer
performance degradation because the tasks share certain
resources like memory and bus bandwidth. This may be
problematic with latency sensitive tasks because the quality
of service should be maintained within a certain threshold.
Cluster managers tend to dedicate one computing machine
to a latency sensitive task to ensure there is no performance
degradation. However, such an allocation strategy ignores
the possibility that other tasks may be executed on the same
computing machine as the latency sensitive task without
substantially disrupting its performance. The result is an
under-utilization of resources because the cluster of com-
puting machines is not operating at full capacity.

SUMMARY OF THE INVENTION

Aspects of the invention may be used to allocate tasks
among computing machines in large scale computing sys-
tems. Methods are disclosed herein for modeling the per-
formance degradation of a first application. In one aspect,
the method includes executing the first application on a
computing machine, where the first application uses com-
mon machine resources of the computing machine. The

10

15

20

25

30

35

40

45

50

55

60

65

2

method further includes executing a memory expandable
application on the computing machine, where the memory
expandable application uses common machine resources of
the computing machine and has a variable working set size.
The method further includes varying the working set size of
the memory expandable application, measuring a perfor-
mance metric of the first application, and plotting the
performance metric of the first application as a function of
the working set size of the memory expandable application.

In another aspect, a method of assigning a performance
interference score to a first application is disclosed. The
method includes executing a reporter application on a first
computing machine, where the reporter application mea-
sures its own performance. The method further includes
executing the first application on the first computing
machine and determining the performance degradation
experienced by the reporter application when the first appli-
cation is executed with the reporter application on the first
computing machine. The method further includes assigning
the first application the performance interference score
based on the performance degradation experienced by the
reporter application.

In another aspect, a method of allocating a plurality of
tasks on a computing network is disclosed. The method
includes executing a first task in the plurality of tasks on a
first computing machine and determining a performance
degradation threshold for the first task. The method further
includes calculating a predicted performance degradation of
the first task when a second task is executed on the first
computing machine, where the predicted performance deg-
radation is determined by comparing a performance inter-
ference score of the second task with a performance sensi-
tivity curve of the first task. The method further includes
executing the second task on the first computing machine
when the predicted performance degradation of the first task
is below the performance degradation threshold.

In another aspect, a cluster system within a large scale
computing system is disclosed. The system includes a plu-
rality of computing machines and a cluster manager. The
cluster manager is configured to store a performance sensi-
tivity curve and performance degradation threshold of a first
task in a plurality of tasks and store a performance interfer-
ence score of a second task in the plurality of tasks. The
cluster manager is further configured to predict the perfor-
mance degradation of the first task when the first task and
second task are executed on a first computing machine in the
plurality of computing machines and allocate the plurality of
tasks among the plurality of computing machines.

BRIEF DESCRIPTION OF THE DRAWINGS

The methods and systems may be better understood from
the following illustrative description with reference to the
following drawings in which:

FIG. 1 shows a cluster within a large scale computing
system in accordance with an embodiment of the invention;

FIG. 2 shows a performance sensitivity curve for an
application in accordance with an embodiment of the inven-
tion;

FIG. 3 shows the operation of a memory expandable
application in accordance with an embodiment of the inven-
tion;

FIG. 4 shows a method of modeling the performance
degradation of an application in accordance with an embodi-
ment of the invention;

FIG. 5 shows the operation of a reporter application in
accordance with an embodiment of the invention;

US 9,563,532 Bl

3

FIG. 6 shows a method of measuring the performance
interference score of an application in accordance with an
embodiment of the invention;

FIG. 7 shows an allocation of tasks in a cluster within a
large scale computing system in accordance with an embodi-
ment of the invention; and

FIG. 8 shows a method of allocating tasks in a cluster
within a large scale computing system in accordance with an
embodiment of the invention.

DETAILED DESCRIPTION

To provide an overall understanding of the invention,
certain illustrative embodiments will now be described,
including systems and methods for allocating tasks in a large
scale computing system. However, it will be understood by
one of ordinary skill in the art that the systems and methods
described herein may be adapted and modified as is appro-
priate for the application being addressed and that the
systems and methods described herein may be employed in
other suitable applications, and that such other additions and
modifications will not depart from the scope thereof.

In order to describe methods of allocating tasks in a
cluster within a large scale computing system, a general
cluster in a large scale computing system will first be
discussed. FIG. 1 shows an example of a cluster 100 in a
large scale computing system. A large scale computing
system has multiple clusters. Cluster 100 includes a cluster
manager 101 and a number of computing machines 105.
Computing machines include a number of processors, or
cores, 107. Cluster manager 101 may be implemented as a
server. Cluster manager 101 receives incoming tasks 103
from the large scale computing system. Each task includes
an underlying application and the configuration file for the
application that describes the system resources that the
application needs. These system resources may include the
number of cores, amount of memory, and disk space that is
allocated to the application. Cluster manager 101 uses the
configuration file to determine which computing machine
105 has availability to execute the task based on the resource
needs of the task. For example, a latency sensitive task 109
is executed on one computing machine and no other tasks
may be executed on that computing machine. This ensures
that no other tasks can degrade the performance of latency
sensitive task 109. On the other hand, multiple batch tasks
111 may be assigned to a single computing machine because
batch tasks 111 have a higher performance degradation
tolerance.

The method of assigning tasks as described in FIG. 1 may
be improved. Additional tasks may be executed on the same
computing machine as a latency sensitive task if those
additional tasks do not degrade the performance of the
latency sensitive task beyond a certain threshold. The quality
of service, or performance, of the underlying application
may be quantified by a number of metrics. An example of a
performance metric is (latency)™, where latency is the
amount of time that it takes to complete an operation in the
application. Other metrics may include number of opera-
tions per second or amount of data processed per second.
The metric is normalized to solo execution on a computing
machine, meaning that the metric is equal to 1 when the
application is executing alone on a computing machine and
decreases as more applications are allocated to the same
computing machine.

The performance degradation experienced by one task
when another task is executed on the same computing
machine can be predicted using the systems and methods

10

15

20

25

30

35

40

45

50

55

60

4

described herein. If one task has a performance degradation
threshold that should not be violated, a cluster manager can
predict if another task can be executed on the same com-
puting machine without violating the performance degrada-
tion threshold of the first task. In order for the cluster
manager to predict performance degradation, certain perfor-
mance-related attributes are first determined for all applica-
tions that can be executed in the cluster. A performance
sensitivity curve is generated for certain applications execut-
able in the cluster, for example latency sensitive applica-
tions. A performance interference score is also generated for
certain applications executable in the cluster, for example
batch applications. These performance-related attributes are
generated using a common standard. For example, the
performance sensitivity curve can be generated by measur-
ing the performance degradation experienced by the appli-
cation when executed with a reference application. Like-
wise, the performance interference score can be generated
by measuring the performance degradation experienced by
another reference application when executed with the appli-
cation. The predetermined performance-related attributes
are used by the cluster manager to predict performance
degradation when allocating tasks among computing
machines. The cluster manager may generate the perfor-
mance-related attributes, or another stand-alone software
application can be used to generate the performance-related
attributes. Systems and methods for generating a perfor-
mance sensitivity curve, generating a performance interfer-
ence score, and then using these performance-related attri-
butes to predict performance degradation between two tasks
are described below.

A performance sensitivity curve can be generated using a
given performance metric for an application. The perfor-
mance sensitivity curve generally shows the performance
degradation of an application when another application is
executed on the same computing machine. An example of a
performance sensitivity curve is shown in FIG. 2. Chart 200
shows a performance sensitivity curve 201 for a particular
latency sensitive application executing on a computing
machine. The y-axis of the chart shows the performance of
the application in percentage, with 100% indicating maxi-
mum performance when the application the executing alone
on a computing machine. The x-axis shows a performance
interference score of a second application that can be
executed on the same computing machine as the latency
sensitive application. A performance interference score is a
measure of how much an application interferes with the
performance of another application executing on the same
computing machine. The interference exists because the two
applications are sharing common resources like system
memory and bus bandwidth. The performance interference
score is a set of discrete whole numbers. The performance
interference score can be based on or derived from a number
of metrics or attributes of the application. For example, the
performance interference score can be based on the amount
of common system resources the application uses or the
frequency with which the application uses the common
system resources.

One example of a metric that can be used as a perfor-
mance interference score is the working set size of an
application. A working set size is the amount of memory
needed by an application to perform all its necessary opera-
tions. It is usually measured in units of memory, for example
megabytes (MB). A larger working set size indicates that the
second application is using more shared resources on the
computing machine and so the performance of the latency
sensitive application may decrease. The performance inter-

US 9,563,532 Bl

5

ference score of the second application correlates with the
working set size of the second application, with higher
performance interference scores representing larger working
set sizes. Methods of determining a performance interfer-
ence score for an application are described with respect to
FIGS. 5 and 6.

Chart 200 shows that the performance of a latency sen-
sitive application deteriorates as the performance interfer-
ence score of the second application increases. For example,
if the second application’s performance interference score is
2, then the performance of the latency sensitive application
is approximately 80%. If the second application’s perfor-
mance interference score is 8, then the performance of the
latency sensitive application is approximately 60%. The
latency sensitive application has a performance degradation
threshold 203 indicating the maximum tolerance of degra-
dation that is allowable. The performance degradation
threshold for a particular application is preset, for example
by a system administrator determining performance toler-
ances in the large scale computing system. In chart 200, the
performance degradation threshold is set at 70%. Thus an
application with a performance interference score of 2 will
not cause the latency sensitive application to violate the
performance degradation threshold and can be executed on
the same computing machine as the latency sensitive appli-
cation. However, an application with a performance inter-
ference score of 8 will cause the latency sensitive applica-
tion to violate the performance degradation threshold and
should not be executed on the same computing machine as
the latency sensitive application. Generally two latency
sensitive applications should not be executed together as
both utilize large amounts of shared resources and would
likely cause each other to violate their respective perfor-
mance degradation thresholds. Thus a cluster manager can
use the performance sensitivity curve of a latency sensitive
application to determine whether a batch application with a
known performance interference score can be executed on
the same computing machine as the latency sensitive appli-
cation. In order to achieve this, the performance sensitivity
curve of the latency sensitive application and the perfor-
mance interference score of the batch application are first
determined.

Systems and methods for generating a performance sen-
sitivity curve for an application will now be discussed. FIG.
3 shows a computing machine 300 with multiple processors
301. The computing machine also has a shared memory
cache 307, bus 309, and dynamic random access memory
(DRAM) 311. The cache, bus, and DRAM are shared
resources that are used by all applications executing on
computing machine 300. There may be other shared
resources not illustrated in FIG. 3, such as other forms of
memory or communications channels. Application 303, gen-
erally a latency sensitive application, is executed on several
but not all processors 301 on the computing machine. To
generate a performance sensitivity curve for application 303,
a memory expandable application 305 is executed on com-
puting machine 300. The memory expandable application
305 is executed on one or more of the remaining processors
301 that are not already executing application 303.

Memory expandable application 305 is an application that
is programmed to steadily vary its working set size 313. For
example, the memory expandable application may be able to
vary its working set size from 0 MB to 30 MB in 1 MB
increments. Memory expandable application 305 executes a
variety of simple operations to utilize shared resources.
These operations may include random number generation,
random memory accesses, and streaming data accesses. The

10

15

20

25

30

35

40

45

50

55

60

65

6

operations should consume a wide variety of shared
resources rather than a single shared resource in order to
ensure an adverse performance effect on application 303.
The memory expandable application can increase the num-
ber or size of these operations to increase its working set
size. In some embodiments, an increase in working set size
should result in a monotonic or near-monotonic increase in
the shared resources that the memory expandable applica-
tion utilizes. The performance interference score of memory
expandable application 305 can be represented by its work-
ing set size because the performance of application 303
should decrease as the working set size of memory expand-
able application 305 is increased. In effect, the memory
expandable application 305 can vary its performance inter-
ference score and so is useful in generating a performance
sensitivity curve for application 303.

Memory expandable application 305 is initially executed
on computing machine 300 with a working set size of 0 MB
or near 0 MB. That is, it is not consuming any shared
resources and application 303 is executing unimpeded. The
working set size of the memory expandable application is
slowly increased and a performance metric of application
303 is measured. This performance metric may be, for
example, the latency of application 303. As the working set
size of memory expandable application 305 increases, it
increases the demand for the shared resources of the com-
puting machine and degrades the performance of application
303. The performance sensitivity curve of application 303 is
created by plotting its performance as a function of the
working set size of the memory expandable application. This
plot should resemble chart 200 in FIG. 2, but the shape of the
curve 201 will be different for different applications 303.

FIG. 4 is a flow chart depicting a method 400 of creating
a performance sensitivity curve for a first application. The
method 400 can be performed on a computing machine
similar to the computing machine depicted in FIG. 3. The
first application is executed on a number of processors on a
computing machine, illustrated as step 401. A memory
expandable application is then executed on the processors on
the computing machine not used by the first application,
illustrated as step 403. The working set size of the memory
expandable application is varied, illustrated as step 405.
Generally, the working set size is varied from 0 MB to a
preset upper limit in discrete increments. The performance
of'the first application is measured as the working set size of
the memory expandable application is increased. Lastly, the
performance sensitivity curve of the first application is
created by plotting its performance as a function of the
working set size of the memory expandable application,
illustrated as step 407. Thus a performance sensitivity curve
can be generated for a latency sensitive application.

Systems and methods for determining a performance
interference score of an application will now be discussed.
FIG. 5 shows a computing machine 500 with multiple
processors 501. The computing machine also has a shared
memory cache 507, bus 509, and DRAM 511. The cache,
bus, and DRAM are shared resources that are used by all
applications executing on computing machine 500. There
may be other shared resources not illustrated in FIG. 5, such
as other forms of memory or communications channels.
Application 503, generally a batch application, is executed
on one or more but not all processors 501 on the computing
machine. To generate a performance interference score for
application 503, a reporter application 505 is executed on
computing machine 500. The reporter application 505 is
executed on one or more of the remaining processors 501
that are not already executing application 503.

US 9,563,532 Bl

7

Areporter application is an application that utilizes a wide
variety of shared resources on the computing machine and
can measure its own performance degradation when other
applications also utilize the shared resources. The reporter
application’s working set size 513 in FIG. 5 is constant and
is normally large enough to be able to use all the shared
resources, including the last level cache, bus bandwidth, and
prefetcher. The reporter application executes a number of
simple operations, for example random memory accesses
and streaming memory accesses, to achieve a certain work-
ing set size. The reporter application is designed to be
sensitive to the load on the shared resources, meaning that
other applications executing on the same computing
machine will measurably degrade the reporter application’s
performance. The performance sensitivity curve of the
reporter application should also be known and can be
determined by the methods described in relation to FIGS. 3
and 4.

Application 503 in FIG. 5 has its own working set size
515 that utilizes the shared resources on computing machine
500. When application 503 is executed on the computing
machine, reporter application 505 measures how much its
performance has degraded due to the presence of application
503. Once the reporter application determines how much
performance degradation it has suffered, the performance
interference score of application 503 can be determined
using the performance sensitivity curve of reporter applica-
tion 505. For example, the chart 200 in FIG. 2 depicts the
performance sensitivity curve of reporter application 505.
Since the performance sensitivity curve is continuous over
percentage but the performance interference score is a set of
discrete whole numbers, an application’s calculated perfor-
mance interference score is selected to be the closest whole
number that corresponds to the actual value indicated on the
performance sensitivity curve. For example, if the perfor-
mance degradation of reporter application 505 is 18% (i.e.
the performance of reporter application 505 is 82%), then
the performance interference score of application 503 is
chosen to be 2, because it is the closest whole number score
to the actual x-axis point that corresponds to 82% perfor-
mance on the y-axis. This rounding to a whole number
performance interference score may introduce some error
intro the predicted interference of application 503 in a large
scale computing system, as will be discussed below.

FIG. 6 is a flow chart depicting a method 600 of deter-
mining a performance interference score for a first applica-
tion. The method 600 can be performed on a computing
machine similar to the computing machine depicted in FIG.
5. A reporter application is first executed on a number of
processors on a computing machine, illustrated as step 601.
A first application is then executed on the processors on the
computing machine not used by the reporter application,
illustrated as step 603. The reporter application measures the
performance degradation it suffers from the presence of the
first application, illustrated as step 605. Then, using the
performance sensitivity curve of the reporter application, a
performance interference score is assigned to the first appli-
cation that depends on how much the first application
interfered with the performance of the reporter application,
illustrated as step 607. Thus a performance interference
score can be determined for a batch application. By deter-
mining the performance sensitivity curves for all latency
sensitive applications capable of being executed in a cluster
and the performance interference scores for all batch appli-
cations capable of being executed in a cluster, one can
predict the performance degradation experienced by a
latency sensitive application when a batch application is

30

40

45

50

55

8

executed on the same computing machine. This prediction
can be used to improve the allocation of tasks to computing
machines in a cluster.

Systems and methods for allocating tasks in a cluster are
now described. FIG. 7 shows a cluster 700 in a large scale
computing system. Cluster 700 includes a cluster manager
701 that receives a number of incoming tasks 703 from the
large scale computing system. Tasks 703 include the appli-
cation and its corresponding configuration file, which speci-
fies the system resources that the application needs. Cluster
manager 701 stores performance information about the
incoming tasks 703. If a task is a latency sensitive task, then
cluster manager 701 stores the performance sensitivity curve
and the performance degradation threshold for the underly-
ing application of the task. If a task is a batch task, then
cluster manager 701 stores the performance interference
score for the underlying application of the task. For some
applications, both a performance sensitivity curve and per-
formance interference score can be determined. This per-
formance information is determined beforehand for each
known application using the methods described previously.
The cluster manager or a stand-alone application can be used
to determine the performance information. With this perfor-
mance information, cluster manager 701 can efficiently
allocate tasks among computing machines 705A, 705B, and
other computing machines not illustrated in FIG. 7.

For example, task 709 is a latency sensitive task and is
allocated to a plurality of processors 707A on computing
machine 705A. A batch task 713 is to be allocated by cluster
manager 701. Cluster manager 701 finds the performance
interference score for the underlying application of task 713.
Cluster manager 701 then finds the performance sensitivity
curve for the underlying application of task 709. Cluster
manager 701 uses the performance interference score of task
713 to determine a predicted performance degradation of
task 709 if both tasks were executed on the same computing
machine. For example, let chart 200 in FIG. 2 depict the
performance sensitivity curve of task 709. If the perfor-
mance interference score of task 713 is 8, then it is predicted
to degrade task 709’s performance to 60%, which violates
the performance degradation threshold. Thus task 713 is not
allocated to computing machine 705A with task 709 and is
instead allocated to another computing machine 705B,
which may already be executing another batch task 711.

Next, another batch task 715 is inputted to cluster man-
ager 701. The cluster manager finds the performance inter-
ference score of task 715 and uses the performance sensi-
tivity curve of task 709 to determine if both tasks can be
executed on the same computing machine 705A without
violating the performance degradation threshold of task 709.
For example, if the performance interference score for task
715 is 2, then it is predicted to degrade task 709°s perfor-
mance to 80%, which does not violate the performance
degradation threshold of task 709. Thus task 715 can be
executed on computing machine 705A with task 709. In this
manner, cluster manager 701 can allocate incoming tasks
among multiple computing machines more efficiently, rather
than reserving one computing machine to a single latency
sensitive task and leaving cluster resources underutilized.

The performance interference score of an application is an
approximation of its actual ability to interfere with other
applications because its performance interference score is
rounded using the performance sensitivity curve of a
reporter application. Thus sometimes a task is predicted not
to violate the performance degradation threshold of another
task but in actuality it does violate the threshold. In some
embodiments, the performance degradation threshold

US 9,563,532 Bl

9

includes an error tolerance value so that minor violations of
the threshold do not prevent allocation of both tasks to the
same computing machine.

FIG. 8 depicts a flowchart of a method 800 of allocating
tasks in a cluster within a large scale computing system.
Method 800 includes executing a first task on a computing
machine, receiving a second task to be executed in the
cluster, determining the performance information of the first
and second tasks, and using the performance information to
determine if the first and second tasks can be executed on the
same computing machine without violating the performance
degradation threshold of the first task. Method 800 is per-
formed on a cluster within a large scale computing system
similar to cluster 700 in FIG. 7.

A first task received by a cluster manager of the cluster is
allocated to a computing machine, illustrated as step 801.
The first task may be a latency sensitive task. The cluster
manager then receives a second task to be allocated to a
computing machine on the cluster, illustrated as step 803.
The second task may be a batch task. The cluster manager
then finds the performance information of the first task,
illustrated as step 805. The performance information of the
first task is stored in computer readable memory in the
cluster manager. The performance information includes the
performance sensitivity curve and the performance degra-
dation threshold of the underlying application in the first
task. The performance sensitivity curve is calculated before-
hand using the methods described in relation to FIGS. 3-4.
The cluster manager or a stand-alone application can be used
to determine the performance sensitivity curve. The perfor-
mance degradation threshold of the application is deter-
mined, for example, by a system administrator.

Once the performance information of the first task is
obtained, the cluster manager predicts the performance
degradation of the first task if the second task is executed on
the same computing machine, illustrated as step 807. The
cluster manager finds the performance interference score of
the second task, which is stored in computer readable
memory in the cluster manager. The performance interfer-
ence score of the second task is determined beforehand
using the methods described in relation to FIGS. 5 and 6.
The cluster manager or a stand-alone application can be used
to determine the performance interference score. The cluster
manager uses the performance interference score of the
second task to determine a predicted performance degrada-
tion of the first task using the performance sensitivity curve
of the first task.

If the predicted performance degradation is lower than the
performance degradation threshold of the first task, the
second task is executed on the same computing machine as
the first task, illustrated as step 809. If the predicted perfor-
mance degradation is higher than the performance degrada-
tion threshold of the first task, then the second task is not
executed on the same computing machine as the first task.
The cluster manager may determine if the second task can be
executed on another computing machine executing one or
more other tasks using the predicted performance degrada-
tion analysis as described herein. The cluster manager may
also allocate the second task to a computing machine that is
not executing any other tasks. In this manner, a cluster
manager can efficiently allocate tasks to computing
machines in a cluster by maximizing utilization of resources.

It will be apparent to one of ordinary skill in the art that
aspects of the invention, as described above, may be imple-
mented in many different forms of software, firmware, and
hardware in the implementations illustrated in the figures.
The actual software code or specialized control hardware

10

15

20

25

30

35

40

45

50

55

60

65

10

used to implement aspects consistent with the principles of
the invention is not limiting of the invention. Thus, the
operation and behavior of the aspects of the invention were
described without reference to the specific software code—it
being understood that one of ordinary skill in the art would
be able to design software and control hardware to imple-
ment the aspects based on the description herein.

Similarly, while operations are depicted in the drawings in
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or in sequential order, or that all illustrated operations
be performed, to achieve desirable results. In certain cir-
cumstances, multitasking and parallel processing may be
advantageous.

What is claimed is:

1. A method of modeling performance degradation of a
first application, the method comprising:

executing the first application on a computing machine,

wherein the first application consumes a first varying
portion of common machine resources of the comput-
ing machine;
executing a memory expandable application on the com-
puting machine, wherein the memory expandable
application consumes a second varying portion of the
common machine resources of the computing machine
defined according to a variable working set size,
wherein the first varying portion of the common
machine resources is separate from the second varying
portion of the common machine resources, and wherein
the memory expandable application is an application
that is programmed to incrementally vary its own
working size set by varying a number of operations
executed by the memory expandable application;

causing changes to a size of the first varying portion of the
common machine resources available to the first appli-
cation by enlarging or reducing the second varying
portion of resources in the common machine resources
consumed by the memory expandable application;

measuring a performance metric of the first application
for each working set size; and

plotting the performance metric of the first application as

a function of the working set size of the memory
expandable application.

2. The method of claim 1, wherein the first application is
a latency sensitive application.

3. The method of claim 1, wherein the common machine
resources comprise the cache and random access memory of
the computing machine.

4. The method of claim 1, wherein varying the working
set size of the memory expandable application comprises
starting with the working set size at zero and increasing the
working set size by discrete increments.

5. The method of claim 4, wherein measuring the perfor-
mance metric of the first application comprises measuring
the latency of the first application at each value of the
varying working set size.

6. The method of claim 1, wherein the memory expand-
able application executes a plurality of operations and varies
its working set size by increasing the plurality of operations
it executes.

7. The method of claim 6, wherein the plurality of
operations comprises random number generation, random
memory accesses, and streaming data accesses.

8. The method of claim 1, wherein measuring the perfor-
mance metric of the first application comprises measuring
the latency of the first application.

US 9,563,532 Bl

11

9. A non-transitory computer-readable storage device
encoded with a computer program product, the computer
program product comprising instructions that when
executed on one or more computers cause the one or more
computers to perform operations comprising:

executing a first application on a computing machine,

wherein the first application consumes a first varying
portion of common machine resources of the comput-
ing machine;
executing a memory expandable application on the com-
puting machine, wherein the memory expandable
application consumes a second varying portion of the
common machine resources of the computing machine
defined according to a variable working set size,
wherein the first varying portion of the common
machine resources is separate from the second varying
portion of the common machine resources, and wherein
the memory expandable application is an application
that is programmed to incrementally vary its own
working size set by varying a number of operations
executed by the memory expandable application;

causing changes to a size of the first varying portion of the
common machine resources available to the first appli-
cation by enlarging or reducing the second varying
portion of resources in the common machine resources
consumed by the memory expandable application;

measuring a performance metric of the first application
for each working set size; and

plotting the performance metric of the first application as

a function of the working set size of the memory
expandable application.

10. The non-transitory computer-readable storage device
of claim 9, wherein the first application is a latency sensitive
application.

11. The non-transitory computer-readable storage device
of claim 9, wherein the common machine resources com-
prise the cache and random access memory of the computing
machine.

12. The non-transitory computer-readable storage device
of claim 9, wherein varying the working set size of the
memory expandable application comprises starting with the
working set size at zero and increasing the working set size
by discrete increments.

13. The non-transitory computer-readable storage device
of claim 12, wherein measuring the performance metric of
the first application comprises measuring the latency of the
first application at each value of the varying working set
size.

14. The non-transitory computer-readable storage device
of claim 9, wherein the memory expandable application
executes a plurality of operations and varies its working set
size by increasing the plurality of operations it executes.

15. The non-transitory computer-readable storage device
of claim 14, wherein the plurality of operations comprises
random number generation, random memory accesses, and
streaming data accesses.

16. The non-transitory computer-readable storage device
of claim 9, wherein measuring the performance metric of the
first application comprises measuring the latency of the first
application.

10

20

25

30

35

40

45

55

12
17. A computing system comprising:
one or more computers; and

one or more data storage devices coupled to the one or
more computers, storing instructions that, when
executed by the one or more computers, cause the one
or more computers to perform operations comprising:

executing a first application on a computing machine,
wherein the first application consumes a first varying
portion of common machine resources of the comput-
ing machine;

executing a memory expandable application on the com-
puting machine, wherein the memory expandable
application consumes a second varying portion of the
common machine resources of the computing machine
defined according to a variable working set size,
wherein the first varying portion of the common
machine resources is separate from the second varying
portion of the common machine resources, and wherein
the memory expandable application is an application
that is programmed to incrementally vary its own
working size set by varying a number of operations
executed by the memory expandable application;

causing changes to a size of the first varying portion of the
common machine resources available to the first appli-
cation by enlarging or reducing the second varying
portion of resources in the common machine resources
consumed by the memory expandable application;

measuring a performance metric of the first application
for each working set size; and

plotting the performance metric of the first application as
a function of the working set size of the memory
expandable application.

18. The system of claim 17, wherein the first application
is a latency sensitive application.

19. The system of claim 17, wherein the common machine
resources comprise the cache and random access memory of
the computing machine.

20. The system of claim 17, wherein varying the working
set size of the memory expandable application comprises
starting with the working set size at zero and increasing the
working set size by discrete increments.

21. The system of claim 12, wherein measuring the
performance metric of the first application comprises mea-
suring the latency of the first application at each value of the
varying working set size.

22. The method of claim 17, wherein the memory expand-
able application executes a plurality of operations and varies
its working set size by increasing the plurality of operations
it executes.

23. The system of claim 17, wherein the plurality of
operations comprises random number generation, random
memory accesses, and streaming data accesses.

24. The system of claim 17, wherein measuring the
performance metric of the first application comprises mea-
suring the latency of the first application.

#* #* #* #* #*

