
CPSA: Compute Precisely Store Approximately
Animesh Jain1, Parker Hill1, Michael A. Laurenzano1, Md E. Haque1, Muneeb Khan2, Scott Mahlke1,

Lingjia Tang1 and Jason Mars1

University of Michigan, Ann Arbor1, Uppsala University2

{anijain,parkerhh,mlaurenz,mdhaque,mahlke,lingjia,profmars}@umich.edu1, muneeb.khan@it.uu.se2

Abstract
We propose a new approximate-computing paradigm, where com-
putations are performed precisely while the data is stored approx-
imately in the memory using data packing. This lets us reduce
the memory traffic, improving application memory behavior. It
achieves 85% memory savings for an accuracy target of 90%.

1. Introduction
Several applications that form a significant percentage of the server
and datacenter workloads are increasingly using image process-
ing, data mining and numerical analysis algorithm [6, 2, 4]. These
applications require significant amount of computing and mem-
ory resources making it harder to achieve performance/latency tar-
gets. However, such applications also show error tolerance i.e. they
can provide acceptable output quality when the application is sub-
jected to some amount of error. Approximate computing [7, 1, 3],
an emerging computing paradigm, takes advantage of this inher-
ent characteristic to trade-off application accuracy with substantial
performance gains or energy savings.

In this research, we focus on the memory characteristics of an
application. Memory capacity and bandwidth play a major role in
deciding the performance of an application. An application can
spend substantial number of idle cycles waiting on the memory re-
sponse. This is observed in applications such as Kmeans and ma-
trix multiplication that are at the core of data mining and numerical
analysis applications. In this paper, we apply approximation to the
data to alleviate memory bottlenecks in memory hierarchy.

Specifically, we observed that the applications do not need all
the bits in the input data. We substantiate this observation by study-
ing Kmeans application output as shown in Figure 1. In Figure 1(a),
we use precise 32-bit IEEE single precision representation, whereas
(b), (c) and (d) use limited precision where inputs elements are rep-
resented using 24, 16 and 8 bits respectively. Here, only the bits in
the input elements are approximated while the computation is still
happening in full precision. We observe that the output quality is
still close to full precision for 24 and 16 bits, however going to 8
bits drops the accuracy below acceptable levels. This experiment
suggests that we can cut the memory usage substantially (by half
in this case). These memory savings in turn can result in substan-
tial performance gains. In this research, we aim to move only the
necessary bits in the memory subsystem.

One way of achieving this in hardware is to add limited pre-
cision capability across the whole hardware stack i.e both com-
putation and memory. However, this will be a hardware-expensive
approach requiring multiple functional units with complex control
logic to work on arbitrary precision. Another alternative is to per-
form this in software, for example, by using half data type instead
of float data type. But, such data types provide very limited flexi-
bility in the number of bits we can use. In addition, currently the
instructions that use data types like half are expensive (5-7 cycles)
which eat into the performance benefits achieved by memory sav-
ings.

In this paper, we propose a new computing paradigm, Compute
Precisely Store Approximately (CPSA), where we remove the un-
necessary bits from the data elements and store the data approxi-

●

●
●

●

●
● ●

●

●

● ●

●
●

●●

●
●

●

●

●

●●
●

●

●

●

●

●

● ●
●●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

● ●

●
●

●

●

●
●

● ●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●●

●

●

●
●

●

●

●●●

●●

● ●

●

●
●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●
●●

●●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

● ●

●

●● ●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●
●

●

●
●

●

●

●

●
●

●●

●

●
●
●

●

●
●

●

●
●●●

●

●

● ●

●

●

●

● ●

●

●

●

●

● ●
●

●
●

● ●

●

●●

●

●

●

● ● ●
●

●

●
●

●●

●

●

● ● ●

●●
●

●

●●

●

●

●

●

●

● ●

●

●

●
●

●

(a) IEEE float (32−bit)
●

●

●
●

●

●
● ●

●

●

● ●

●
●

●●

●
●

●

●

●

●●
●

●

●

●

●

●

● ●
●●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

● ●

●
●

●

●

●
●

● ●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●●

●

●

●
●

●

●

●●●

●●

● ●

●

●
●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●
●●

●●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

● ●

●

●● ●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●
●

●

●
●

●

●

●

●
●

●●

●

●
●
●

●

●
●

●

●
●●●

●

●

● ●

●

●

●

● ●

●

●

●

●

● ●
●

●
●

● ●

●

●●

●

●

●

● ● ●
●

●

●
●

●●

●

●

● ● ●

●●
●

●

●●

●

●

●

●

●

● ●

●

●

●
●

●

(b) 24−bit

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●
●

●
●

●
●

●
●

●

●

●

●●

●

●

●
●

●

●●

●
●

●

●

●
●

● ●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●●

●

● ●

●

●
●

●

●

●●●

●●

● ●

●

●
●

●

● ●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

● ●

●

●● ●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●

●
●●●

●

●

● ●

●

●

●

● ●

●

●

●

● ●
●

●
●

● ●

●

●●

●

●

●

● ●

●

●
●

●●

●

●

● ● ●

●●

●

●●

●

●

●

●

● ●

●

●

●
●

●
●

(c) 16−bit

● ● ●●
●●

● ● ●
● ●●

●
● ●●● ●●

●

●●
●

●●
●

●
●

●● ●
●● ●●
●

●
● ●

●
●

●

●

●
● ●
●

●●
●

●
●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●●

● ●

●

● ●

●

●●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●
●

● ●

●

●●

●

●

●

●
●

●

(d) 8−bit

Figure 1: Kmeans input approximation

mately while the computation is done precisely. This lets us i) pack
more data elements in smaller memory space, and ii) apply approx-
imation with simpler hardware additions as opposed to approxi-
mating complete hardware stack. The hardware changes are small
because computing precisely lets us reuse the existing functional
units obviating the need of supporting arbitrary precision calcula-
tion.

CPSA increases the effective memory capacity and bandwidth
because the data elements are always packed in the memory sub-
system. It can help applications whose dataset was earlier not able
to fit in caches but now it fits because it consumes much lower
space. Therefore, it can potentially reduce the number of idle cy-
cles that are spent waiting for the memory response. In addition, it
can also alleviate bandwidth bottleneck, because CPSA can bring
more data elements in a single memory request. In this paper, we
evaluate how much memory savings are obtained from CPSA. In
future, we plan to provide an end-to-end system to convert these
memory savings to application speedup.

2. Motivation
CPSA proposed an asymmetric store and computing paradigm
where computations are done precisely while the data is stored
approximately in the memory. Here, we focus on IEEE 32-bit sin-
gle precision point values (1 sign, 8 exponent and 23 mantissa
bits), however CPSA can be applied to any data type. We use cus-
tom limited precision format to represent the input elements. CPSA
utilizes data packing to convert an IEEE floating point 32-bit in-

0 2 4 6 8 10 12 14 16
1
2
3
4
5
6
7

Data approximation

0 2 4 6 8 10 12 14 16

Data+Compute approximation

0

50

100

#Mantissa bits

#
E
xp
on
en
t b

its

Ac
cu
ra
cy

Figure 2: Comparison of accuracy between data approximation vs
data+compute approximation

put element to a smaller representation custom precision format.
This data packing allows us to pack more input elements in same
memory space.

An alternative to CPSA is to add approximation throughout the
hardware stack by adding functional units that can support com-
putation at any arbitrary precision. We assert that if we alienate
the approximation between compute and storage and limit it to just
storage then we can further reduce the minimum number of bits
required to achieve a target accuracy. We substantiate this claim
by studying application Kmeans with a varying customized lim-
ited precision format. Figure 2 shows how accuracy varies with ex-
ponent and mantissa bits for data approximation (CPSA) against
data+compute approximation for usps SVM dataset from UCI Ma-
chine Learning Repository [5]. We observe that we achieve 99%
accuracy for a mere 5 bit input for CPSA as opposed to 17 bit input
for data+compute approximation. Therefore, computing precisely
enables more compact data packing.

CPSA needs both packing and unpacking support. Data pack-
ing is required to store the input data approximately. The input el-
ements are then unpacked just before they are fed to the execution
units for precise computation. Another alternative to CPSA is to
perform these operations in software. However, supporting arbi-
trary precision packing and unpacking requires several operations
which lead to significantly high overhead. We believe that packing
and unpacking can be performed with simpler hardware units.

3. Tradeoff Study
We use 9 benchmarks picked from different domains like data min-
ing and numerical analysis to study accuracy vs memory savings
trade-offs. In this experiment, we use software simulation to repre-
sent the input elements with limited precision. The computation is
performed precisely. For a certain accuracy target, we choose the
best limited precision configuration that satisfies the accuracy con-
straint.

The findings of this experiment is shows in Figure 3. The figure
shows how much memory is used for three accuracy targets: 90%,
95% and 99% relative to the exact execution of the application.
We observe significant memory savings across all the applications.
On an average, CPSA enables memory usage to a mere 15% (85%
memory savings) compared to the exact execution for an accuracy
target of 90%. This study shows that CPSA is capable of improving
the memory behavior of the applications amenable to approxima-
tion.

4. Challenges and Future Work
In order to realise CPSA in hardware, we propose to add ISA sup-
port for two new instructions: store-trimmed and load-trimmed in-
struction. A load-trimmed instruction is responsible for loading a
packed value from the memory and unpacking it to 32 bits before

0%

10%

20%

30%

40%

50%

%
M

em
or

y
us

ed
 v

s.
 E

xa
ct

st
re

am

m
at

rix
M

ul

K
m

ea
ns

sy
m

m

F
uz

zy
_K

m
ea

ns

ke
rn

el

in
ve

rs
ek

2j

bl
ac

ks
ch

ol
es

sy
r2

k

G
E

O
M

E
A

N

90% Accuracy 95% Accuracy 99% Accuracy

Figure 3: Memory savings obtained with CPSA

it can be fed to the functional units. Similarly, a store-trimmed in-
struction packs a 32-bit value and store it in the memory. Precision
information with which data values have to be packed/unpacked is
stored in the instruction encodings by the compiler.

The tradeoff study illustrates that CPSA achieves significant
memory savings. But, there are several challenges involved in con-
verting those memory savings into application speedup and create
an end-to-end system. Here, we list the challenges and our plan on
how we will tackle them.

• Unpacking needs to be done as close to the functional units
as possible to reap the maximum benefits of memory savings.
This way, the data is always stored in the packed format in the
memory. In addition, unpacking hardware needs to be fast to
allow application speedup.
We plan to add a data unpacker unit between the caches and
the register file which converts a limited precision value to
a 32-bit value. This unpacked value is now passed on to the
functional units for execution. Our preliminary study shows that
the hardware for data unpacker unit is simple and it can perform
the unpacking within one typical microprocessor clock cycle.

• The tradeoff study shows that the best precision configuration
can be any integer and it is not restricted to a multiple of 8
bits(byte). This gives rise to byte-vs-bit addressability issue
because the memory is byte-addressable while the packed data
elements might not be byte-aligned.
We plan to add a dedicated address generation unit which
generates a byte-level address for the memory but provides bit-
level access in the data returned from the memory. In this way,
there are minimal changes to the existing processor design.

• Finally, the programmer needs assistance in finding out which
variables are amenable to approximation. In addition, the pro-
grammer also needs to figure out what is the best precision level
for an application. For an individual variable, this results in a
search space of 8 ∗ 23(= 184) configurations. This space is
exploded when multiple variables are approximated. Infact, it
requires studying cross-effects of approximating several vari-
ables simultaneously.
Currently, we propose a naive approach of applying a binary
search over #exponent and #mantissa bits to reduce the
search space from 184 to 8. But, it still requires improvement
when several variables need approximation simultaneously.

References
[1] W. Baek and T. M. Chilimbi. Green: A framework for supporting

energy-conscious programming using controlled approximation. In
Proceedings of the 31st ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’10, pages 198–209, New
York, NY, USA, 2010. ACM.

[2] V. Chippa, S. Chakradhar, K. Roy, and A. Raghunathan. Analysis
and characterization of inherent application resilience for approxi-
mate computing. In Design Automation Conference (DAC), 2013 50th
ACM/EDAC/IEEE, pages 1–9, May 2013.

[3] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Architecture
support for disciplined approximate programming. SIGPLAN Not.,
47(4):301–312, Mar. 2012.

[4] J. Hauswald, M. A. Laurenzano, Y. Zhang, C. Li, A. Rovinski, A. Khu-
rana, R. G. Dreslinski, T. Mudge, V. Petrucci, L. Tang, and J. Mars. Sir-
ius: An open end-to-end voice and vision personal assistant and its im-
plications for future warehouse scale computers. In Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS),
2015.

[5] M. Lichman. UCI machine learning repository, 2013.

[6] J. Meng, S. Chakradhar, and A. Raghunathan. Best-effort parallel exe-
cution framework for recognition and mining applications. In Parallel
Distributed Processing, 2009. IPDPS 2009. IEEE International Sym-
posium on, pages 1–12, May 2009.

[7] A. Sampson, J. Nelson, K. Strauss, and L. Ceze. Approximate storage
in solid-state memories. In Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-46, pages 25–
36, New York, NY, USA, 2013. ACM.

