
(12) United States Patent
Tang et al.

USOO940 1869B1

(10) Patent No.: US 9.401,869 B1
(45) Date of Patent: Jul. 26, 2016

(54)

(71)

(72)

(73)

(*)

(21)

(22)

(60)

(51)

(52)

(58)

SYSTEMAND METHODS FOR SHARING
MEMORY SUBSYSTEMI RESOURCES
AMONG DATACENTERAPPLICATIONS

Applicant: Google Inc., Mountain View, CA (US)

Inventors: Lingjia Tang, Charlottesville, VA (US);
Jason Mars, Charlottesville, VA (US);
Robert Hundt, Piedmont, CA (US)

Assignee: Google Inc., Mountain View, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 357 days.

Appl. No.: 13/908,831

Filed: Jun. 3, 2013

Related U.S. Application Data
Provisional application No. 61/655,360, filed on Jun.
4, 2012.

Int. C.
G06F 15/177 (2006.01)
H04L 2/9II (2013.01)
U.S. C.
CPC H04L 47/70 (2013.01)
Field of Classification Search
CPC ... HO4L 47/70
USPC .. 709/220
See application file for complete search history.

Applications
Receive Plurality of

(56) References Cited

U.S. PATENT DOCUMENTS

7,499.933 B1* 3/2009 Simpson GO6F 9/44505
7,757,214 B1* 7/2010 Palczak GO6F9,5083

709,223
8,700,846 B2 * 4/2014 Qi GO6F 3.0605

711 114
2009, 0210360 A1* 8, 2009 Sankar GO6F 9/44505

TO6, 10
2011/0012902 A1* 1/2011 Rajagopalan GO6T 11,206

345,440
2011/0270857 A1* 11/2011 Bommireddipalli G06F 17/30595

707/758
2013/01 17424 A1* 5/2013 Colyer GO6F 9/44505

TO9,221

* cited by examiner
Primary Examiner — Ario Etienne
Assistant Examiner — Sahera Halim
(74) Attorney, Agent, or Firm — Honigman Miller Schwartz
and Cohn LLP

(57) ABSTRACT
Systems and methods for mapping applications onto System
resource of a computing platform are discussed. The comput
ing platform may receive, using control circuitry, a request to
run a plurality of applications on a computing platform hav
ing a plurality of system resources. The computing platform
may determine a plurality of mapping configurations for the
plurality of applications onto the plurality of system
resources. The computing platform may execute the plurality
of applications with each of the plurality of mapping configu
rations. The computing platform may determine at least one
performance metric based on the executed plurality of appli
cations for each of the plurality of mapping configurations.
The computing platform may select a selected mapping con
figuration among the plurality of mapping configurations
based on at least one determined performance metric.

18 Claims, 4 Drawing Sheets

... 402

Configurations
steretti's urality of Mapping

-404

Execute Applicatiots with 406
Each Mapping Conig ratic 1.

seraise Performance
stries assed or executes
Aglication: Mappings -408

Based on performance listics

400

Seiect Mapping configuratier

US 9.401,869 B1

vigo

Sheet 1 of 4 Jul. 26, 2016 U.S. Patent

US 9.401,869 B1

^ qe

Sheet 2 of 4

(~~~390z

Jul. 26, 2016 U.S. Patent

U.S. Patent Jul. 26, 2016 Sheet 3 of 4 US 9.401,869 B1

Receive Praity of 3 Applicatios 3.

eterie Resource
Sharing etics for

Apications
3 as eterine Piri rities 306

for Applicatios

Copa e Resorce
Sharing Vietrics and -

isities
38

Determine Mapping 3
Configuration for

Applications

U.S. Patent Jul. 26, 2016 Sheet 4 of 4

Receive Piurality of
Applicatio is

eterie Laity of a pig
Configliations

Execite Applicatios with
Each Mapping Configuration 1

ete'e refoxface
etics ase of Exete
Application agpigs

Select happing of fig, ratio
Based on Performance Vietrics

4.

44

48

- £8

o

US 9.401,869 B1

US 9,401,869 B1
1.

SYSTEMAND METHODS FOR SHARING
MEMORY SUBSYSTEMI RESOURCES
AMONG DATACENTERAPPLICATIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. provisional
application No. 61/655,360 filed on Jun. 4, 2012, the contents
of which is hereby incorporated by reference herein.

BACKGROUND

AS datacenters that provide large scale web services
emerge as important computing environments, understanding
the interaction between datacenter applications and the
underlying computing architecture is becoming increasingly
important. Managing how applications map onto the various
resources in the computing architecture is an important step
to achieving improved performance. However, currently
there is little understanding about the interaction between
datacenter applications and the underlying computer archi
tecture. As a result of this lack of understanding, modern
datacenters assign applications to resources in an ad hoc
fashion, without clear knowledge of how applications and the
underlying architecture they execute on interact. This ad hoc
assignment can hinder performance and cause destructive
interference among multiple applications or even within the
same application.

SUMMARY

Accordingly, systems and methods disclosed herein pro
vide techniques for mapping applications onto system
resources of a computing platform. Certain implementations
relate to a system for managing system resources on a server.
The computing platform may include control circuitry con
figured to control the operation of the computing platform.
Processes and operations performed by the server may be
implemented using the control circuitry. The computing plat
form may receive a request to run a plurality of applications
on a computing platform having a plurality of system
resources. The computing platform may determine a plurality
of mapping configurations for the plurality of applications
onto the plurality of system resources. The computing plat
form may execute the plurality of applications with each of
the plurality of mapping configurations. The computing plat
form may determine at least one performance metric based on
the executed plurality of applications for each of the plurality
of mapping configurations. The computing platform may
select a selected mapping configuration among the plurality
of mapping configurations based on the at least one deter
mined performance metric.

Certain implementations relate to a system for managing
system resources on a server. The computing platform may
include control circuitry configured to control the operation
of the computing platform. Processes and operations per
formed by the server may be implemented using the control
circuitry. The computing platform may receive a request to
run a plurality of applications on a computing platform hav
ing a plurality of system resources. The computing platform
may determine a plurality of resource sharing metrics for
each of the plurality of applications. The computing platform
may determine a priority for each of the plurality of applica
tions. The computing platform may compare the plurality of
resource sharing metrics and the priority between each of the
plurality of the applications. The computing platform may

10

15

25

30

35

40

45

50

55

60

65

2
determine based on the comparison, a mapping of the plural
ity of applications onto the plurality of system resources of
the computing platform.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other advantages of the disclosure will be
apparent upon consideration of the following detailed
description, taken in conjunction with the accompanying
drawings, in which like reference characters refer to like parts
throughout, and in which:

FIG. 1 is a block diagram depicting an implementation of a
computing platform, according to an illustrative implemen
tation of the disclosure;

FIG. 2 is block diagram depicting threads of multiple appli
cations being mapped onto a computing platform, according
to an illustrative implementation of the disclosure;

FIG. 3 is a block diagram depicting a method for mapping
applications onto a computing platform, according to an
implementation of the disclosure; and

FIG. 4 is a block diagram depicting an alternative method
for mapping applications onto a computing platform, accord
ing to an implementation of the disclosure.

DETAILED DESCRIPTION

To provide an overall understanding of the disclosure, cer
tain illustrative implementations will now be described,
including systems and methods for sharing memory Sub
system resource among datacenter applications, on a comput
ing platform. However, it will be understood by one of ordi
nary skill in the art that the systems and methods described
herein may be adapted and modified as is appropriate for the
application being addressed and that the systems and methods
described herein may be employed in other suitable applica
tions, and that such other additions and modifications will not
depart from the scope thereof.
The systems and methods described herein are directed to

mapping threads of an application onto processor cores of a
computing platform. The systems and methods described
hereinfurther include mapping threads of an application onto
a computing platform with shared memory Subsystems to
improve the performance of the application. To improve per
formance, multiple mapping techniques are disclosed.

Internet Service datacenters and cloud computing econo
mies of Scale have gained significant momentum in today's
computing environments. This momentum is fueled not only
by consumer demand, but by the continued performance
increase in the computing platforms that make up the data
centers. These computing platforms are increasing computa
tional performance by increasing not only the number of
processors within a server but also the number of processing
cores within each processor. These processing cores share a
number of components like memory, processor caches and
buses. As the number of processing cores increases, manag
ing the processing cores and the shared components become
extremely important to the computational performance of the
computing platform.

In modern datacenters, application scheduling is done in a
hierarchical fashion. A global application scheduler manages
a number of machines and selects a particular machine for
each application based on the amount of memory or the
number of processor cores the application requires. Once a
machine is selected, the application, and its individual
threads, is then managed by the OS scheduler. The OS sched
uler decides how the application threads are mapped to the
individual processing cores of this machine. At this level.

US 9,401,869 B1
3

general purpose system Software Such as the Linux kernel
may be adapted for, and used, in the datacenter for finer grain
scheduling.

Current application scheduling does not take memory
resource sharing into account. The schedulers thread-to-core
mapping is determined without regard to, or knowledge of
the application characteristics or the underlying resource
sharing topology. The State-of-the-art kernel Scheduler
focuses on load balancing and prioritizes cache affinity to
reduce cache warm-up overhead. Although developers can
specify which cores to use manually, this must be done on an
application by application, and architecture by architecture
basis. As a result, this option is seldom used as it places a
significant burden on the developer. Furthermore, when co
locating threads from multiple applications, the optimal
thread to core mappings changes.
One approach to mapping an applications threads onto a

computing platform, when running alone, as well as with
threads of other applications, may be by leveraging knowl
edge of each application’s sharing characteristics. Examples
of these sharing characteristics include the amount of sharing
between threads, the amount of memory bandwidth the appli
cation requires, and the cache footprint of the application. By
determining an application's sharing characteristics and com
paring them with other application’s sharing characteristics, a
thread to core mapping may be generated.

Alternatively, an online adaptive learning approach may be
used to generate thread to core mappings in the datacenter, as
it is agnostic to applications sharing characteristics. Using an
online adaptive learning approach, allows thread to core map
pings to be generated without determining sharing character
istics about the applications. This may be beneficial if the
applications or their sharing characteristics are not known
ahead of time. The online adaptive learning approach may be
able to reconfigure the thread to core mappings after specific
pre-determined intervals of time or due to a change in the
system resources available to the computing platform.

Although each of these approaches are discussed with
regards to a computing platform, the thread to core mapping
that is generated by a computing platform may be used on
other computing platforms that execute the same applica
tions. This may be beneficial since many of the computing
platforms in the datacenter may have similar system resource
characteristics and the computation and system resource cost
of generating and selecting a thread to core mapping configu
ration may be saved for other computing platforms that can
use the same thread to core mapping configuration.
Datacenter Compute Platform

FIG. 1 is a block diagram depicting an implementation of a
computing platform 106, according to an illustrative imple
mentation of the disclosure. Modern datacenters include
servers 104 located in server racks 102. These servers 104
include components that make up computing platform 106.
which datacenter applications are processed on. The comput
ing platform 106 may include control circuitry configured to
control the operation of the computing platform. Processes
and operations performed by the computing platform may be
implemented using the control circuitry. The computing plat
forms 106 receive computer instructions that make up the
datacenter applications and process the instructions along
with received data. The computing platforms 106 include a
variety of different components including processors 108,
memory controllers 110, and memory 112. Each of these
components communicates with each other through a variety
of data buses 122.

Processors 108 include multiple components. These com
ponents include processor cores 114, processor caches 116

10

15

25

30

35

40

45

50

55

60

65

4
and 120, and processor data buses 118. The processor cores
114 process the computer instructions that make up the data
center applications. The processor cores 114 utilize the dif
ferent processor caches 116 and 120 and communicate over
the processor buses 118. An example computing platform
106, shown in FIG. 1, includes two processors 108, each with
four processor cores 114, wherein each processor core 114
communicates with a first level cache (L1) 116, and every two
processor cores 114 share a second level cache (L2) 120.
Processor cores 114 and processor caches 116 and 120 may
communicate with each other through processor buses 118.
All the processors 108 may share the same memory 112, and
communicate to memory 112 through memory controller
110. Computing platform 106 may be configured in many
different ways. The number of processors 108, the number of
processor cores 114, the number of levels of cache 116 and
120, the configuration of the processor buses 118 and data
buses 122, the number of the processor buses 118 and data
buses 122, how the processor 118 components are connected,
and the number of memory controllers 110 and memory 112,
may be selected and configured in any combination, and is not
limited to the example described in FIG. 1.
On multi-processor multi-core computing platforms 106.

processing cores 114 may or may not share certain memory
resources including the last level cache (LLC) 120, which is
the last layer of cache shown as L2 in FIG. 2, and memory
bandwidth. Memory bandwidth may be shared through a data
bus 122 connected to each processor 108. Thus for a given
Subset of processing cores 114, there may be a particular
sharing configuration among the cores 114 of that Subset. For
example, for two processing cores 114, there may be three
possible sharing configurations among two cores 114: the two
processing cores 114 sharing the same LLC 120 and data bus
122 (such as Core 1 and Core 2), the two processing cores 114
each using a different LLC 120 but sharing the same data bus
122 (such as Core 1 and Core 3), and the two processing cores
114 each using a different LLC 120 and data bus 122 (such as
Core 1 and Core 5). The cache hierarchy, memory topology,
and the number of processors 108, and the number of pro
cessing cores 114 of the specific machine determine the pos
sible sharing configurations among multiple processing cores
114.

These computing platforms process the datacenter appli
cations and receive and produce databased on the instructions
of the applications. These applications may be mapped or
scheduled onto these computing platforms in various con
figurations.
Application Mapping onto Compute Platform

FIG. 2 is block diagram depicting threads of multiple appli
cations 202A-B being mapped onto a computing platform
106, according to an illustrative implementation of the dis
closure. Datacenter applications 202A and 202B may be con
figured to run on computing platform 106. Datacenter appli
cations 202A-B may include multiple application threads,
204A-D and 206A-D. In the example shown in FIG. 2, each
application 202A-B includes four application threads,
204A-D and 206A-D. These application threads 204A-D and
206A-D include computer instructions, which the processor
108 may interpret, and may work together on the computing
platform 106 to process received data. Each application
thread, 204A-D and 206A-D, may be mapped onto processor
cores 114. Mapping an application thread, 204A-D and
206A-D, onto a processor core 114 indicates to the computing
platform 106 that the application thread, 204A-D and 206A
D. should be run on that specific processor core 114. As an
example, in FIG. 2, each application thread, 204A-D and
206A-D, is mapped onto a different processor core 114.

US 9,401,869 B1
5

Although the example shows one application thread, 204A-D
and 206A-D, being mapped per processor core 114, multiple
application threads, 204A-D and 206A-D, may be mapped
onto the same processor core 114. Additionally, application
threads, 204A-D and 206A-D, of different applications
202A-B, can be mapped together on the same processor core
114. The number of threads of an application may vary based
on the application itself. In certain implementations, the
application may dynamically change the number of threads
within the application based on application parameters. These
application parameters may be based on data received by the
application, or based on the system resources on the comput
ing platform 106.

Determining which processor cores 114 to map application
threads of the same application may affect the performance of
the application. For example, if threads of an application do
not share data, then mapping all the application threads Such
that they share the same LLC 120 may be worse than mapping
each thread to utilize a different LLC 120. This may be
because application threads of the same application may
require different data, and because the LLC 120 is limited in
size, the threads would have to compete for placing its data in
the LLC 120, causing cache pressure. Threads competing
within a LLC 120 may lead to performance degradation due
to the cache pressure. By utilizing multiple LLCs 120, the
total size of cache available to the application threads is
larger, thus reducing the cache pressure on each LLC 120.
Alternatively, if the application threads share significant
amounts of data among each thread, then the application
threads may want to be mapped to use the same LLC 120. If
the application threads were to be mapped to use different
LLCs 120, then the data within each LLC 120 would have to
be passed between the different LLCs 120, introducing
unnecessary overhead to the application and to the computing
platform 106, and thus degrading performance. In addition to
data sharing, determining which processor cores 114 to map
the application threads of the same application may also add
pressure to the data buses 122. If the amount of traffic
required by each of the application threads is high, then
mapping the application threads such that they utilize the
maximum number of data buses 122 may improve perfor
mance. By utilizing multiple data buses 122, the total effec
tive data bus bandwidth may be maximized, improving per
formance since more data can be transmitted at a time.
However, if the application threads communicate frequently
with each other, then mapping the application threads to
processors cores 114. Such that the latency to communicate
between threads is minimized may be the most beneficial.
Determining the characteristics of the application and its
threads may lead to determining the best mapping of appli
cation threads to processor cores 114 to maximize the perfor
mance of the application.
Application Mapping Processes

Applications may be first scheduled by a global application
scheduler. The global application scheduler may select, based
on the application, which server it should run on, based on the
amount of memory 112, the number of processors 108, or the
number of processor cores 114 the application requires. Once
a server is selected, the application, and its threads may be
mapped onto the computing platform 106 of the server 104. In
certain implementations, an OS scheduler may allow the user
to manually specify how application threads are mapped onto
processor cores 114. The application scheduling and mapping
processes for the global and server level are discussed. These
processes take into consideration the application characteris
tics and the underlying configuration of the computing plat

10

15

25

30

35

40

45

50

55

60

65

6
form 106 to generate a scheduling and mapping configuration
which the servers 104 and computing platforms 106 may be
configured with.
Resource-Characteristics Based Application Thread to Pro
cessor Core Mapping

Based on an application’s characteristics, thread-to-core
mappings that take advantage of the memory sharing topol
ogy may be determined. An application may be characterized
based on its potential bottlenecks, for example bus usage,
shared cache usage and the level of data sharing. Thread-to
core mapping should maximize the potential benefit from
sharing and avoid mapping threads that have the same
resource bottlenecks. For example, if the application has a
high level of data sharing, the mapping should allow its
threads to share resources such as LLC 120. Additionally, a
performance priority should be determined based on the
latency-sensitivity of an application over other application
scheduled on the same computing platform 106. This may
ensure that applications with high latency-sensitivity have
priority in performance over application with lower latency
sensitivity.

FIG. 3 is a block diagram depicting a method for mapping
applications onto computing platform 106, according to an
implementation of the disclosure. At 302, computing plat
form 106 may be configured to receive a request to run a
plurality of applications. In another implementation, comput
ing platform 106 may be configured to receive a request to run
a single application. At 304, computing platform 106 may be
configured to determine one or more resource sharing metrics
for each application. The resource sharing metrics may
include memory bandwidth usage, cache data sharing, a
cache footprint, and processor core resource usage. At 306,
computing platform 106 may be configured to determine a
priority for each application. At 308, computing platform 106
may be configured to compare the resource sharing metrics
and the priorities among each of the applications. Based on
the comparison of the resource sharing metrics and the pri
orities, at 310, computing platform 106 may be configured to
determine a mapping configuration for the threads of each
application onto the processor cores 114 of computing plat
form 106. For example, applications with high priorities may
be mapped onto system resources with applications with low
priorities and applications with high resource sharing metrics
may be mapped onto System resources with application with
low resource sharing metrics. In another implementation,
computing platform 106 may be configured to determine a
mapping configuration for the threads of the applications onto
the system resources of computing platform 106. For
example, the applications and threads of each application
may be configured to use a selected amount of a system
resource. For example, one application may be allocated 70
percent of the LLC 120, while another application is assigned
30 percent of the LLC 120. The amount of the system
resources allocated to each application may vary based on the
demands of each application or determined based on system
resource availability.

In certain implementations, the resource sharing metrics
may be based on data sharing metrics, bus usage metrics, or
LLC footprint metrics. Data sharing metrics may be based on
the percentage of cache lines that are in a shared State. If the
percentage of cache lines that are in a shared State are greater
than a pre-determined threshold, then the application may be
considered as a high data sharing application. Alternatively, if
the percentage of cache lines that are in a shared State are less
than a pre-determined threshold, then the application may be
considered as a low data sharing application. Although, two
levels of data sharing are described, there may be multiple

US 9,401,869 B1
7

threshold values used, corresponding to multiple levels of
sharing. Bus usage metrics may be based on the amount ofbus
bandwidth used on either the data buses 122 or processor
buses 118, or both. The bus usage metric may indicate the
amount of memory bandwidth used. The bus usage metric
may also indicate how much communication is performed
between threads of an application. In certain implementa
tions, the amount of bus bandwidth used may be determined
based on a value stored in internal counter circuitry on the
processor 108. One example of internal counter circuitry on
the processor is BUS TRANS BURST, which is located on
an INTEL processor, but any internal counter circuitry on any
processor 108 that indicates the amount of bus bandwidth
used may be used. LLC footprint metrics may be based on the
LLC miss rate. The LLC miss rate may be determined based
on a value stored in internal counter circuitry on the processor
108. These metrics are examples of resource sharing metrics
that computing platform 106 may be configured to determine.
Other metrics that determine the usage of system resources on
the computing platform 106 may also be determined. In cer
tain implementations, the resource sharing metrics of each
application are compared with each other. Based on the com
parison of the resource sharing metrics of each application,
the applications are mapped onto the system resources to
maximize the performance of the applications onto the sys
tem resources of the computing platform 106.

In certain implementations, determining the priority for
each application may include determining the latency sensi
tivity of the application. Applications may have different
priorities. Higher priority may be assigned to an application
based on its latency sensitivity. The latency sensitivity indi
cates how sensitive an application may be to changes in a
resource sharing metric. If resources decreased from the
application, the latency of response for that application may
drop dramatically. For example, latency sensitive applica
tions, like web search and database, are considered high pri
ority applications because their latency of response is highly
sensitive to changes in resource sharing metrics, whereas
applications like image processing and background mainte
nance may be considered lower priority applications because
their latency of response does not change in response to
changes in resource sharing metrics. The lowerpriority appli
cations may not have as strict timing requirements as higher
priority applications may require. Thus degradation in per
formance may not be as important. Alternatively, priority may
be assigned based on the importance of the application.
Applications which are more critical to the operation of the
datacenter may have higher priority than applications which
are not as critical. For example, the application web search
may be the main critical application in the datacenter,
whereas maintenance application, such as background main
tenance, may be of low importance and may not be essential
to the datacenter. In certain implementations, the priorities of
each application are compared with each other. Applications
with higher priorities are mapped onto the system resources
with applications with lower priorities. It should be known
that any technique for assigning priorities to applications may
be used. Such as determining priority based on system
resource usage, determining priority based on an application
completion deadline, or determining priority based on a mon
etary cost metric for completing the application.
Adaptive Based Application Thread to Processor Core Map
ping

The performance of a thread to processor core 114 map
ping configuration may change when the number of threads
of an application, the applications running on the computing
platform 106, or the availability of system resources in the

10

15

25

30

35

40

45

50

55

60

65

8
computing platform 106 changes. To account for these varia
tions, an adaptive learning approach may provide improved
performance. Using a competition heuristic to adaptively
search for the optimal thread to core assignment for a given
set of threads, these variations can be accounted for. This
approach may include two phases: a learning phase and an
execution phase. These phases may be performed together or
separately.

During the learning phase, various thread to processor core
114 mappings may be generated for a set of applications. The
thread to processor core 114 mappings may be compared to
each other in order to determine which mapping achieves the
greatest performance. Each thread to core mapping may be
given an equal amount of time to execute, and the mapping
which provides the greatest performance for a set of applica
tions may be selected. Although a large amount of thread to
processor core 114 mappings may be generated, because
most of the memory topologies are symmetric, the number of
equivalent mappings may be greatly reduced. For example,
for a two processor core 114 mapping configuration, there
may be three classes of mappings that represent three differ
ent sharing configurations. During the execution phase, the
greatest performing thread to core mapping is run for a fixed
or adaptive period of time before another comparison is held.
In certain implementations, the greatest performing thread to
processor core 114 mapping may be run indefinitely until a
signal to change the thread to processor core 114 mapping is
received.

FIG. 4 is a block diagram depicting an adaptive based
method for mapping applications onto a computing platform
106, according to an implementation of the disclosure. At
402, computing platform 106 may be configured to receive a
request to run a plurality of applications. In another imple
mentation, computing platform 106 may be configured to
receive a request to run a single application. At 404, comput
ing platform 106 may be configured to determine one or more
mapping configurations for the set of applications requested
to run on the computing platform 106. At 406, each deter
mined mapping configuration is executed for a pre-deter
mined amount of time. At 408, after the determined mapping
configuration has executed for the pre-determined amount of
time, a performance metric is determined. At 410, once all the
mapping configurations are executed, computing platform
106 may be configured to select the mapping configuration
based on the performance metric for each executed mapping
configuration.

In certain implementations, the performance metric may
be application specific performance metrics or system spe
cific performance metrics. Application specific performance
metrics may include application throughput, application
latency, and application performance. These application spe
cific performance metrics may indicate how well the mapping
configuration is performing for the set of applications with
respect to the application itself. System specific performance
metrics may include cache performance, processor utiliza
tion, memory bandwidth utilization, memory utilization net
work throughput, network bandwidth utilization, power
usage, and system temperature. Each of these metrics may not
indicate directly how the applications are performing, but
may indicate how well the system resources on the computing
platform 106 are being utilized. For example, low processor
108 utilization may indicate that the computing platform 106
is not being utilized properly.

In certain implementations, selecting the mapping con
figuration based on the performance metric for each executed
mapping configuration may include comparing the perfor
mance metrics of each of the mapping configurations. Based

US 9,401,869 B1
9

on the comparison, the mapping configuration which
includes the greatest performance metric may be selected. In
certain implementations, the comparison may be based on
multiple performance metrics for each of the executed map
ping configurations. In certain implementations, multiple
performance metrics may be used to generate a consolidated
performance metric for the executed mapping configurations,
wherein different pre-determined weights for each perfor
mance metric may be used based on their importance to weigh
the performance metrics differently. The selected mapping
configuration may be executed on computing platform 106
until an event indicating that a change in mapping configura
tion may be required. The event may include either a prede
termined amount of time, or based on a performance metric.
For example, if the processor 108 utilization becomes low,
this may indicate to the computing platform 106 that the
current mapping configuration is not performing well. Based
on the event, computing platform 106 may be configured to
determine a new mapping configuration by repeating method
400 of determining a mapping configuration. In certain
implementations, the mapping configuration selected may be
run indefinitely.

It will be apparent to one of ordinary skill in the art that
aspects of the present disclosure, as described above, may be
implemented in many different forms of software, firmware,
and hardware in the implementations illustrated in the figures.
The actual software code or specialized control hardware
used to implement aspects consistent with the principles of
the disclosure is not limiting of the disclosure. Thus, the
operation and behavior of the aspects of the disclosure were
described without reference to the specific software code it
being understood that one of ordinary skill in the art would be
able to design software and control hardware to implement
the aspects based on the description herein.

Similarly, while operations are depicted in the drawings in
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or in sequential order, or that all illustrated operations
be performed, to achieve desirable results. In certain circum
stances, multitasking and parallel processing may be advan
tageous. Further, certain portions of the disclosure may be
implemented as “logic’’ or a “component' that performs one
or more functions. This logic may include hardware. Such as
an application specific integrated circuit or a field program
mable gate array, Software, or a combination of hardware and
software.

The invention claimed is:
1. A method for mapping applications onto system

resources of a computing platform, the method comprising:
receiving, using control circuitry, a request to run a plural

ity of applications on a computing platform having a
plurality of system resources;

determining, using the control circuitry, a plurality of map
ping configurations for the plurality of applications onto
the plurality of system resources, each mapping configu
ration associated with a mapping of application threads
for each of the applications onto the system resources;

executing, using the control circuitry, the plurality of appli
cations with each of the plurality of mapping configura
tions separately for a predetermined amount of time;

determining, using the control circuitry, at least one per
formance metric for each mapping configuration after
the plurality of applications execute for the predeter
mined amount of time;

Selecting, using the control circuitry, a selected mapping
configuration among the plurality of mapping configu

5

10

15

25

30

35

40

45

50

55

60

65

10
rations based on the at least one performance metric
determined for each associated mapping configuration;
and

executing the plurality of mapping configurations with the
Selected mapping configuration.

2. The method of claim 1, wherein selecting the selected
mapping configuration comprises:

determining if the at least one determined performance
metric of a first mapping configuration is greater than the
at least one determined performance metric of a second
mapping configuration; and

selecting the selected mapping configuration based on
determining which of the at least one determined per
formance metric of the first mapping configuration and
the second mapping configuration is greater.

3. The method of claim 1, wherein the at least one perfor
mance metric comprises at least one of an application specific
performance metric or a system specific performance metric.

4. The method of claim3, wherein the application specific
performance metric comprises an application throughput,
application latency, and application performance.

5. The method of claim 3, wherein the system specific
performance metric comprises a cache performance, proces
Sor utilization, memory bandwidth utilization, memory utili
Zation, network throughput, network bandwidth utilization,
power usage, and system temperature.

6. The method of claim 1, further comprising reselecting,
using the control circuitry, a reselected mapping configura
tion among the plurality of mapping configurations based on
whether at least one predetermined criterion is met.

7. The method of claim 6, wherein the at least one of the
predetermined criteria is a predetermined amount of time.

8. The method of claim 6, wherein the at least one of the
predetermined criteria is based on a performance metric of the
computing platform.

9. The method of claim 1, wherein the selected mapping
configuration is always used for the plurality of applications
on the computing platform.

10. A system for mapping applications onto system
resources of a computing platform, the system comprising:

control circuitry of the computing platform configured to
execute instructions that cause the control circuitry to
perform operations comprising:
receiving a request to run a plurality of applications on

the computing platform having a plurality of system
resources;

determining a plurality of mapping configurations for
the plurality of applications onto the plurality of sys
tem resources, each mapping configuration associ
ated with a mapping of application threads for each of
the applications onto the system resources;

executing the plurality of applications with each of the
plurality of mapping configurations separately for a
predetermined amount of time;

determining at least one performance metric for each
mapping configuration after the plurality of applica
tions execute for the predetermined amount of time;

Selecting a selected mapping configuration among the
plurality of mapping configurations based on the at
least one performance metric determined for each
associated mapping configuration; and

executing the plurality of mapping configurations with
the selected mapping configuration.

11. The system of claim 10, wherein the operations further
comprise:

determining if the at least one determined performance
metric of a first mapping configuration is greater than the

US 9,401,869 B1
11

at least one determined performance metric of a second
mapping configuration; and

Selecting the selected mapping configuration based on
determining which of the at least one determined per
formance metric of the first mapping configuration and
the second mapping configuration is greater.

12. The system of claim 10, wherein the at least one per
formance metric comprises at least one of an application
specific performance metric or a system specific performance
metric.

13. The system of claim 12, wherein the application spe
cific performance metric comprises an application through
put, application latency, and application performance.

14. The system of claim 12, wherein the system specific
performance metric comprises a cache performance, proces
Sor utilization, memory bandwidth utilization, memory utili
Zation, network throughput, network bandwidth utilization,
power usage, and system temperature.

15. The system of claim 10, wherein the operations further
comprise reselecting a reselected mapping configuration
among the plurality of mapping configurations based on
whether at least one predetermined criterion is met.

16. The system of claim 15, wherein the at least one of the
predetermined criteria is a predetermined amount of time.

17. The system of claim 15, wherein the at least one of the
predetermined criteria is based on a performance metric of the
computing platform.

18. The system of claim 10, wherein the selected mapping
configuration is always used for the plurality of applications
on the computing platform.

k k k k k

10

15

25

30

12

