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Abstract—Managing tail latency of requests has become one
of the primary challenges for large-scale Internet services.
Data centers are quickly evolving and service operators fre-
quently desire to make changes to the deployed software and
production hardware configurations. Such changes demand a
confident understanding of the impact on one’s service, in
particular its effect on tail latency (e.g., 95th- or 99th-percentile
response latency of the service). Evaluating the impact on the
tail is challenging because of its inherent variability. Existing
tools and methodologies for measuring these effects suffer from
a number of deficiencies including poor load tester design,
statistically inaccurate aggregation, and improper attribution
of effects. As shown in the paper, these pitfalls can often result
in misleading conclusions.

In this paper, we develop a methodology for statistically
rigorous performance evaluation and performance factor attri-
bution for server workloads. First, we find that careful design
of the server load tester can ensure high quality performance
evaluation, and empirically demonstrate the inaccuracy of load
testers in previous work. Learning from the design flaws in
prior work, we design and develop a modular load tester
platform, Treadmill, that overcomes pitfalls of existing tools.
Next, utilizing Treadmill, we construct measurement and
analysis procedures that can properly attribute performance
factors. We rely on statistically-sound performance evalua-
tion and quantile regression, extending it to accommodate
the idiosyncrasies of server systems. Finally, we use our
augmented methodology to evaluate the impact of common
server hardware features with Facebook production workloads
on production hardware. We decompose the effects of these
features on request tail latency and demonstrate that our
evaluation methodology provides superior results, particularly
in capturing complicated and counter-intuitive performance
behaviors. By tuning the hardware features as suggested by
the attribution, we reduce the 99th-percentile latency by 43%
and its variance by 93%.
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I. INTRODUCTION

Mitigating tail latency (i.e., high quantiles of the latency

distribution) improves the quality of service in large-scale

Internet services [1]. High tail latency has been identified

as one of the key challenges facing modern data center

design as it results in poor user experiences, particularly for

interactive services such as web search and social networks.

These services are powered by clusters of machines wherein

a single request is distributed among a large number of

servers in a “fan-out” pattern. In such design, the overall

performance of such systems depends on the slowest re-

sponding machine [2]. Recent work has sought to control

and understand these tail requests both at the individual

server and overall cluster level [3].

For data center operators, the capability of accurately

measuring tail latency without disrupting the production

system is important for a number of reasons. First, servers

are typically acquired in large quantities (e.g., 1000s at a

time), so it is important to choose the best design possi-

ble and carefully provision resources. Evaluating hardware

configurations requires extensive and accurate measurements

against exising workloads. Second, it is necessary to be able

to faithfully measure performance effects without disrupting

production systems. The high frequency of software and

hardware changes makes it extremely hard, or impossible, to

evaluate these changes in production, because it can easily

result in user-visible incidents. Instead, it is desirable to

understand the impact of performance-critical decisions in

a safe, but accurate load testing environment.

Building such load testing environment for accurate tail

latency measurement is particularly challenging. This is

primarily because there are significantly more systems and

resources involved for large-scale Internet service workloads

(e.g., distributed server-side software, network connections,

etc) than traditional single-server workloads (e.g., SPEC

CPU2006, PARSEC). Although there have been several prior

works [4,5,6,7,8,9,10] trying to bridge this gap recently,

they have several pitfalls in their load test design as we

will show later in the paper. Unfortunately, these tools are

commonly used in research publications for evaluation and

the pitfalls may result in misleading conclusions. Similar to

the academic community, there is also a lack of an accurate

tail latency measurement test bed in industry, causing un-

necessary resource over-provisioning [11] and unexplained

performance regressions [12].

Furthermore, to be able to control the tail latency of

these Internet services, a thorough and correct under-

standing of the source of tail latency is required. These

Internet services interact with a wide range of systems

and resources including operating system, network stack

and server hardware thus the ability of quantitatively

attributing the source of tail latency to individual re-

sources is critical yet challenging. Although a number of

prior works [13,14,15,16,3,17,18,19,20,21,22,23,24,25] have

studied the impact of individual resources on the tail la-

tency, many resources have complex interacting behaviors

that cannot be captured in isolated studies. For example,

Turbo Boost and DVFS governor may interact indirectly

through competing for the thermal headroom. Note that the

capability of identifying the source of tail latency relies on

the first aforementioned challenge. In other words, without
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an accurate measurement of the tail latency we will not be

able to correctly attribute it to various sources.

In this paper, we first survey existing performance eval-

uation methodologies used in the research community. We

have identified a set of common pitfalls across these tools:

• Query inter-arrival generation - Load testing soft-

ware is often written for software simplicity. We find

commonly used programming paradigms create an im-

plicit queueing model that approximates a closed-loop

system and systematically underestimates the tail la-

tency. Instead, we demonstrate a precisely-timed open-

loop load tester is necessary to properly exercise the

queueing behavior of the system.

• Statistical aggregation - Due to high request rates,

sampling must be used to control the measurement

overhead. Online aggregation of these latency samples

must be performed carefully. We find that singular

statistics (e.g., a point estimate of the 95th- or 99th-

percentile latency) fails to capture detailed information;

static histograms used in other load testers also exhibit

bias.

• Client-side queueing bias - Due to the high throughput

rates (100k - 1M requests per second) in many com-

mercial systems, we demonstrate that multiple client

machines must be used to test even a single server.

Without lightly utilized clients, latency measurements

quickly begin to be impacted by client-side queueing,

generating biased results.

• Performance “hysteresis” - We observe a phenomenon

in which the estimated latency converges after collect-

ing a sufficient amount of samples, but upon running

the load test again, the test converges to a different

value. This is caused by changes in underlying system

states such as the mapping of logical memory, threads,

and connections to physical resources. We refer to

this as hysteresis because no reasonable amount of

additional samples can make the two runs converge

to the same point. Instead we find experiments must

be restarted multiple times and the converged values

should be aggregated.

Based on these insights, this paper proposes a systematic

procedure for accurate tail latency measurement, and details

the design choices that allow us to overcome the pitfalls

of existing methodologies. The proposed procedure lever-

ages multiple lightly-utilized instances of Treadmill, a

modular software load tester, to avoid client-side queueing

bias. The software architecture of Treadmill preserves

proper request inter-arrival timings, and allows easy addition

of new workloads without complicated software changes.

Importantly, it properly aggregates the distributions across

clients, and performs multiple independent experiments to

mitigate the effects of performance hysteresis.

The precise measurement achieved by Treadmill en-

ables the capability of identifying “where” the latency is

coming from. We build upon recent research in quantile

regression [26], and attribute tail latency to various hardware

features that cause the tail. This allows us to unveil the

system “black box” and better understand the impact of

tuning hardware configurations on tail latency. We perform

this evaluation using Facebook production hardware running

two critical Facebook workloads: the pervasive key-value

server Memcached and a recently-disclosed software routing

system mcrouter [27]. Using our tail latency attribution pro-

cedure, we are able to identify many counter-intuitive per-

formance behaviors, including complex interactions among

different hardware resources that cannot be captured by prior

studies of individual hardware features in isolation.

Finally, we demonstrate that we successfully capture 90%

of performance variation in the system for mcrouter and

over 95% for Memcached. By carefully tuning the hardware

features as suggested by the attribution, we reduce the

99th-percentile latency by 43% and the variance of 99th-

percentile by 93%.

To summarize, this paper has three main contributions:

• Survey of common pitfalls in existing load test-

ing methodology – We conduct a survey of existing

methodologies in related work, and present an empirical

demonstration of their shortcomings. We classify these

flaws into four major principles for future practitioners.

• Accurate cluster-based performance evaluation

methodology – We present the design of a robust

experimental methodology, and a software load testing

tool Treadmill, which we release as open-source

software1. Both systems properly fulfill the require-

ments of our principles and are easily extensible for

adoption.

• Attributing the source of tail latency – The high

precision measurements achieved by our methodology

enables the possibility of understanding the source

of tail latency variance using quantile regression. We

successfully attribute the majority of the variance to

several advanced hardware features and the interactions

among them. By carefully tuning the hardware con-

figurations recommended by the attribution results, we

significantly reduce the tail latency and its variance.

II. PITFALLS IN THE STATE-OF-THE-ART

METHODOLOGIES

To understand the requirements of an evaluation test bed,

we first survey existing methodologies and tools in prior

work. Many tools are available to study the performance of

server-side software, including YCSB [4], Faban [28], Mu-

tilate [29] and CloudSuite [6]. These tools have been widely

used in standard benchmark suites, including SPEC2010

jEnterprise [30], SPEC2011 SIP-Infrastructure [31], Cloud-

Suite [6] and BigDataBench [8], thereby many recently

published research projects.

1https://github.com/facebook/treadmill
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Through studying these existing tools, we found several

common pitfalls. We categorize them into four major themes

provided below.

Table I
Summary of load tester features.

YCSB Faban CloudSuite Mutilate Treadmill

Query Interarrival Generation � �

Statistical Aggregation � �

Client-side Queueing Bias � � �

Performance Hysteresis �

Generality � � �

A. Query Inter-arrival Generation
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Figure 1. Comparison of the number of outstanding requests between
closed-loop and open-loop controllers. The “Open-Loop” line shows the
cumulative-distribution of the number of outstanding requests in an open-
loop controlled system when running at 80% utilization. The “Closed-Loop”
lines show the distribution of the number of outstanding requests in a
closed-loop controlled system with 4, 8 and 12 concurrent connections
respectively. The closed-loop controller significantly underestimates the
number of outstanding requests in the system and therefore queueing
latency, which creates bias in tail latency measurement.

A performance evaluation test bed requires a load tester,

a piece of software that issues requests to the server in a

controlled manner. A client machine will run the load tester

which periodically constructs, sends and receives requests to

achieve a desired throughput. There are two types of control

loops that are often employed to create these timings: open-

loop control and closed-loop control [32]. The closed-loop

controller has a feedback loop, where it only tries to send

another request after the response to the previous request has

already been received. In contrast, the open-loop controller

sends requests at defined times regardless of the status of

the responses. Almost all the modern data center server-side

softwares are built to handle open-loop setup, so that each

server thread does not reject requests from clients while busy

processing previous ones.

However, many load testers are implemented as closed-

loop controller because of software simplicity, including

Faban, YCSB and Mutilate as we shown in Table I. Often,

load is generated by using worker threads that block when

issuing network requests. The amount of load can then be

controlled by increasing or decreasing the amount of threads

in the load generator. Unfortunately, this pattern exactly

resembles a closed-loop controller; each thread represents

exactly one potentially outstanding request.
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Figure 2. Different latency distributions measured from multiple clients in
the a multi-client performance evaluation procedure, where the y-axis shows
the decomposition among clients as what percent of samples is contributed
by each client. We can see from the figure that Client 1 dominates the high
quantiles of the combined distribution thus bias the measurement, because
it resides on a different rack than the other clients and the server.

Figure 1 demonstrates the impact of closed-loop and

open-loop design. For an open-loop design, the number of

outstanding requests varies over time and follows the shown

distribution. The high-quantiles of the distribution exhibit far

more outstanding requests (and therefore queueing latency)

than a closed-loop design. Using a closed-loop design can

significantly underestimate the request latency especially at

high quantiles. Therefore, we conclude that a open-loop

design is required to properly exercise the queueing behavior

of the system.

B. Statistical Aggregation

Due to high request rates, load tester software needs to

perform at least some statistical aggregations of latency

samples to avoid the overhead of keeping large number of

samples. We find that care must be taken in this process and

two types of errors can occur.

First, it is important for load testers to keep an internal

histogram of latency that adapts over time. Those load

testers that do maintain a histogram often make the mistake

of statically setting the histogram buckets. Non-adaptive

histogram binning will break when the server is highly

utilized, because the latency will keep increasing before

reaching the steady state thus exceeds the upper bound of

the histogram.

Moreover, if the requests have distinct characteristics (e.g.,

different request types, sent by different machines, etc.),

we observe that bias can occur due to improper statistical

aggregation. For example, in Figure 2 we demonstrate a

scenario where four clients are used to send requests to the

same Memcached server, and “Client 1” is on a different

rack than the other clients and the server. At each latency

point on the x-axis, each shaded region represents the

proportion of samples that come from one of the four clients.

As the quantile gets higher, one can clearly see that most

of the samples are coming from “Client 1”. This bias is

problematic because the performance estimate of the system

becomes a function of one single client. Instead, one should

extract the interested metrics (e.g., 99th-percentile latency)

at each client individually, and aggregate them properly.
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Figure 3. Comparison between single-client and multi-client setups for
measuring request latency. In the single-client setup, the network and the
client have the same utilization as the server, which results in increasing
queueing delay when the server utilization increases. This will bias the
latency measurement, whereas in the multi-client setup the utilizations of
the network and the client are kept low enough that they only add an
approximately constant latency.

C. Client-side Queueing Bias

While operating a load tester, it is important to purely

measure the effects of server-side latency. For workloads

with long service time (e.g., complex MySQL queries),

clients do not have to issue many requests to saturate the

server. However, for workloads like Memcached the request

rates on the clients and network themselves are quite high.

This can lead to queueing effects in the clients and network

themselves, thereby bias the latency measurements. YCSB

and CloudSuite suffer from such bias due to their single

client configuration as shown in Table I.

Figure 3 shows an example of how client and network

utilizations can bias latency measurements. In “Single-Client

Setup”, the client and the network have the same utilization

as the server. As one can see, the client-side latency and the

network latency grow as the server utilization increases, and

represent a significant fraction of the end-to-end latency.

We find that it is extremely challenging, if not impossible,

to design a single-client load tester that can fully saturate the

server without incurring significant client-side queueing for

modern data center workloads that operate at microsecond-

level latency. Instead, it is necessary to have a multi-client

setup and have a sufficient number of machines such that

the client-side and network latency is kept low. In “Multi-

Client Setup”, we increase the number of client machines to

minimize these biases. After this adjustment the majority of

measured latency comes from the server.

D. Performance “Hysteresis”

Through experimentation we find an usual behavior in

how estimates converge that we refer to as performance
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Figure 4. Variance exists regardless of a single run’s sample size. A single
run exhibits a large variance for a small sample size (i.e., early in the run).
With a sufficiently large sample size the estimate of 99th-percentile latency
converges. However, empirically we find that each run can converge to a
different value. Although the testing procedure of each run would yield a
tight confidence interval, the result of each run clearly varies significantly
(15-67% variation from the average).

“hysteresis”. Figure 4 demonstrates that as more samples

are collected, the estimate of 99th-percentile latency begins

to converge to a singular value. However, if the server is

restarted and another run is performed, the estimate can

converge to a different value.

In this case, the estimates have a large sample size and

we would have expected the “confidence” in each estimate

to be high, but clearly there still exists variance across

runs. In fact, the difference between these estimates and

the average is as high as 67%. This phenomenon means

that one cannot achieve higher statistical accuracy simply

by “running for longer” and is similar to effects observed

in STABILIZER [33]. Instead, it is necessary to restart

the entire procedure many times and aggregate the results.

However, none of the existing load testers is robust enough

to handle this scenario as shown in Table I.

III. METHODOLOGY

To overcome the four common pitfalls we find in existing

methodologies, we design and develop Treadmill, a

modular software load tester (Section III-A), and a robust

procedure for tail latency measurement (Section III-B). To

demonstrate the effectiveness of our methodology, we then

evaluate it on real hardware (Section III-C).

A. Treadmill

Given the existing pitfalls in state-of-the-art load tester

tools, we decide to build our own load tester Treadmill.

Specifically, the problems in existing tools are addressed by

the following design decisions.

• Query inter-arrival generation: To guarantee the

query inter-arrival generation can properly exercise

the queueing behavior of the system, we implement

an open-loop controller. The control loop is precisely

timed to generate requests at an exponentially dis-

tributed inter-arrival rate, which is consistent with the

measurements obtained from Google production clus-

ters [1].
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• Statistical aggregation: To provide high precision

statistical aggregation, Treadmill goes through three

phases during one execution: warm-up, calibration and

measurement. During the warm-up phase, all measured

samples are discarded. Next, we determine the lower

and upper bounds of the sample histogram bins in the

calibration phase. The calibration phase is useful to

reduce the amount of information lost from transform-

ing detailed latency samples into a histogram. Finally,

Treadmill begins to collect samples until the end of

execution. Histograms are used to reduce the storage

and performance overhead, and are re-binned when

sufficient amount of values exceed the histogram limits.

• Client-side queueing bias: To avoid client-side queue-

ing bias, we use wangle [34], which provides inline

execution of the callback function, to ensure that the

response callback logic is executed immediately when

the response is available. In addition, we highly opti-

mize for performance (e.g., lock-free implementation),

which indirectly reduces the client-side queueing bias

by keeping the clients at low utilization.

Furthermore, we also optimize for generality, making it

easy to extend Treadmill to new workloads. Moreover,

Treadmill is also able to reproduce configurable work-

load characteristics.

• Generality: We also optimize for generality, to

minimizes the amount of effort required to extend

Treadmill to new workloads. So far, we have suc-

cessfully integrated Treadmill with several services

including Memcached [35] and mcrouter [27]. Each

integration takes less than 200 lines of code.

• Configurable workload: It has been demonstrated in

prior work [36] that workload characteristics (e.g., the

ratio between GET and SET requests in Memcached)

can have a big impact on the system performance.

Therefore, being able to evaluate the system against

various workload characteristics can improve the ac-

curacy of measurement. To do so, a JSON formatted

configuration file can be used to describe the workload

characteristics (e.g., request size distribution) and fed

into Treadmill.

B. Tail Latency Measurement Procedure

Treadmill provides highly accurate measurement even

at high quantiles. However, as we illustrated in Figure 3,

multiple clients are needed to avoid client-side queueing

bias for testing high throughput workloads like Memcached.

Therefore, we develop a methodology leverages multiple

Treadmill instances to perform load testing for such

workloads.

To measure the tail latency, multiple instances of

Treadmill are used to send requests to the same server,

where each instance sends a fraction of the desired through-

put. Then the same experiment is repeated multiple times,

and the measurements from each experiment is aggregated

together to get a converged estimate. Particularly, We make

the following design decisions when designing this proce-

dure.

• Statistical aggregation: First, we need to aggre-

gate the statistics reported by multiple instances of

Treadmill in each experiment. In this process, the

common practice that combines distributions obtained

from all Treadmill instances to a holistic distribu-

tion and then extracts interested metrics (e.g., 99th-

percentile latency) could be heavily biased by out-

liers as we illustrated in Figure 2. Instead, we first

compute the interested metrics from each individual

Treadmill instance, and then combine them by

applying aggregation functions (e.g., mean, median) on

these metrics.

• Client-side queueing bias: By leveraging multiple

instances of Treadmill, that each of them is highly

performing, we can keep all the clients under low

utilization thus prevent the measurement from client-

side queueing bias.

• Performance hysteresis: To avoid performance hys-

teresis, multiple measurements are taken by repeating

the same experiment multiple times. After each ex-

periment, we record the collected measurements and

repeat this procedure until the mean of the collected

the measurements has already converged.

C. Evaluation

In this section, we evaluate the accuracy of the tail

latency measurement obtained from Treadmill. We fo-

cus on Memcached [37] due to its popularity in both

industry [38,35] and academia [39,40,41,42,43,44], as well

as its stringent performance needs. Besides Treadmill,

we also deploy two other recently published load testers

CloudSuite [6] and Mutilate [29] for comparison.

To set them up, we explicitly follow the instructions they

publish online. Specifically, 1 machine is used for running

Memcached server, and 1 machine is used for the load tester

from CloudSuite. Mutilate runs on 8 “agent” clients and 1

“master” client as suggested in the instructions, and also

sends requests to 1 Memcached server. For Treadmill,

we also use 8 clients in order to compare against Mutilate

with the same amount of resource usage. Table II shows the

hardware specifications of the system under test, which is

used for all the experiments in this paper.

Table II
Hardware specification of the system under test.

Specification

Processor Intel Xeon E5-2660 v2
DRAM 144GB @ 1333MHz

Ethernet 10GbE Mellanox MT27500 ConnectX-3
Kernel Version 3.10

When setting up these load testers, we also start a tcp-

dump process on the load test machines to measure the
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Figure 5. Latency distributions measured by CloudSuite, Mutilate and
Treadmill at 10% server utilization, in which only Treadmill ac-
curately captures the ground truth distribution measured by tcpdump.
CloudSuite heavily overestimates the tail latency due to client-side queueing
delay, and Mutilate also overestimates the tail latency and fail to capture the
shape of the ground truth distribution. In contrast, Treadmill precisely
captures the shape of ground truth distribution and maintains a constant gap
to the tcpdump curve even at high quantiles. Note the gap between tcpdump
measurement and load tester measurement is expected due to kernel space
interrupt handling as we explain in the experimental setup.

ground truth latency distribution. Tcpdump provides a good

ground truth measurement because it measures the latency at

network-level, thus eliminates potential client-side queueing

delay. The tcpdump process is pinned on an idle physical

core to avoid possible probe effect.

Tcpdump records the timestamps that request and re-

sponse packets flow through the network interface card

(NIC). By matching the sequence IDs of the packets, we

can map each request to its corresponding response and

calculate the time difference between the two timestamps

as the ground truth latency in our evaluation. However, this

ground truth latency is expected to be lower than the one that

the load testers measure, because the timestamps tcpdump

reports are taken when the network packets arrive the NIC.

Certain amount of time is spent in kernel space to handle the

network interrupts before the packets reach the user code,

where these load testers reside.

1) Measurement under 10% Utilization: In the first ex-

periment, we use the three load testers to send 100k requests

per second (RPS) to the Memcached server. This translates

to 10% CPU utilization on the server. We modified all three

load testers to report the entire latency distribution at the end

of execution as shown in Figure 5, in which the tcpdump

curve shows the latency distribution measured by tcpdump

as ground truth. The 99th-percentile latency measured by

each tool is plotted in the figure with the dashed line.

As shown in Figure 5, CloudSuite measures a drastically
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Figure 6. Latency distributions measured by Mutilate and Treadmill

at 80% CPU utilization, where the ground truth tail latency measured
by tcpdump is underestimated in the Mutilate experiment due to closed-
loop controller. CloudSuite is not efficient enough to saturate the server
at such high utilization because it runs a single client, thus not shown in
the figure. As we illustrated in Figure 1, Mutilate, which runs a closed-
loop controller, limits the maximum number of outstanding requests thus
underestimates the ground truth tail latency. However, Treadmill is still
able to precisely measure even the high percentile latency, and the expected
gap between Treadmill and tcpdump remains the same (30μs) as during
low utilization shown in Figure 5.

higher tail latency (99th-percentile latency is higher than

250μs thus not shown in the figure), because of heavy

client-side queueing bias. This is due to the fact that it

runs a single client to generate the load. Although Mutilate

leverages 8 clients, it still fails to capture the shape of the

ground truth latency distribution, and overestimates the tail

latency. Due to the improper query inter-arrival generation,

we notice that the ground truth latency distribution measured

in Mutilate experiment is different from the ones measured

in CloudSuite and Treadmill experiments. In contrast,

Treadmill precisely captures the shape of the ground

truth latency distribution, thus achieves highly accurate

measurements. There is a fixed offset between the tcpdump

and Treadmill curves, due to the expected computation

spent in kernel space for interrupt handling.

2) Measurement under 80% Utilization: Similarly, we

construct another experiment with these three load testers

to send 800k requests per second (RPS) to one Memcached

server, which runs at 80% CPU utilization. In this experi-

ment, we find that CloudSuite is not efficient enough to send

this many requests because of the performance limitation

of a single client; we only report the measurements from

Mutilate and Treadmill in Figure 6.

Similar to the previous experiment, the measured ground

truth latency distributions from Mutilate experiment and

Treadmill experiment are drastically different, especially

at high quantile. This is due to the fact that tcpdump

measures the ground truth driven by the control loop

of the load tester. Mutilate runs a closed-loop controller,

which artificially limits the maximum number of outstanding

requests as we illustrated in Figure 1, therefore heavily

underestimates the 99th-percentile latency by more than
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2×. Open-loop controller does a much better job properly

exercising the queueing behavior of the system, because

the number of outstanding requests is not limited, which

reassembles a realistic setting in production environment.

Although the implementation of Mutilate overestimates the

tail latency from the “ground truth”, the 99th-percentile

latency measured by Mutilate is still underestimated. Note

that Treadmill still maintains a fixed offset to the ground

truth latency distribution measured by tcpdump, and the

offset is exactly the same (30μs) as during low utilization

shown in Figure 5.

In conclusion, CloudSuite suffers from heavy client-side

queueing bias, and Mutilate cannot properly exercise the

queueing behavior of the system due to the closed-loop

controller, whereas Treadmill precisely measures the tail

latency even at high utilization.

IV. TAIL LATENCY ATTRIBUTION

With sufficient amount of samples, Treadmill is able to

obtain accurate latency measurements even at high quantiles.

However, we sometimes find the measured latency from each

run converges to a different value as shown in Figure 4. This

suggests that the systems or the states of the system we

measure are changing across runs, which may also happen

in production environment if we do not have a technique to

carefully control it. In this section, we analyze this variance

of the tail latency using a recently developed statistical

inference technique, quantile regression [26], and attribute

the source of variance to various factors.

A. Quantile Regression

To analyze the observed variance in a response variable,

analysis of variance (ANOVA) is often used to partition the

variance and attribute it to different explanatory variables.

However, the classic ANOVA technique assumes normally

distributed residuals and equality of variances, which have

been demonstrated unsuitable by prior work [45] for many

computer system problems due to the common presence

of non-normally distributed data. In addition, ANOVA can

only attribute the variance of the sample means. In contrast,

quantile regression [26] is a technique proposed to attribute

the impact of various factors on any given quantiles, which

does not make any assumption on the distribution of the

underlying data. Therefore, quantile regression is particu-

larly suitable for our purpose of analyzing the sources that

contribute to the tail latency.

Similarly to ANOVA, quantile regression takes a number

of samples as its input, where each sample includes a

set of explanatory variables xi and a response variable

y. The response variable is expected to vary depending

on the explanatory variables. Quantile regression produces

estimates of coefficients ci that minimizes the prediction

error on a particular quantile τ for given X as shown

in Equation 1. In addition to individual explanatory vari-

ables, it can also model the interactions among them by

including their products (e.g., c12(τ)x1x2 in Equation 1). It

uses numerical optimization algorithm to minimize a loss

function, which assigns a weight τ to underestimated errors

and (1− τ) to overestimated ones for τ -th quantile, instead

of minimizing the squared error in ANOVA.

Qy(τ |X) =c0(τ) + c1(τ)x1 + c2(τ)x2 + · · ·+

c12(τ)x1x2 + c13(τ)x1x3 + · · ·+

. . .

(1)

In this case, we design the response variable to be

a particular quantile (e.g., 99th-percentile) of the latency

distribution and the explanatory variables to be a set of

factors that we suspect to have an impact on the latency

distribution.

B. Factor Selection

First of all, we need to identify the potential factors that

may affect the tail latency. We list all the factors we suspect

to have an impact on the tail latency. Then we use null hy-

pothesis testing on a large number of samples collected from

repeated experiments under random permutations of all the

factors, to identify the factors that actually have an impact

on the tail latency. Although the factors may vary depending

on the workload and the experimental environment, we find

a list of factors consistently affecting the tail latency across

various workloads we have experimented with.

• NUMA Control: The control policy for non-uniform

memory access (NUMA) determines the memory

node(s) to allocate for data. The same-node policy

prefers to allocate memory on the same node until it

cannot be allocated anymore, whereas the interleave

policy uses round robin among all nodes.

• Turbo Boost: Frequency up-scaling feature is imple-

mented on many modern processors, where the fre-

quency headroom heavily depends on the dynamic

power and thermal status. The scaling management al-

gorithm is implemented in processor’s hardware power

control unit, and it is not clear how it will impact the

tail latency quantitatively.

• DVFS Governor: Dynamic voltage frequency scaling

allows the operating system to up-scale the CPU fre-

quency to boost performance and down-scale to save

power dynamically. In this section, we study two com-

monly used governors including performance (always

operating at the highest frequency) and ondemand

(scaling up the frequency only when utilization is high).

• NIC Affinity: The hardware network interface card

(NIC) uses receive side scaling (RSS) to route the net-

work packets to different cores for interrupt handling.

The routing algorithm is usually implemented through a

hashing function computed from the packet header. For

example, the NIC on our machine (shown in Table II)

provides a 4-bit hashing value, which limits the number

of interrupt queues to 24 = 16. We study the impact of
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Table III
Quantile regression factors.

Factor Low-Level High-Level

NUMA Control (numa) same-node interleave
Turbo Boost (turbo) off on
DVFS Governor (dvfs) ondemand performance
NIC Affinity (nic) same-node all-nodes

mapping all the interrupt queues to cores on the same

CPU socket, and evenly spread across the two sockets.

Therefore, we use a 2-level full factorial experiment

design with the 4 factors listed above as shown in Table III.

In addition to the 4 factors listed above in isolation, we

also model the interactions among combinations of them,

because they might not necessarily be independent from

each other. For example, the impact of DVFS governor may

depend on Turbo Boost because they can indirectly interact

with each other due to the contention in thermal headroom.

C. Quantifying Goodness-of-fit

In ANOVA, coefficient of determination R2 is often used

to quantify the fraction of variance that the model is able

to explain. However, an equivalent of R2 does not exist for

quantile regression. Therefore, we define a pseudo-R2 metric

in Equation 2 using the same idea. The metric falls in the

range of [0, 1], where 1 means the model perfectly predicts

the given quantile and 0 means its accuracy is the same as

the best constant model that always predicts the same value

regardless of the explanatory variables. In the equation, the

numerator represents the sum of the prediction errors of the

quantile regression model, and the denominator is the error

of the best constant model.

pseudo–R2
τ = 1−

∑N

i=0 w(τ, err
τ
qr(i))|err

τ
qr(i)|∑N

i=0 w(τ, err
τ
const(i))|err

τ
const(i)|

(2)

For each sample, the prediction error is computed as the

product of the absolute prediction error and a weight. The

prediction error for sample i at τ -th quantile is defined in

Equation 3 as the difference between empirically measured

quantile yτi and the predicted quantile modelτ (Xi) condi-

tional on explanatory variables Xi.

errτmodel(i) = yτi −modelτ (Xi) (3)

The weight assigned to each error is defined in Equation 4

as (1 − τ) for overestimation and τ for underestimation,

which is the same as the loss function in quantile regression.

w(τ, err) =

{
(1− τ) : err < 0
τ : err ≥ 0

(4)

V. EVALUATION OF HARDWARE FEATURES

The precision of tail latency measurements achieved by

Treadmill enables the possibility of understanding and

attributing the sources of tail latency variance. In this sec-

tion, we present the complex and counter-intuitive perfor-

mance behaviors identified through attributing the source

of tail latency, and demonstrate the effectiveness of our

methodology in improving tail latency.

A. Experimental Setup

We leverage quantile regression to analyze the measure-

ments obtained under various configurations presented in

Table III to understand the sources of tail latency variance.

To perform quantile regression, we first obtain latency

samples under various configurations. We randomly choose

one permutation of the configurations for each experiment

to preserve independence among experiments, until we have

at least 30 experiments for each permutation of the con-

figurations. Given we are studying 4 factors, we will need

at least 24 × 30 = 480 experiments. For each experiment,

we randomly sub-sample 20k latency samples during the

time when the latency distribution has already converged.

We make sure this sub-sampling does not hurt the precision

of the analysis by comparing against a model obtained using

more samples, and we observe no significant difference.

Each factor is coded as 0 at low-level, and 1 at high-level

in the samples. Before feeding the data into the quantile

regression model, we perturb the data using a symmetric

variance at 0.01 standard deviation. This is useful to pre-

vent the numerical optimizer from getting trapped in local

optimal, because all explanatory variables are discrete values

(i.e., dummy variables). The perturbation is small enough

that it does not affect the quality of the regression itself.

B. Memcached Result

Table IV shows the result from quantile regression for

different percentiles, including 50th-, 95th- and 99th-, for

Memcached workload at 70% server utilization. For each

percentile, Est. shows the estimated coefficient (i.e., ci(τ)
in Equation 1) of each factor, where negative value means

turning the factor to high-level reduces the corresponding

quantile latency. To estimate the quantile latency for a

given hardware configuration, one needs to add up all

the qualified estimated coefficients (Est. in the table) and

the intercept. For example, to estimate the 95th-percentile

latency for a configuration that only “numa” and “turbo”

are turned to high-level, one needs to add their coefficients

of them in isolation (24 + -12 = 12μs), and their interaction

“numa:turbo” (5μs), and the intercept (155μs), therefore

the estimated 95th-percentile latency is 12 + 5 + 155 =

172μs. Std. Err is the estimated standard error for the

coefficient estimation at 95% confidence interval. P-value is

the standard p-value for null hypothesis testing, which is the

probability of obtaining a result equal or more extreme than

the observed one. A p-value smaller than 0.05 is usually

considered as strong presumption against null hypothesis,

which suggests the corresponding factor has a significant

impact on the percentile latency.
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Table IV
Results of quantile regression for Memcached at high utilization, which detail the contribution of each feature on the latency. The first several rows show
the base latency (Intercept) and the latency of each feature enabled in isolation. The other rows provide the interaction latency effect of multiple features.

For example, “turbo” is the best single feature (-29μs) in isolation to turn on to reduce 99th-percentile latency. Turning “nic” to high-level is only
beneficial if “dvfs” is set to high-level (29 + -8 + -58 = -37μs), otherwise the net effect would be an latency increase (29μs). Surprisingly, setting “turbo”
on, which is beneficial in isolation, in addition to “nic” and “dvfs” would actually increase the 99th-percentile latency (-29 + -8 + 29 + 40 + 23 + -58 +
4 = 1μs) due to the negative interaction among them. Note that for some rows, the uncertainty in the data is significant, and we choose a p-value of 0.05

to highlight these values in bold.

50th-Percentile 95th-Percentile 99th-Percentile
Factor Est. Std. Err p-value Est. Std. Err. p-value Est. Std. Err p-value

(Intercept) 65 μs <1 μs <1e-06 155 μs <1 μs <1e-06 355 μs 5 μs <1e-06

numa 2 μs <1 μs <1e-06 24 μs <1 μs <1e-06 56 μs 8 μs <1e-06
turbo -2 μs <1 μs <1e-06 -12 μs <1 μs <1e-06 -29 μs 7 μs 1.00e-04
dvfs 1 μs <1 μs <1e-06 <1 μs <1 μs 2.60e-01 -8 μs 8 μs 3.54e-01
nic <1 μs <1 μs <1e-06 2 μs <1 μs 2.07e-03 29 μs 8 μs 1.10e-04

numa:turbo 3 μs <1 μs <1e-06 5 μs 1 μs 2.40e-04 21 μs 11 μs 6.37e-02
numa:dvfs -3 μs <1 μs <1e-06 -29 μs 1 μs <1e-06 -57 μs 11 μs <1e-06
numa:nic <1 μs <1 μs <1e-06 -6 μs 1 μs 4.00e-05 -20 μs 11 μs 6.91e-02
turbo:dvfs <1 μs <1 μs <1e-06 14 μs 1 μs <1e-06 40 μs 11 μs 3.30e-04
turbo:nic 3 μs <1 μs <1e-06 23 μs 1 μs <1e-06 23 μs 10 μs 2.90e-02
dvfs:nic -1 μs <1 μs <1e-06 -15 μs 1 μs <1e-06 -58 μs 11 μs <1e-06

numa:turbo:dvfs 2 μs <1 μs <1e-06 12 μs 2 μs <1e-06 3 μs 16 μs 8.70e-01
numa:turbo:nic <1 μs <1 μs 6.25e-01 -7 μs 2 μs 8.00e-05 -14 μs 15 μs 3.59e-01
numa:dvfs:nic 3 μs <1 μs <1e-06 34 μs 2 μs <1e-06 79 μs 15 μs <1e-06
turbo:dvfs:nic <1 μs <1 μs 7.66e-01 -9 μs 2 μs <1e-06 4 μs 14 μs 7.96e-01

numa:turbo:dvfs:nic -8 μs <1 μs <1e-06 -43 μs 3 μs <1e-06 -83 μs 23 μs 2.50e-04
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Figure 7. Estimated latency of Memcached at various percentiles under low utilization and high utilization using the result from quantile regression.
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Figure 8. The average impact in latency of turning each individual factor
to high-level for Memcached, assuming each of the other factors have
equal probability of being low-level and high-level. Negative latency means
latency reduction, and positive number means latency increase.

To summarize the result, Figure 7 shows the estimated

latency of all factor permutations at various percentiles under

low and high server utilization correspondingly. From the

result, we have several findings as follows:

• Finding 1. The variance of latency increases from

lower to higher server utilization, because of the in-

creasing variance in number of outstanding requests.

This is similar to what we observe in a M/M/1 queueing

model [46], that the variance of number of outstanding

requests ρ
(1−ρ)2 , where ρ is the server utilization, grows

as the utilization increases.

• Finding 2. The variance of latency increases from

lower to higher quantile as suggested by the grow-

ing standard error shown in Table IV, because the

variance of a quantile is inversely proportional to the

density [47]. This also explains the reason why we

observe many statistically insignificant cases (p-value

> 0.05) and the uncertainty is high at high quantiles.

• Finding 3. The latency could be higher at lower utiliza-

tion when the DVFS governor is turned to ondemand

policy, because of frequent transitions among frequency

steps. The 50th- and 90th-percentile latencies are higher

during low load than high load under ondemand DVFS

governor. This is because requests have a higher prob-

ability of experiencing the overhead of transitioning

from lower to higher frequency steps, whereas the CPU

is kept at high frequency during high load and does not

need many transitions.
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Figure 9. Estimated latency of mcrouter at various percentiles under low utilization and high utilization using the result from quantile regression.

• Finding 4. Turning NIC affinity policy from same-node

to all-nodes during low load can significantly reduce

the latency when DVFS governor is set to ondemand.

The cores have larger utilization range under same-node

policy than all-nodes, which leads to higher probability

of experiencing frequency step transitions. This does

not occur at high load because the utilization is already

high enough that the number of frequency transitions is

negligible. Prior study performed on the same hardware

factors in isolation fails to capture such interacting

behaviors among multiple factors due to the limitation

of isolated study.

• Finding 5. As shown in Table IV, the interactions

among factors are demonstrated to have statistically

significant impact on the latency as many of them have

a p-value smaller than 0.05. In addition, the estimated

coefficients of interactions are sometimes larger than

individual factors, which means the interactions among

factors can have higher impact on the latency. For

example, turning NUMA control policy to interleave in-

creases the 99th-percentile latency by 56μs as shown in

the table, but its positive interaction with performance

DVFS governor results in a 9μs improvement. These

interacting behaviors are complicated and sometimes

counter-intuitive, and cannot be captured by isolated

studies of individual factors. Therefore, it is necessary

to use statistical techniques like quantile regression to

model the interactions.

Due to the interactions among factors, we cannot simply

decompose the variance of the tail to each individual factor.

However, by assuming all the other factors are randomly

selected (i.e., each factor has equal probability of being low-

level and high-level), we can quantify the impact of each

factor on average case as shown in Figure 8.

• Finding 6. Interleaved NUMA control policy increases

the latency by up to 44μs especially during high load.

This is caused by bad connection buffers allocation that

majority of the server threads have their connection

buffers allocated on the remote memory node, while

same-node policy guarantees half of the threads get

their buffers allocated on the local node. We only
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Figure 10. The average impact in latency of turning each individual
factor to high-level for mcrouter, assuming each of the other factors have
equal probability of being low-level and high-level. Negative latency means
latency reduction, and positive number means latency increase.

observe this behavior during high load because the high

queueing delay magnifies the overhead of accessing

remote memory node.

• Finding 7. The amount of impact each factor con-

tributes varies depending on the load levels. For ex-

ample, DVFS governor has the highest impact at low

load, whereas NUMA policy is the biggest contributor

to the variance at high load. This is caused by the

complex interacting behavior among different features,

which again, is not captured by isolated studies in prior

works.

C. Mcrouter Results

Similarly, we also construct experiments with mcrouter

workload as shown in Figure 9, which is a configurable pro-

tocol router that turns individual cache servers into massive-

scale distributed systems. Figure 10 shows the average

impact of the 4 factors assuming other factors are selected

randomly with equal probability.

• Finding 8. Turbo Boost significantly improves the

latency especially during low load for mcrouter. This

is because a large fraction of the computation mcrouter

needs to do is to deserialize the request structure

from network packets, which is CPU-intensive and can

easily be accelerated by frequency up-scaling. However,

this difference is much smaller, sometimes statistically

insignificant, during high load, because the available

thermal headroom is smaller compared to low load.
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Figure 11. Pseudo-R2 (shown in Equation 2) of the quantile regression
results at various load levels and percentiles, which demonstrates good
coverage of sources of variance. Pseudo-R2 quantifies the goodness-of-
fit of the model, which ranges in [0, 1] that higher value indicates better
model fit. Our regression models show high pseudo-R2 values (>0.90),
which suggests that they are able to explain majority of the variance.

Figure 12. Using the knowledge we gain from quantile regression, both
the latency and the variance of latency are significantly reduced after
carefully controlling the factors contributed to the variance. The average
99th-percentile latency in 100 experiments is reduced from 181μs to 103μs,
and the standard deviation is reduced from 78μs to 5μs.

D. Quantifying Goodness-of-fit

Although the low p-values obtained from quantile regres-

sion suggests high confidence that the studied factors have

significant impact on the tail latency, it is also possible that

they only contribute to a small fraction of the total variance.

Therefore, we quantify the goodness-of-fit in this section,

which demonstrates that our model covers the majority of

the observed variance.

Figure 11 shows the pseudo-R2 values, we previously

defined in Equation 2, of the quantile regression models at

various percentiles, which quantifies the variance that can

be explained. Our models have consistently high pseudo-R2

values (the lowest one is 0.9), which suggests that they are

able to explain the majority of the observed variance.

E. Improving Tail Latency

We further evaluate the quantile regression results in Fig-

ure 12, in which we perform the same experiment 100 times

using randomly selected configurations as “before”, and

compare against the best configuration for 99th-percentile

latency recommended by our quantile regression model as

“after”. As we can see from the figure, both latency and the

variance of latency have been significantly reduced. Specifi-

cally, the expected 50th-percentile latency has been reduced

from 69μs to 62μs, and the standard deviation has been

reduced from 13μs to 5μs. The expected 99th-percentile

latency has been reduced from 181μs to 103μs, and the

standard deviation has been reduced from 78μs to 5μs. The

reductions we achieve on 99th-percentile latency are much

larger than on 50th-percentile, because we optimize for 99th-

percentile when choosing the best configuration.

VI. RELATED WORK

There has been large amount of work on developing statis-

tically sound performance evaluation methodology. Mytkow-

icz et al. [48] show the significance of measurement bias

commonly existing in computer system research, and present

a list of experimental techniques to avoid the bias. Oliveira

et al. [45] present a study on two Linux Schedulers using

statistical methods, which demonstrates that ANOVA can

sometimes be insufficient especially for non-normally dis-

tributed data whereas quantile regression can provide more

conclusive insights. Curtsinger and Berger propose STABI-

LIZER [33], which randomizes the layouts of code, stack

and heap objects at runtime to eliminate the measurement

bias caused by layout effects in performance evaluation.

Alameldeen and Wood [49] leverage confidence interval and

hypothesis testing to compensate the variability they dis-

cover in architectural simulations for multi-threaded work-

loads. Tsafrir et al. [50,51] develop input shaking technique

to address the environmental sensitivities they observe in

parallel job scheduling simulations. Georges et al. [52] point

out a list of pitfalls in existing Java performance evaluation

methodologies, and propose JavaStats to perform rigorous

Java performance analysis. Breughe and Eeckhout [53] point

out benchmark inputs are critical for rigorous evaluation on

microprocessor designs.

There are also a number of prior works reducing the

variance of query latency, and improving the tail latency.

Shen [54] models the request-level behavior variation caused

by resource contention, and proposes a contention-aware OS

scheduling algorithm to reduce the tail latency.

Others have developed benchmark suites that capture the

representative workloads in modern data centers. Cooper

et al. [4] present the Yahoo! Cloud Serving Benchmark

(YCSB) framework for benchmarking large-scale distributed

data serving applications. Fan et al. [5] present and char-

acterize 3 types of representative workload in Google data

centers, including web search, web mail and MapReduce.

In addition, Lim et al. [7] further characterize the video

streaming workloads at Google and benchmark them to

evaluate new server architectures. Ferdman et al. [6] in-

troduce the CloudSuite benchmark suite, which represents

the emerging scale-out workloads running in modern data

centers. Wang et al. [8] enrich the data center workload

benchmark by presenting BigDataBench, which covers di-

verse cloud applications together with representative input

data sets. Hauswald et al. [9,10] introduce benchmarks of

emerging machine learning data center applications. Meisner

et al. [55] present a data center simulation infrastructure,

BigHouse, that can be used to model data center workloads.
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VII. CONCLUSION

In this paper, we identify four common pitfalls through

an in-depth survey of existing tail latency measurement

methodologies. To overcome these pitfalls, we design a

robust procedure for accurate tail latency measurement,

which uses Treadmill, a modular software load tester we

develop. With the superior measurements achieved by this

procedure, we leverage quantile regression to analyze, and

attribute the sources of variance in tail latency to various

hardware features of interest. Using the knowledge we gain

from the attribution, we reduce the 99th-percentile latency

by 43% and its variance by 93%.
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