
22

Caliper: Interference Estimator for Multi-tenant

Environments Sharing Architectural Resources

RAM SRIVATSA KANNAN and MICHAEL LAURENZANO,

University of Michigan, Ann Arbor, USA

JEONGSEOB AHN, Ajou University, South Korea

JASON MARS and LINGJIA TANG, University of Michigan, Ann Arbor, USA

We introduce Caliper, a technique for accurately estimating performance interference occurring in shared

servers. Caliper overcomes the limitations of prior approaches by leveraging a micro-experiment-based tech-

nique. In contrast to state-of-the-art approaches that focus on periodically pausing co-running applications

to estimate slowdown, Caliper utilizes a strategic phase-triggered technique to capture interference due to

co-location. This enables Caliper to orchestrate an accurate and low-overhead interference estimation tech-

nique that can be readily deployed in existing production systems. We evaluate Caliper for a broad spectrum

of workload scenarios, demonstrating its ability to seamlessly support up to 16 applications running simul-

taneously and outperform the state-of-the-art approaches.

CCS Concepts: • Computer Architecture → Datacenter Systems Design; Datacenter contention;

Additional Key Words and Phrases: Datacenter design, cache contention, DRAM bandwidth contention, fair-

ness, mutii-core, interference, performance, system software metrics

ACM Reference format:

Ram Srivatsa Kannan, Michael Laurenzano, Jeongseob Ahn, Jason Mars, and Lingjia Tang. 2019. Caliper:

Interference Estimator for Multi-tenant Environments Sharing Architectural Resources. ACM Trans. Archit.

Code Optim. 16, 3, Article 22 (June 2019), 25 pages.

https://doi.org/10.1145/3323090

1 INTRODUCTION

Improving resource utilization in modern multi-core systems has been identified as a critical design

goal by large-scale datacenter designers [14]. The motivating factor leading to this trend is the

underutilization of multi-core processors due to overprovisioning. Towards realizing this objective,

co-locating multiple batch applications on a single server has proven to be beneficial [19, 33, 34,

New paper—not an extension of a conference paper.

This work was sponsored by the National Science Foundation (NSF) under grants IIS-VEC1539011 and NSF CAREER SHF-

1553485. Jeongseob Ahn was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea

government (MSIT) (NRF-2019R1C1C1005166).

Authors’ addresses: R. S. Kannan, M. Laurenzano, J. Mars, and L. Tang, University of Michigan, Ann Arbor, 2260 Hay-

ward Street, Ann Arbor, Michigan, 48105; emails: {ramsri, mlaurenz, profmars, lingjia}@umich.edu; J. Ahn (corresponding

author), Ajou University, 206 Worldcup-ro, Yeongton-gu Suwon, South Korea 16499; email: jsahn@ajou.ac.kr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1544-3566/2019/06-ART22

https://doi.org/10.1145/3323090

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 3, Article 22. Publication date: June 2019.

https://doi.org/10.1145/3323090
mailto:permissions@acm.org
https://doi.org/10.1145/3323090

22:2 R. S. Kannan et al.

40, 44, 61–63]. In cloud computing, system virtualization techniques have been instrumental in

providing performance isolation while co-locating multiple applications present in under-utilized

servers.

Although the commodity hypervisors such as Xen and KVM have been achieving performance

isolation at some level through strict CPU reservations, static partitioning of memory/disk space,

and network bandwidth [32, 51], it is inevitable to avoid shared resource contentions, especially

at micro-architectural resources. These performance-critical resources including last-level cache,

memory controller, and main memory bandwidth cause the slowdown of applications in co-located

environments. Moreover, the magnitude at which applications are slowed down is highly de-

pendent on the nature of the co-running applications and the availability of shared resources

[19, 40].

Under such circumstances, it is essential to have the ability to accurately estimate the slow-

down of applications caused due to co-location. Such slowdown estimates could enable resource

allocation of shared resources to each application in a slowdown-aware manner motivated towards

providing strong Quality-of-Service (QoS) guarantees. Also, in Infrastructure-as-a-Service (IaaS)

clouds, such a mechanism could be used to bill its customers appropriately based on the amount of

slowdown that their applications have been subjected to by the co-running applications [16, 58].

There have been many efforts that try to estimate slowdown of applications at runtime [16, 17,

23, 25, 40, 42, 49, 58, 61, 68]. Prior software approaches [16, 25, 61, 68] utilize an online runtime

system that periodically pauses all the applications except one for a short time, thus allowing the

running application to monopolize the computing resources on the system during those pause pe-

riods. The performance of the running application during such pause periods is used to determine

slowdown.

A few other hardware-enabled approaches [22, 23, 42, 58] designed to estimate slowdown are

based on a methodology that aims at modeling interference bottom-up as an aggregate of interfer-

ence across multiple processor subsystems. However, this may prove to be prohibitively difficult as

core counts increase and processor architectures accrue performance-improvement mechanisms

that are ever larger in number and complexity. These approaches leave several challenges that

pose barriers to its adoption:

(1) Low accuracy: The most recent state-of-the-art technique addressing this problem

[16] neglects the notion of application phases and pauses co-running applications

periodically at millisecond granularity. This methodology shows estimation errors of up

to 40%, leaving significant room for improvement in accuracy.

(2) High overhead: It has been reported that datacenter providers tolerate no more than 1%

to 2% degradation in performance to support dynamic monitoring approaches in produc-

tion [55]. However, the execution time overhead of the state-of-the-art software interfer-

ence estimation technique can be as significant as 12% [16].

(3) Non-reliable (or less scalable): The accuracy and the overhead of prior approaches [16,

23, 25, 42, 58] deteriorate as the number of co-running applications increases. As the num-

ber of cores on modern servers keeps increasing, deploying a technique that inadequately

supports current and future levels of multi-tenancy would not be a preferred choice.

(4) Priori knowledge: Another class of static techniques requires a priori [24, 40] knowledge

about all workloads and the profiling for each type of workload. This requirement limits

the types of workloads for which such a technique can be applied and, more broadly, the

kind of datacenters that can adopt the approach (e.g., public clouds).

In this study, we design a mechanism called micro-experiments—short-lived measurements

of application performance under different conditions—to accurately estimate the interference

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 3, Article 22. Publication date: June 2019.

Interference Estimator for Multi-tenant Environments Sharing Architectural Resources 22:3

experienced by applications due to performance degradation. On top of this mechanism, we intro-

duce Caliper to estimate slowdown of an application at runtime with high accuracy and negligible

overhead. A micro-experiment is a period during which the performance of an application is ab-

stracted from the interference incurred by co-runners, using which an accurate estimate of its

slowdown can be obtained. One of the most crucial challenges while utilizing micro-experiments

for estimating the slowdown is to determine when micro-experiments should be performed. We

observe that interference does not change significantly within a single application phase. Thus,

the problem of identifying when to perform a micro-experiment boils down to identifying phases

of applications at runtime while executing with co-runners. Triggering a micro-experiment on the

application at each of its phases once allows the runtime to estimate co-runner interference with

negligible overheads accurately.

To enable Caliper, one of the most significant challenges is to accurately, efficiently, and contin-

uously detect not only phases within applications but also phases in the application’s co-runners.

In this article, we design a solution to identify all such phases by leveraging performance monitor-

ing units (PMUs). Since each application has different sensitivities towards architectural resources,

we identify the right set of PMU types that can differentiate phase changes across a wide variety of

unknown applications. We perform cross-validation on these selected PMU types on a spectrum of

application workloads to demonstrate generality. The contributions of this article are as follows:

• Phase-aware micro-experiments: We introduce a novel phase-aware interference esti-

mation technique using micro-experiments that is accurate, lightweight, and can efficiently

support multi-tenancy that can be deployed in clouds or datacenter environments.

• Resilient phase detection: We design a novel methodology called PMU scoreboarding

that extracts the representative set of performance monitoring units for detecting phase

changes at multi-tenant execution scenarios. Without a priori knowledge about the work-

loads, the extracted PMU types are effective in terms of detecting phase changes.

• Real-world scenarios: We evaluate our runtime system on real systems for a variety of

applications including SPEC CPU2006 [29], NAS Parallel Benchmarks [12], SiriusSuite [28],

and DjiNN&Tonic Suite [27]. Moreover, we evaluate the effectiveness of the proposed run-

time as we increase the number of executing application contexts. In addition to that, we

have also evaluated our technique on different microarchitectural subsystems to demon-

strate its platform-independent nature.

With Caliper, we are able to estimate the slowdown at multi-tenant execution scenarios ac-

curately with a mean absolute error of 4% and negligible overhead of less than 1% for a broad

spectrum of workload scenarios when executing 16 applications. Compared to state-of-the-art in-

terference estimation techniques [16], our technique shows up to 5× more accuracy with 3× less

overhead, making it readily deployable in current and future datacenters.

The rest of this article is organized as follows: Section 2 describes the background and discusses

the limitations of the prior study. Section 3 introduces the proposed design, Caliper. To achieve the

design goals, Section 4 defines phase boundaries, and Section 5 presents our technique identifying

phase changes in co-location. Section 6 presents the experimental results. Section 7 describes the

related work, and Section 8 concludes the article.

2 BACKGROUND

In this section, we introduce key challenges that are present while co-locating multiple batch appli-

cations in multi-core systems. We then illustrate the state-of-the-art techniques that try to address

these challenges and their limitations.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 3, Article 22. Publication date: June 2019.

22:4 R. S. Kannan et al.

2.1 Multi-tenant Execution of Batch Applications

Modern computer systems host a wide range of applications of varying nature. These applica-

tions are broadly classified into two types: (1) batch applications and (2) user-facing applications.

Applications that are of batch type are throughput-oriented and not user-facing. This type of appli-

cation represents today’s workloads that execute in datacenters and clouds. Consolidation of such

applications to increase the resource utilization of the system is a common trend [9, 11]. However,

another class of applications such as memcached and web search is latency-critical and hence is

required to meet strict Quality of Service (QoS) guarantees. As a result, the consolidation of such

latency-critical applications with other applications is generally avoided, as co-location will affect

the latency of these applications significantly [2, 41, 70]. These applications are typically housed in

private datacenters or run on dedicated machines that guarantee Service Level Agreements (SLAs).

Although the consolidation of batch applications onto a single server increases the resource

utilization, it has a direct impact on individual application performance. State-of-the-art virtu-

alization technologies try to provide performance isolation at some levels. Current hypervisors

perform:

(1) Strict CPU reservations by disallowing sharing of CPU cores among different applica-

tions [13, 35].

(2) Statically partitioning memory and disk space among different applications [13, 35].

(3) Static partitioning of I/O and network bandwidth proportionally among applications using

SR-IOV [32, 51].

However, applications are still slowed down mainly due to contention at the last-level cache

(LLC) and main memory bandwidth. The resource contention at the LLC and main memory band-

width increases the overall memory access latency, significantly slowing down the execution of

different applications. Hence, it becomes critical to identify and gauge the slowdown applications

are subjected to when they are housed at multi-tenant execution scenarios. As a major step to-

wards solving this problem, prior approaches try to precisely estimate the amount of slowdown

each application is subjected to in multi-tenant execution scenarios [16, 58].

2.2 Limitations of the State-of-the-art Approach

Broadly, state-of-the-art approaches that try to estimate slowdown are classified into two different

categories: static approaches that require a priori knowledge about the applications executing;

and dynamic approaches, which can perform slowdown estimation for unknown applications.

In this section, we enumerate the limitations of the state-of-the-art static and dynamic approaches

that try to solve this problem.

2.2.1 Static Approaches. Prior static approaches such as Bubble-Up [40] and Cuanta [24] have

shown to be effective at generating precise performance predictions at co-located execution sce-

narios with high accuracy. However, there exist several primary limitations of the work, including

requiring a priori knowledge of application behavior and the lack of adaptability to changes in

application dynamic behaviors. These limitations restrict the possibility of deploying such static

approaches for a variety of datacenter infrastructures that encounter unknown applications on a

regular basis (e.g., private datacenters and public clouds).

2.2.2 Dynamic Approaches. Another class of prior works, which does not require a priori

knowledge, has attempted to estimate slowdown of applications due to shared cache capacity and/

or memory bandwidth interference [16, 58, 68]. The most recent prior work by Breslow et al. [16]

is software-based and utilizes a technique called POPPA. The main motivation behind POPPA

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 3, Article 22. Publication date: June 2019.

Interference Estimator for Multi-tenant Environments Sharing Architectural Resources 22:5

Table 1. Comparison Between Caliper and Other Interference Estimation Techniques

Bubble-Up [40] POPPA [16] ASM [58] FST [23] Caliper

Low overhead � �
No additional hardware � � �
No offline profile � � �
Estimation error 7% 45% 20% 30% 4%

towards estimating slowdown is based on modeling interference as a ratio of solo and co-located

execution performance. While co-located application performance can be directly measured at

runtime, it is challenging to estimate solo performance of an application while running with co-

runners simultaneously. Towards obtaining an estimate of solo performance, POPPA periodically

pauses all co-running applications for a very short time except one application repeatedly at fixed

time intervals, as depicted in Figure 1(b). The pause periods allow it to monopolize system re-

sources and (briefly) match its solo performance. POPPA has several limitations, as it suffers se-

verely from low accuracy and high overheads especially as the number of application contexts

increase.

However, there is a class of literature that has attempted to tackle the problem of estimating

slowdown at runtime by utilizing novel hardware to track application interference among indi-

vidual processor subsystems, which are taken together to model the overall interference of the

applications [22, 23, 42, 58]. The most recent work by Subramanian et al. presents Application

Slowdown Model (ASM). This work is based on the hypothesis that performance of each applica-

tion is proportional to the rate at which it accesses the shared cache. Hence, to identify the shared

cache access rate, it maintains an auxiliary tag store for each application, which tracks the state of

the cache in a situation where the application would have been running alone. Every application

that is co-located within the system utilizes this specialized hardware periodically in a round-

robin fashion to collect its corresponding shared cache access rates, which in turn is utilized by

ASM to estimate its corresponding slowdown. One of the key limitations of ASM is that it requires

additional hardware support, precluding it from being used as a solution on existing commodity

servers.

The combination of the poor accuracy, overhead, inadequate support for multi-tenancy, deploy-

ability, and requirement of additional hardware support significantly limits the applicability of the

prior approaches. Towards satisfying these shortcomings, we design a technique that can be readily

deployed in production-grade datacenters. Our technique can accurately estimate slowdown

in execution scenarios that encounter a wide class of unknown applications, unlike prior

static approaches [24, 40] that require a priori knowledge of the executing applications. Table 1

presents a comparison between Caliper and several other interference estimation techniques.

Later, in Section 6.3, we experimentally evaluate each of these scenarios to illustrate the short-

comings of the prior dynamic approaches [16, 58]. Then, we show how our proposed phase-aware

interference estimation technique is able to estimate slowdown accurately with negligible over-

head even when the number of simultaneously executing applications is up to 16 contexts, as exists

in modern datacenters.

3 OVERVIEW OF CALIPER

In this section, we describe Caliper, a runtime system for estimating interference at multi-tenant

execution environments.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 3, Article 22. Publication date: June 2019.

22:6 R. S. Kannan et al.

Goal. The design goal of Caliper is to accurately estimate the slowdown of an application at

runtime. To achieve this, we need to gauge the performance of the application running with co-

runners, Perf(co−run) , as well as the performance of the application when it is running alone,

Perf(solo−run) during runtime. Using these quantities, the slowdown of the applications can be

easily estimated by the following Equation (1).

slowdown = Perf(co−run)/Perf(solo−run) . (1)

We have utilized Instructions Per Cycle (IPC) as the metric to quantify performance. Perf(co−run)

from Equation (1) is the IPC of the application during co-location and is directly measured when

the application is running along with the co-runners during runtime. Perf(solo−run) is the solo

execution performance of the application. IPC can be measured easily and cheaply on commodity

processors. A wide body of prior interference estimation techniques utilizes IPC as their primary

metric to quantify performance [16, 25, 58]. For even latency-sensitive applications, a prior study

from Google leveraged the CPI (Cycles Per Instructions) metric as a performance indicator [69].

Although the metric may not be highly accurate for some applications, it is used to only guide the

performance estimation.

Approach. The primary objective of this study is to be able to precisely estimate Perf(solo−run)

even during the presence of co-runners at runtime. To achieve this goal, we introduce a software

technique called micro-experiment. A micro-experiment is a short-lived runtime period for a

few milliseconds during which an experiment is run to collect a measurement of interest.

Our runtime system performs micro-experiments by opportunistically pausing the execution of

an application’s co-runners for a small amount of time so the resource contention is eliminated

temporarily in the system. The result of such a micro-experiment represents an accurate estimate

of the application’s solo execution performance, and this estimation along with Perf(co−run) (direct

performance measurement of an application when it is run together with other applications) can

be used as a basis to obtain the slowdown at runtime.

Challenges. To keep the cost of the estimation process low, we need to address a key challenge.

A recent prior study that periodically pauses co-running applications to estimate the performance

degradation has been shown to cause non-negligible overheads [16]. This is due to the following

reasons:

(1) Frequent pausing can disturb forward progress of the applications due to the execution

stalls.

(2) Pausing an application evicts its entries present in hardware caches, TLBs, BTBs, and so

on. This exacerbates the performance overhead problem.

(3) As the number of cores in a server increases, more applications (or VMs) can be housed

in servers. Under such circumstances, periodically pausing every co-running application

will increase the effective time for which individual applications is paused. Hence, a naive

technique like periodic pausing becomes an unsuitable solution for operation at scale.

Thus, it is essential to identify when micro-experiments need to be triggered. In this study,

we overcome this challenge by utilizing phase boundaries as the triggers for conducting micro-

experiments. The key observations that led towards utilizing phase boundaries as triggers are as

follows: First, the execution behavior of applications does not drastically change within a single

phase. This means that we do not need to estimate slowdown by performing micro-experiments

within a steady phase. Second, we observe that the number of phase changes is not large in most

applications, as also observed by previous works [21, 26, 56]. The majority of applications have

very few phases spanning an execution time that ranges from a few minutes up to half an hour [46].

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 3, Article 22. Publication date: June 2019.

Interference Estimator for Multi-tenant Environments Sharing Architectural Resources 22:7

Fig. 1. Interference estimation by POPPA [16] vs. Caliper.

It gives us an opportunity to opportunistically conduct our micro-experiments technique so we

are able to avoid excessive pauses for the common case where applications have very few phase

changes. Keeping these observations in mind, we utilize a continuous monitoring system that

performs online phase detection, identifying phase changes for applications during runtime.

Figure 1(b) illustrates how Caliper estimates the slowdown by using micro-experiments. When-

ever there is a phase change, we perform a micro-experiment by pausing all the co-running appli-

cations, giving an opportunity for the un-paused applications to eliminate the resource contention.

Then, we are able to measure Perf(solo−run) for the application without the resource contentions.

However, the most recent work that tries to estimate slowdown during runtime [16] pauses the

co-running applications in a periodic fashion, as shown in Figure 1(a). We have conducted micro-

experiments using 75 milliseconds as a pause period. The parameter is empirically determined

in our testbed to monopolize architectural resources during that time. Section 6.2 talks in detail

about the choice of our pause period. As a result, we can estimate the slowdown with negligible

overheads of less than 0.5% for most of the situations. We will discuss the parameter sensitivity in

the evaluation section.

While performing micro-experiments, our runtime estimates Perf(solo−run) of an application at

every phase boundary. We aggregate the estimation of slowdown at every phase of the application

to calculate the slowdown for the entire execution of the application, as shown by Equation (2):

Perf(solo−run) =
IPC (1) ×T(1) + IPC (2) ×T(2) + · · · · + IPC (n) ×T(n)

T1 +T2 · · · · +Tn

, (2)

where, Perf(solo−run) is the estimated IPC of solo execution of an application, IPC (i) is estimated

IPC of solo execution of the application during phase i , T(i) is the time for which the application

remains in phase i , and n is the total number of phases in the application.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 3, Article 22. Publication date: June 2019.

22:8 R. S. Kannan et al.

Fig. 2. (a) Solo execution of application. (b) Fluctuations in PMU type during co-location. (c) Co-phase

interference during co-location.

4 APPLICATION PHASE BEHAVIORS

In this section, we describe phase behaviors of applications in multi-tenant execution environ-

ments. Traditionally, phases can be defined as intervals within the execution of a program with

similar behavior [26]. Phase changes typically manifest themselves as observable changes in exe-

cution behavior of applications. Although there have been many efforts to detect phase changes

of a single application via performance monitoring units (PMUs) [21, 26, 31, 56], it is challenging

to precisely identify phase boundaries in multi-tenant environments. This is because the PMU-

based measurements of individual applications in multi-tenant environments are affected by the

behavior of co-running applications. Prior techniques are unreliable when multiple applications

are simultaneously running and hence cannot be directly applicable to our runtime system.

4.1 Two Classes of Phase Changes

As a first step towards detecting phase changes in co-located environments, we taxonomize phases

detected by PMUs (e.g., as shifts in an application’s CPI) as falling into one of two classes: en-

dogenous phase changes that result from an application’s innate behavior, and exogenous phase

changes that result from co-running applications. Thus, the goal of our runtime system is to ac-

curately identify endogenous phase changes while minimizing the detection of exogenous phase

changes. This is critical, as exogenous phase changes are false positives incurring unnecessary

micro-experiments. It results in increasing the overhead of our runtime system. In the next sub-

section, we investigate the causes of exogenous phase changes in further detail.

4.2 Characteristics of Exogenous Phase Changes

To study the characteristics of exogenous phase changes, we observe PMUs when an application is

executing along with its co-runners. Through these observations, we identify two critical reasons

contributing to exogenous phase changes.

Fluctuation. PMU-based measurements of a single phase are a set of discrete, time-series-based,

numerical quantities that lie between a range possessing minuscule variation, as shown in

Figure 2(a). However, in the presence of co-runners, PMU-based measurements belonging to a

single phase of the same application fluctuate a lot. In such scenarios, some of the PMU-based

measurements lie in the range of a different phase, making it challenging to determine phase

boundaries. Figure 2(a) represents the execution of an application when it is running alone.

Figure 2(b) represents the execution of an application when it is executing along with a co-runner.

From Figure 2(b), we can clearly see that some PMU measurements from phase 1 lie in the range of

the PMU measurements from phase 2 and vice versa. This makes it challenging to identify phase

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 3, Article 22. Publication date: June 2019.

Interference Estimator for Multi-tenant Environments Sharing Architectural Resources 22:9

boundaries. We have observed this phenomenon especially with PMU measurements correspond-

ing to micro-architectural entities like last-level cache misses that are shared by multiple cores.

Co-phase interference. Phase changes in one application can cause changes to other co-running

applications. We call this phenomenon co-phase interference. Figure 2(c) again represents the ex-

ecution of an application when it is executing along with a different co-runner. From Figure 2(c),

we can clearly see that the change in PMU measurements corresponding to co-phase interference

is difficult to be distinguished from endogenous phase changes.

Our goal here is to build a robust phase-aware online runtime system that detects endoge-

nous phase changes while minimizing the detection of exogenous phase changes. This is because

triggering micro-experiments during exogenous phase changes is undesired, as they will result in

increasing the performance overhead due to pausing of co-runners. In some situations when in-

terference is strong enough, our phase-aware online runtime system triggers phase changes even

for exogenous phase changes. This could potentially increase the overhead of our system by trig-

gering frequent micro-experiments. However, the occurrence of such events is very infrequent,

which is evident from the negligible overhead incurred by our system, as shown in Section 6.2.

5 IDENTIFYING PHASE CHANGES DURING CO-LOCATION

The primary goal of Caliper’s phase-detection approach is to detect endogenous phases (true posi-

tives) while ignoring exogenous phases (false positives) at runtime. For this purpose, we propose a

PMU-based mechanism that identifies the best PMU that can be utilized for phase detection. Iden-

tifying the best PMU types is an offline step that is undertaken once. We then utilize the identified

PMUs to detect phase changes during runtime. This is an online step that utilizes a continuous

monitoring infrastructure.

For the offline step, we first try to identify the representative PMU types that accurately detect

every single endogenous phase change while neglecting exogenous phases. In addition to that, the

extracted PMU types should be generic. In other words, it should be able to detect endogenous

phase changes even for an unknown application whose phase behavior has not been witnessed

before. For this purpose, we first assess each PMU type to detect phase changes for a training set

of applications. We then cross-validate to examine its ability to detect endogenous phases and

ignore exogenous phases for unknown applications. This determines the generality of each PMU

type. Based on the ability of each PMU type, we choose the best PMU type.

The initial step in this offline process is to carefully choose our training set of applications to

cover a wide range of contentiousness, sensitivity, and phase-changing attributes [60]. The list of

training applications is shown in the first column of Table 2. We use astar as our training co-

runner, which is cross-validated in our evaluation under Section 6. The application astar from

SPEC CPU2006 is known to be both contentious and to have numerous and rapidly changing

phases [60], which can train our model to be resistant against both fluctuations as well as co-phase

interference. With these pointers, we undertake the following three-step approach to extract the

set of PMU types that can be utilized for phase detection:

(1) Comparing PMU measurements during co-run with solo execution. We execute the

training set of applications alone to obtain PMU measurements during solo execution. We manu-

ally annotate the endogenous phases present in each of the training set of applications.

We then collect PMU measurements for each application present in the training set during co-

location. By using the PMU measurements during co-location, we verify for each PMU type its

ability to detect endogenous phases by comparing the timestamps corresponding to the actual

phase changes that happen during solo execution (from the annotated phases during the previ-

ous step). This process is illustrated in Figure 3 as we observe that the measurements for PMU A

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 3, Article 22. Publication date: June 2019.

22:10 R. S. Kannan et al.

Fig. 3. Comparing phases during co-located execution with phases present in solo execution.

detect the two endogenous phases present, which are confirmed by the annotated solo execution

of the application. However, the measurements for PMU B could not detect any endogenous phase

changes. It just detects an exogenous phase change that is not desired. With the PMU C, it detects

only an endogenous phase chase but misses the other endogenous phase. So, the PMU type A is

resilient for the application to detect phase changes in multi-tenant environments. We performed

the above process for 18 different PMU types.

(2) Obtaining PMU scoreboard. We then quantify the effectiveness of each PMU type that was

successful in identifying phase changes during the previous step (1). This quantification helps in

selecting the best PMU type that detects every possible phase change present in the system. This

is done by obtaining the PMU scoreboard, which will be discussed in detail in Section 5.1.

(3) Selecting the final set of PMU types. From observing the best PMU type for every single

application present in the training set, we obtain a single set of PMU type(s). Those PMU types

can be utilized to detect phase changes across a diverse class of applications. We describe this step

in Section 5.2.

5.1 Obtaining PMU Scoreboard

The motivation of PMU scoreboarding is to quantify the effectiveness of each PMU type. Us-

ing this quantification, we obtain a common set of PMUs that can work effectively towards

identifying phase changes. Our PMU scoreboarding quantifies PMU types by gauging how steep

change in PMU measurements are at each phase boundary. We use a technique called step detec-

tion to quantify steepness at each phase boundary. Figure 4 shows the overall flow for obtaining

the PMU scoreboard.

Inputs. Application and training dataset of time series PMU measurements during co-location.

Output. Threshold of separation (δ , described below) quantifying the steepness of a PMU type at

phase boundary for an application.

Objective function. To quantify the effectiveness of a PMU type, we assess the steepness mag-

nitude expressed by PMU measurements during phase change (higher variation means PMU type

distinguishes phase boundaries significantly better).

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 3, Article 22. Publication date: June 2019.

Interference Estimator for Multi-tenant Environments Sharing Architectural Resources 22:11

Fig. 4. Overview of PMU scoreboard technique.

Methodology. The steepness is obtained by performing the step detection methodology. Step

detection scheme is a process of finding abrupt changes in a time series signal. Internally, step

detection uses a technique called finite difference method for identifying abrupt changes.

5.1.1 Step Detection by Finite Difference Method. The fundamental hypothesis of the finite dif-

ference method for identifying abrupt changes is based on the fact that the absolute difference

between subsequent time-series measurements is very high at the exact point where the abrupt

changes occur. Phase detection merely translates into identifying the exact point where that par-

ticular abrupt change has happened.

Mathematically, the finite difference of a time series signal is the rate of change in the indi-

vidual elements. We implement the finite difference method by performing pairwise difference of

subsequent elements present in the time series using the following formula:

Y ′ =
Yj+1 − Yj

ΔT
Y ′j = Yj (f or 1 < j < n − 1),

where Yj is the jth points present in the time series, n being the number of points, ΔT being the

difference between the number of timestamps for time series values. The result highlights the

drastic change by showcasing a high value at the point where phase changes. Figure 4 clearly

illustrates this where we can see a sharp increase in the PMU measurement at timeT1 (at the point

Y9). Its corresponding finite differential value is very high at pointY ′8 . Hence, the result of the finite

difference method is a set of differentials similar to the Y ′ points shown in Figure 4.

The subsequent step is to distinguish Y ′8 from the other Y ′j points. For this purpose, we use a

moving window approach. We utilize a window size of 5 based on our observations that a single

phase lasts at least for 5s [18, 30, 31, 36, 52]. Our continuous monitoring infrastructure collects

measurements once every second, similar to most state-of-the-art approaches [16, 40, 68]. At every

point in the moving window, we obtain the mean and standard deviation of the current window.

If the latest element in the window is three standard deviations below or away the mean, then

we conclude that there is an abrupt change at that particular time [1, 37]. Finally, we obtain all

such abrupt changes (δs). The lowest numerical value of each such abrupt change obtained by

step detection is returned as the threshold of separation δ for a PMU type that is being utilized to

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 3, Article 22. Publication date: June 2019.

22:12 R. S. Kannan et al.

Table 2. PMU Types Ordered by Their Effectiveness

Workloads
PMU rank

1st 2nd 3rd

astar CPI branch L1-D load miss

bzip2 LLC store miss CPI L1-D load miss

cactusADM L1-D load miss L1-D load CPI

dealII CPI L1-D load branch

mcf L1-D load miss CPI LLC load

milc LLC store miss L1-D load branch

xalancbmk LLC store miss LLC load L1-D load

tonto L1-D load miss branch CPI

Fig. 5. Phase changes triggered by PMU types when running with astar. Single PMU type is insufficient to

detect phase changes.

perform phase detection for an application. For the example given in Figure 4, the value of δ is the

minimum of the value of δ1 and δ2. This delta value becomes useful to rank individual PMU types,

which is explained in the next section.

5.2 Ranking and Selecting PMU Types

To choose appropriate PMU types for identifying endogenous phase changes, we rank PMU types

for every single application using the δ value (threshold of separation) obtained from the PMU

scoreboarding technique. From that, we choose the PMU type that is capable of detecting endoge-

nous phases across all the applications. In this article, we have shown the top three PMU types in

Table 2 for each application that are ranked using the δ value.

However, an observation from our training experiments whose results are depicted in Table 2

shows that no single PMU type can detect phase changes across the entire training set of applica-

tions. In other words, there can be a situation where an architectural resource that can detect phase

changes in an application could fail to detect phase changes completely in a different application.

We illustrate this hypothesis based on a real-world example.

Figure 5 shows an example where a single PMU type will not be able to identify phase boundaries

across two different applications. Each application requires different PMU types to precisely detect

phase changes. In other words, mcf requires L1-d load misses while milc requires LLC store misses,

and vice versa fails. The x-axis indicates the cumulative number of instructions executed as time

progresses. The left y-axis featured as yellow (diamond) line shows the CPI of the applications

when running alone, and the right y-axis and the blue (circle) and red (dashed) line show the

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 3, Article 22. Publication date: June 2019.

Interference Estimator for Multi-tenant Environments Sharing Architectural Resources 22:13

selected hardware performance monitors for the application when running with three instances

of astar as co-runners.

From Figure 5(a), we find out that the PMU type, L1-d cache load misses, can effectively detect

phase changes of mcf in co-located environments. This is not true for the application milc, as

the same PMU type (L1-d cache load misses) fails to detect phase changes, as shown in Figure

5(b). These results motivate the need for multiple PMU types to capture phase changes across

a variety of applications. To achieve this, we undertake an approach where we observe a set of

architectural resources (CPI, LLC store miss, and L1-D load miss) in contrast to a single resource.

Moreover, to avoid missing endogenous phase changes, we use a conservative approach to trigger

a micro-experiment even if one of the PMU types out of the three detects a phase change. This

is because failing to detect endogenous phase changes will significantly reduce the accuracy in

estimating IPC of solo execution. However, predicting a non-existent phase change causes only

negligible overheads when the occurrence of such mispredictions is low. Additionally, the counters

CPI, LLC store miss, and L1-D load miss cover characteristics of applications that are both sensitive

and insensitive towards shared cache contention. Hence, these counters prove to be effective in

detecting phase changes even for a wide variety of unknown applications irrespective of the nature

of their inputs.

5.3 Using Selected PMU Types for Online Phase Detection

Online phase detection during runtime can be performed using the PMUs that we identified

during the offline step. Whenever an application is executed, our continuous monitoring run-

time infrastructure monitors each PMU type identified during the offline step. It performs online

step detection on each PMU type to detect the presence of any significant variation in the PMU

measurements.

Caliper can be summarized as a continuous monitoring runtime system that accurately esti-

mates slowdown of an application during runtime. Caliper performs micro-experiments, a short-

lived experiment to collect a measurement of interest by opportunistically pausing the execution

of co-running applications for a small amount of time so that resource contention can be tem-

porarily eliminated in the system. The result of such a micro-experiment represents an accurate

estimate of the solo performance for the application in that small period.

Performing micro-experiments frequently causes huge execution overheads. Hence, it is essential

to identify when micro-experiments need to be triggered. In this study, we overcome this challenge

by utilizing phase boundaries as triggers for conducting micro-experiments. This is because the ex-

ecution behavior of applications does not drastically change within a single phase. Hence, a single

micro-experiment for a phase is sufficient to characterize the execution behavior of an application

for that phase. Adding to that, the number of phase changes is few in most applications. We uti-

lize Performance Monitoring Units (PMUs) to detect phase changes during runtime. We perform

offline analysis on training data to identify the best PMU types. Our online runtime system uses

those PMU types during runtime to detect phase changes.

6 EVALUATION

6.1 Methodology

Infrastructure. We evaluate Caliper on two commodity multicore systems summarized in

Table 3. We use Linux KVM as the hypervisor and run applications on virtual machines (VMs) [35],

because running virtual machines is a standard way for cloud providers to isolate infrastructure

among different customers. Hence, our infrastructural setup consists of co-locating multiple vir-

tual machines (VMs) where each VM belongs to a different user.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 3, Article 22. Publication date: June 2019.

22:14 R. S. Kannan et al.

Table 3. Experimental Platforms

Processor Microarchitecture Kernel Hypervisor

Intel Xeon E5-2630 @2.4GHz Sandy Bridge-EP 3.8.0 KVM-QEMU v2.0

Intel Xeon E3-1420 @3.7GHz Haswell 3.8.0 KVM-QEMU v2.0

Table 4. Benchmark Used in Evaluation

Benchmarks Class of applications AWS use cases [5]

Sirius Suite Machine learning NTT Docomo (voice recognition) [6]

DjiNN & Tonic Deep neural network PIXNET (facial recognition) [8]

SPEC 2006 General purpose & Scientific Penn State [7]

NPB Parallel computing workloads NASA NEX [11]

Each virtual machine has 4GB of main memory and 16GB disk. We use the Ubuntu 12.04 dis-

tribution as guest operating system with Linux kernel 3.11.0. There is no change in the execution

characteristics of the applications while executing them using virtualized environments. We take

advantage of perf tool to collect hardware performance monitors while observing applications.

Applications. To evaluate the effectiveness of our technique, we use the benchmarks from SPEC

CPU 2006 [29] with ref inputs, NPB -NAS Parallel benchmarks [12]. In addition to that, we execute

emerging applications from SiriusSuite [28] and DjiNN&Tonic suite [27] in batch mode. Sirius suite

and DjiNN & Tonic suite contain a class of applications that implement state-of-the-art machine-

learning and computer-vision algorithms. It has been a common trend to execute such applications

in modern public clouds where multiple applications are oversubscribed in the same server [5–8,

10, 43, 45]. We can clearly see that the benchmark suites that we have utilized to evaluate Caliper

are similar to the applications that are being executed in state-of-the-art public cloud-computing

environments (e.g., Amazon web services [67]). Table 4 enumerates the benchmark suites, appli-

cation domain, and the respective use cases for the applications present in these benchmark suites

in a public cloud execution environment like Amazon Web Services (AWS). Also, SiriusSuite [28]

and DjiNN&Tonic suite [27] have stemmed into a startup that builds conversational artificial in-

telligence systems for the banking sector [3].

6.2 Caliper—Accuracy and Overhead

In this section, we evaluate the efficacy of Caliper. We discuss the accuracy in estimating slow-

down by Caliper and its overhead experimentally. Accuracy is calculated by comparing the esti-

mated slowdown from our runtime system with the actual slowdown, a metric that is consistently

followed by existing literature that focuses on estimating slowdown [16, 22, 23, 58].

Figure 6 shows the accuracy when Caliper is trying to estimate slowdown when four applica-

tions are co-located on a single server. The experimental setup here consists of four broad execu-

tion scenarios each based on the type of co-running application that we have taken into consider-

ation represented in the y-axis of Figure 6.

Single vCPU. The single-threaded benchmarks from SPEC CPU 2006, SiriusSuite, and

Djinn&Tonic are evaluated where for each experiment the observed application executes in a sin-

gle VM pinned to a single vCPU. The PMU-based measurements are collected from the vCPU

at which the application is executing, which directly corresponds to the performance of the

application.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 3, Article 22. Publication date: June 2019.

Interference Estimator for Multi-tenant Environments Sharing Architectural Resources 22:15

Fig. 6. Accuracy (in percentage error) of SPEC CPU2006, NAS Parallel Benchmarks, Sirius Suite, and

Djinn&Tonic suite while estimating slowdown when four applications are co-located.

Multiple vCPU. The multi-threaded benchmarks from NPB are evaluated where for each exper-

iment the observed application executes in a single VM pinned to two vCPUs. Here, the perfor-

mance of the application is the cumulative value of the PMU-based measurements obtained from

each vCPU at which the application is executing.

Individual cells in Figure 6 present the difference (error) in the estimated slowdown versus the

actual slowdown (light is good and dark is bad). For each experiment, we execute three instances of

a single type of co-runner libquantum, mcf, and milc, simultaneously along with one instance of

the application on the x-axis. The mix co-runner is a mix of three different co-runners, libquantum,

mcf, and milc, alongside the applications on the x-axis. We have used libquantum, mcf, and milc
as co-runners from our experiments, and through prior work [60], we found out that these were

the top three applications that exhibit significant activities towards shared architectural resources

including last-level cache and memory bandwidth. Hence, accurately estimating slowdown during

the presence of such co-runners was a big challenge for us [60]. Our experiments to estimate the

accuracy of slowdown and runtime overhead take into account all four applications executing

in the system. We run each benchmark three times and take the mean to minimize run-to-run

variability. We check to see if there is any phase change, every second owing to the observation

that phases are consistent for a few seconds. During every phase change, micro-experiments are

performed for 75ms to eliminate resource contention during observation. We obtain the value

75ms empirically by performing a sweep for different quantities optimizing for reduced overhead

and increased accuracy. Details will be discussed later.

Accuracy. From Figure 6, we can see that Caliper shows very low error rates across all the

applications even when running with multiple instances of cache-contentious co-runners like

libquantum. The average error rate when co-locating with such contentious co-runners is around

4%. We observe that 95% of our applications have errors less than 10% and the worst-case error

is 12% in our technique; whereas the worst-case error of prior techniques is up to 60% (details

presented in Section 6.3 of evaluation). We also observe that the error in estimating interference

using Caliper remains consistent regardless of the nature of the co-runners. This is indicative of

two things: (1) accuracy with respect to detecting phases and (2) precision of micro-experiments

in detecting per-phase interference. In the next section, we discuss the importance of having a

robust phase-detection methodology and its impact on the accuracy of of estimating interference.

Overhead. To enable Caliper on production systems, we have to achieve low overheads to mini-

mize the interference on running applications on the servers. Table 5 indicates the overhead that

is incurred by Caliper while estimating slowdown. We evaluate the overhead at the same exper-

imental setup under which we had evaluated accuracy. From Table 5, we can clearly see that the

overhead of the main observed application, as well as the average overhead of the co-running

applications, remains less than 1% in most of the cases. On average, the overhead of Caliper’s run-

time system is around 0.6%. Similarly, we also see that the number of phase changes per minute

is also much less. On average, there is a single phase change per minute. This indicates that each

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 3, Article 22. Publication date: June 2019.

22:16 R. S. Kannan et al.

Table 5. Execution Time Overhead and Number of Phase Changes

SPEC NPB Sirius

Overhead Phase changes Overhead Phase changes Overhead Phase changes

(%) (per min) (%) (per min) (%) (per min)

main-app 0.65 1.58 0.35 0.38 0.25 0.20

colo-app 0.74 0.91 0.45 0.75 0.44 0.80

Fig. 7. Accuracy and overheads for Caliper under different pause periods.

Fig. 8. Estimation error: Caliper vs. state-of-the-art software (POPPA [16]) and hardware (FST [23],

PTCA [22], ASM [58]) techniques for estimating interference.

application is paused for a few hundred milliseconds every minute, making the overhead extremely

negligible.

Sensitivity of the pause period. Towards obtaining an optimal pause period for operating

Caliper, we performed a sensitivity study. The results of this study are shown in Figure 7. From

Figures 7(a) and 7(b), we clearly observe two trends. First, the accuracy of estimating slowdown

increases as the pause periods increase up to 75ms. Then there is no benefit in increasing the pause

periods. Hence, we have utilized 75ms as an optimal pause period for our mechanism. Second, the

overheads do not change drastically as we increase the pause periods. This is because Caliper’s

frequency at which it pauses the co-runners is too low, causing negligible impact in the execution

time overheads.

6.3 Comparison with Prior Work

Accuracy. Figure 8 shows the accuracy of Caliper as compared to the accuracy of POPPA [16],

FST [23], PTCA [22], and ASM [58] for the benchmarks present in SPEC CPU 2006, NPB, Sirius

suite, and Djinn&Tonic suite. POPPA works by periodically pausing all co-running applications

except one for a very short time at fixed time intervals. The aggregated performance of the

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 3, Article 22. Publication date: June 2019.

Interference Estimator for Multi-tenant Environments Sharing Architectural Resources 22:17

applications during the pause periods is the key measure by which slowdown is estimated.

Through these experiments, we can see that the estimation error is much lower for Caliper than

POPPA [16]. The mean error of POPPA is 13.23%; however, our technique shows much lower

error rates, averaging around 3.77%.

It is challenging to estimate the slowdown when running with contentious co-runners, as they

quickly pollute the shared last-level cache and excessively use the shared memory bandwidth.

One of the main reasons for POPPA’s poor accuracy is that the pausing time (3.2ms) is too short to

capture solo performance of an application. This is because the shared cache would not be warmed

up to contain the entire working set of the application that is to be measured. As a result, the

measured application would spend most of its pausing time filling in the shared cache, giving much

less time to observe how the application performs when it monopolizes computing resources.

However, Caliper performs micro-experiments that pause co-runners only when discovering phase

boundaries. This enables us to observe the solo execution performance for a longer time without

worrying much about the overhead caused due to pausing for additional time. Hence, we are able

to achieve high accuracy in estimating slowdown at runtime.

We also observed that the state-of-the-art hardware-enabled approaches towards estimating

slowdown [22, 23, 58] showed a high error rate. Just like the other software approaches, state-of-

the-art hardware-enabled approaches utilize cache access rates of applications during solo exe-

cution time to determine slowdown of an application. Cache access rates of applications during

solo execution is again obtained by periodically pausing co-running applications in a round-robin

fashion. Hence, the limitations of the prior software approaches hold well for the hardware ap-

proaches, too. The mean errors of POPPA, FST, PTCA, and ASM are 11.04%, 28.28%, 38.42%, and

9.98%, respectively. From these results, we were able to see that Caliper can outperform even the

state-of-the-art hardware-enabled approaches present in the literature.

Multi-tenancy. To evaluate the effectiveness of the state-of-the-art hardware or software-based

approaches and Caliper towards supporting multiple tenants, we increase the number of executing

application contexts to 8 applications and 16 applications. Figure 8 shows the average accuracy of

Caliper as compared to POPPA for SPEC CPU2006 and NPB when co-locating with libquantum. We

can see that Caliper’s accuracy is around 3.95% when co-locating with 16 applications in contrast

to POPPA [16], FST [23], PTCA [22], and ASM [58], whose error is around 22%, 40%, 41%, and 19%,

respectively. The low accuracy of the prior techniques occurs because, as the number of co-runners

increases, the shared cache becomes much more polluted due to the contention. POPPA even in

such situations pauses for the same amount of time, which is too little for the shared last-level

cache to warm up to exhibit the performance corresponding to solo execution. Hence, its slow-

down estimation becomes highly inaccurate. Similarly, hardware techniques perform sampling in

a round-robin fashion using their proposed specialized hardware whose pressure increases as the

number of co-running applications increases. However, Caliper utilizes a phase-aware approach

that performs micro-experiments at adequate amounts of time during the right time to capture the

solo execution characteristics of every phase accurately.

Phase analysis. Now, we try to visualize the effectiveness at which Caliper utilizes its robust

phase-detection technique to achieve high accuracy and low overhead in estimating slowdown.

Toward illustrating this, we analyze the phase-level behavior of a selected set of applications that

exhibit a lot of phase changes, to show Caliper’s capability towards performing micro-experiments

at every single phase change.

First, we select two applications, mcf and milc, to analyze the execution behaviors. These ap-

plications possess a significant number of phase changes. As co-runners, we use libquantum and

mcf, respectively. Figure 9(a) shows the execution behavior of mcf with respect to time. In each

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 3, Article 22. Publication date: June 2019.

22:18 R. S. Kannan et al.

Fig. 9. Phase-level behavior of Caliper for mcf and milc when running with co-runners, 3 libquantum
(a) and mcf (b), respectively. Micro-experiments are triggered effectively at phase boundaries.

Table 6. Number of False Positives Incurred in Caliper Runtime System

milc (4) gobmk(1) hmmer(1) perbench(1) astar(7) namd(1) pos(1) chk(1) calculix(118) dealII(132)

libquantum 0 0 0 0 2 0 0 0 257 98

mcf 6 0 2 0 3 1 1 1 412 49

milc 5 0 1 0 2 0 0 0 353 33

mix 2 0 1 0 2 0 1 1 251 98

For each benchmark, the number of endogenous phases of the solo-run is represented in parentheses; e.g., milc (8) means

that milc has 8 endogenous phases. First column contains co-runners.

graph, the yellow line depicts the measured CPI of the application when running alone, and the

red line shows the CPI estimated by Caliper when the application is running with three instances

of libquantum or mcf. We can see that Caliper can effectively trace the phase changes. The closer

the red line is to the yellow line, the smaller the error. The error in estimating slowdown is 0.51%

over the entire run. For milc, Figure 9(b) presents that our technique can effectively trace all of its

phase. The error while estimating slowdown is 2.52%.

Second, we evaluate how many false positives are incurred by our technique. Table 6 illustrates

the number of falsely detected phase changes by Caliper. The first row shows the benchmarks for

which we have evaluated this experiment. We have shown only ten benchmarks in this table in

the interest of space constraints. The numbers present in the bracket after the benchmarks show

the endogenous phase counts (true positives) when running alone. The first column shows the

co-runners along which the benchmarks present in the first row have been evaluated. From our

experiments, we observed that the results for most of the benchmarks were similar to gobmk, hmmer,

namd, pos, and chk. There was just one phase, and Caliper was able to detect that phase. Addition-

ally, detecting false phases was a rare occurrence consuming negligible overheads. However, we

had a few interesting observations for the benchmarks calculix and dealII. The phases of these

applications are very irregular and contain spikes once every few seconds. Each of these situations

where spikes occur triggers a phase change resulting in a larger number of false positives. Another

interesting observation from our experiments was that there were more false positives when mcf
was a co-runner. This is because mcf has many phase changes, introducing many more false pos-

itives due to co-phase interference. However, the frequency at which Caliper’s runtime system

triggers phase changes is so low that our overhead remains less than 1% for most of the time.

Overhead. Figure 10 compares the overhead of up to 16 application contexts for Caliper and

the state-of-the-art software approach POPPA. We can clearly see that as the number of appli-

cation context increases, the overhead of Caliper increases negligibly. However, this is not the

case for other software approaches. This is due to the fact that POPPA performs periodic pauses.

As more applications are co-located, the effective time for which applications are paused increases,

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 3, Article 22. Publication date: June 2019.

Interference Estimator for Multi-tenant Environments Sharing Architectural Resources 22:19

Fig. 10. Overhead: Caliper vs. POPPA.

as POPPA needs to pause every application for the same amount of time for each of the co-runners.

However, Caliper pauses applications only during phase changes (which are comparatively infre-

quent). Hence, the overhead incurred by Caliper’s runtime system is less by an order of magnitude.

Figure 11 illustrates the reasons behind POPPA’s higher execution time overhead. Figure 11(a)

compares the performance of POPPA and Caliper in an environment without any slowdown esti-

mation runtime system. We can clearly see that the increased execution time overhead of POPPA

is due to the spikes present in CPI due to frequent pausing of co-runners periodically by POPPA

to estimate slowdown. However, Caliper performs micro-experiments rarely (once every phase).

Hence, there are no periodic spikes as seen in POPPA. Caliper’s execution time overhead also is

negligible.

We have experimentally verified the reasons for the increased overhead and it is clearly shown in

Figures 11(b), 11(c), and 11(d), respectively. As POPPA performs periodic pauses, it incurs addition

warmup overheads for the micro-architectural components present in the system. At the end of

every pause period, the system refills the micro-architectural components (cache, branch target

buffer, TLB, etc.) that would have been flushed during its pause period. This gets translated directly

into increased execution time overhead.

Figures 11(b), 11(c), and 11(d) illustrate the underlying causes for this phenomenon. From Fig-

ure 11(b), we can see that the cache misses increase whenever POPPA pauses co-runners in the

system. However, it remains unaffected for Caliper reasoning out its negligible overhead. Simi-

larly, from Figures 11(c) and 11(d), we can see that when POPPA frequently pauses applications,

branch misses and TLB (transition look aside buffers) miss increases. This is along similar lines as

micro-architectural components like branch target buffer (BTB)—TLBs are flushed out frequently

during pausing by POPPA. We can see that frequent pauses by POPPA increase the cache misses,

TLB misses, and branch misses by 11.6%, 5.7%, and 7%, respectively, thereby increasing the runtime

overhead of the execution of an application up to 10.5%. However, Caliper’s overhead, as well as

misses at the micro-architectural structures, remains less than 0.5%.

6.4 Leveraging Caliper for Fair Pricing in Datacenters

Infrastructure-as-a-service (IaaS) clouds primarily use a pay-as-you-go pricing model that charges

users a flat hourly fee for running their applications on shared servers. Customers renting IaaS

public clouds now have the capability to choose resource fragments at varying granularity in terms

of the number of virtual CPUs, the amount of memory, and storage size. Cloud service providers

rely on virtualization to isolate resource fragments belonging to each customer. However, in light

of significant potential for parallelism, cloud service providers co-locate applications belonging to

different users. Since the last-level cache and DRAM bandwidth remain shared among applications

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 3, Article 22. Publication date: June 2019.

22:20 R. S. Kannan et al.

Fig. 11. Performance of micro-architectural entities when POPPA’s runtime systems are being executed.

running within a single server, applications are slowed down as compared to when they run alone

on the system. This increased execution time that the application is subjected to reflects directly

on the price paid by the users under the pay-as-you-go scheme, creating an unfair pricing scenario.

To enable fair pricing in public clouds, it is essential to estimate the performance impact that

co-running applications have on an application. Identifying slowdown at runtime would be very

useful information in this regard, as it would be an appropriate indicator of influence of co-runners

on an application. Hence, such a scheme can be used as a critical substrate upon which any pricing

scheme can be built. However, such a scheme is highly dependent on the accuracy at which fairness

is estimated. Hence, achieving high accuracy in estimating slowdown becomes critical.

We compare the unfairness that is present while utilizing the hardware-enabled approaches for

pricing with our approach. We define unfairness as the price by which users are overcharged when

they are executing their applications in IaaS public clouds. We use the pricing model proposed

by Toosi et al. [64] and apply the slowdown estimation techniques along with it to calculate the

resultant price. From Figure 12, we can see that model is able to price applications with 5× more

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 3, Article 22. Publication date: June 2019.

Interference Estimator for Multi-tenant Environments Sharing Architectural Resources 22:21

Fig. 12. Comparison of fairness in pricing by Caliper with POPPA.

fairness while pricing users using their slowdown model as compared to the POPPA technique

proposed in Breslow et al. [16].

7 RELATED WORK

There have been many prior studies to detect performance interference in a variety of aspects of

architectural resources. We look first into the hardware-enabled approaches and then address the

prior work that utilizes system and OS-level approaches for detecting interference.

Hardware techniques: There are several approaches that try to estimate slowdown due to

contention in shared caches, memory controller, and bandwidth. Nesbit et al. employed the net-

work fair queuing model in the memory scheduler to meet the fairness [48]. Mutlu and Moscibroda

focused on DRAM specific architectural features such as row buffers and DRAM banks [42]. They

utilized memory scheduling techniques to ensure the fairness between multiple threads. Ebrahimi

et al. extended the fairness problem in memory subsystems by including shared last-level cache

and memory bandwidth [23]. This work focused on the source incurring performance interference

and proposed a throttling mechanism by controlling injection rates of requests to alleviate the con-

tention of shared resources. Suh et al. first discussed the cache-partitioning scheme to efficiently

use the shared resources [59]. Qureshi et al. proposed utility-based cache partitioning technique

to achieve high performance [53].

Software and systems approaches: There are many efforts introducing software frameworks

and proposing new designs of operating systems [24, 38, 40, 47, 50, 61, 68]. Q-Cloud measures

the resource capacity for satisfying QoS in a dedicated server called as a staging server and

then performs placement decisions based on choosing the right server that will be profitable

to minimize interference [47]. To accurately estimate the performance interferences without

profiling on a dedicated server, Bubble-Up [40] and Cuanta [24] designed the synthetic workloads

to understand the degree of interference when co-locating applications. Meanwhile, Soares

et al. studied the concept of a pollute buffer in shared last-level caches to prevent filling the

shared caches as non-reusable data. Their work focused on improving the utilization of shared

caches through OS-level page allocation [57]. Zhuravlev et al. extended the CPU scheduler to

alleviate some of the interferences. The goal of this work is to schedule the threads by evenly

distributing the load intensity to caches [71]. Blagodurov et al. proposed that the scheduler

needs to consider the effects of NUMA [15]. Also, there are numerous prior studies to solve the

contention problems, such as shared last-level cache and NUMA, by scheduling virtual machines

[4, 39, 54]. Tuncer et al. utilizes a machine-learning approach to detect anomalies in HPC systems

[65, 66]. They utilize the characteristics of applications that have executed before in the system

to model performance anomalies. Zhang et al. identifies contentious application behavior by

observing the application performance at runtime using CPI [69] for both latency-sensitive and

batch applications running on datacenter. On the one hand, to detect application phases, there are

several prior studies requiring compiler support [18, 20, 52, 56] and utilizing PMU measurements

[30, 36]. Isci et al. characterized the two different approaches for performing live runtime phase

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 3, Article 22. Publication date: June 2019.

22:22 R. S. Kannan et al.

analysis [31], which motivated us to design Caliper. On the other hand, those prior studies could

not be directly applicable due to the lack of consideration of multi-tenant environments.

8 CONCLUSIONS

In this article, we estimate slowdown of applications that are co-located in multi-core systems

that contend for shared cache and main memory. Caliper accurately estimates slowdowns using

a phase-aware micro-experiment approach that utilizes system software tools like Performance

Monitoring Units. We demonstrate the superiority of Caliper as compared to the state-of-the-

art hardware-enabled approaches. We conclude by illustrating the scenarios at which estimating

interference at runtime would be useful by evaluating its applicability in one such scenario.

ACKNOWLEDGMENT

We would like to thank Lavanya Subramanian for her insightful suggestions that helped improve

this work.

REFERENCES

[1] Outlier detection methods. 2019. Oracle Enterprise Performance Management Workspace, Fusion Edition User’s

Guide. Retrieved May 28, 2019 from https://docs.oracle.com/cd/E40248_01/epm.1112/cb_statistical/frameset.htm?

ch07s02s10s01.html.

[2] eBook: Private vs. public vs. hybrid cloud, which one to choose?. Retrieved on May 28, 2019 from https://www.

logicworks.com/blog/2015/03/difference-privatepublic-hybrid-cloud-comparison/.

[3] Conversational AI for enterprise. Clinc AI. Retrieved May 28, 2019 from https://clinc.com/.

[4] Jeongseob Ahn, Changdae Kim, Jaeung Han, Young-Ri Choi, and Jaehyuk Huh. 2012. Dynamic virtual machine sched-

uling in clouds for architectural shared resources. In Proceedings of the 4th USENIX Conference on Hot Topics in Cloud

Computing (HotCloud’12). USENIX Association, 19.

[5] Amazon Web Services. 2019. Case Studies & Customer Success - Amazon Web Services (AWS). Accessed May 28,

2019. https://aws.amazon.com/solutions/case-studies/.

[6] Amazon Web Services. 2019. NTT DOCOMO Case Study - Amazon Web Services (AWS). Retrieved May 28, 2019.

http://aws.amazon.com/solutions/case-studies/ntt-docomo/.

[7] Amazon Web Services. 2019. AWS case study: Penn State. Retrieved May 28, 2019. http://aws.amazon.com/solutions/

case-studies/penn-state/.

[8] Amazon Web Services. 2019. AWS case study: PIXNET. Retrieved May 28, 2019. http://aws.amazon.com/solutions/

case-studies/pixnet/.

[9] Amazon Inc. 2019. Amazon Elastic Compute Cloud (EC2). Retrieved May 28, 2019. http://aws.amazon.com/ec2/

purchasing-options/.

[10] S. Avireddy, V. Perumal, N. Gowraj, R. S. Kannan, P. Thinakaran, S. Ganapthi, J. R. Gunasekaran, and S. Prabhu.

2012. Random4: An application specific randomized encryption algorithm to prevent SQL injection. In Proceedings of

the IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications. 1327–1333.

DOI:https://doi.org/10.1109/TrustCom.2012.232

[11] Amazon Web Services. 2019. AWS case study: NASA/JPL’s Desert Research and Training Studies: Retrieved May 28,

2019. https://aws.amazon.com/solutions/case-studies/nasa-jpl/.

[12] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A.

Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga. 1991. The NAS parallel benchmarks:

Summary and preliminary results. In Proceedings of the ACM/IEEE Conference on Supercomputing (Supercomputing’91).

ACM, 158–165.

[13] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew

Warfield. 2003. Xen and the art of virtualization. In ACM SIGOPS Op. Syst. Rev., Vol. 37. ACM, 164–177.

[14] Luiz Andre Barroso and Urs Hoelzle. 2009. The Datacenter as a Computer: An Introduction to the Design of Warehouse-

Scale Machines (1st ed.). Morgan and Claypool Publishers.

[15] Sergey Blagodurov, Sergey Zhuravlev, Mohammad Dashti, and Alexandra Fedorova. 2011. A case for NUMA-aware

contention management on multicore systems. In Proceedings of the USENIX Annual Technical Conference (USENIX-

ATC’11). USENIX Association, 1.

[16] Alex D. Breslow, Ananta Tiwari, Martin Schulz, Laura Carrington, Lingjia Tang, and Jason Mars. 2014. Enabling fair

pricing on high performance computer systems with node sharing. Sci. Program. 22, 2 (2014), 59–74.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 3, Article 22. Publication date: June 2019.

https://docs.oracle.com/cd/E40248_01/epm.1112/cb_statistical/frameset.htm?ch07s02s10s01.html
https://docs.oracle.com/cd/E40248_01/epm.1112/cb_statistical/frameset.htm?ch07s02s10s01.html
https://www.logicworks.com/blog/2015/03/difference-privatepublic-hybrid-cloud-comparison/
https://www.logicworks.com/blog/2015/03/difference-privatepublic-hybrid-cloud-comparison/
https://clinc.com/
https://aws.amazon.com/solutions/case-studies/
http://aws.amazon.com/solutions/case-studies/ntt-docomo/
http://aws.amazon.com/solutions/case-studies/penn-state/
http://aws.amazon.com/solutions/case-studies/penn-state/
http://aws.amazon.com/solutions/case-studies/pixnet/
http://aws.amazon.com/solutions/case-studies/pixnet/
http://aws.amazon.com/ec2/purchasing-options/
http://aws.amazon.com/ec2/purchasing-options/
https://doi.org/10.1109/TrustCom.2012.232
https://aws.amazon.com/solutions/case-studies/nasa-jpl/

Interference Estimator for Multi-tenant Environments Sharing Architectural Resources 22:23

[17] Quan Chen, Hailong Yang, Minyi Guo, Ram Srivatsa Kannan, Jason Mars, and Lingjia Tang. 2017. Prophet: Pre-

cise QoS prediction on non-preemptive accelerators to improve utilization in warehouse-scale computers. In

Proceedings of the 22nd International Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS’17).

[18] Ghislain Landry Tsafack Chetsa, Laurent Lefevre, Jean-Marc Pierson, Patricia Stolf, and Georges da Costa. 2013. A user

friendly phase detection methodology for HPC systems’ analysis. In Proceedings of the IEEE International Conference

on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing

(GREENCOM-ITHINGS-CPSCOM’13). IEEE Computer Society, 118–125.

[19] Christina Delimitrou and Christos Kozyrakis. 2013. Paragon: QoS-aware scheduling for heterogeneous datacenters.

In Proceedings of the 18th International Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS’13). ACM, 77–88.

[20] Ashutosh S. Dhodapkar and James E. Smith. 2002. Managing multi-configuration hardware via dynamic working set

analysis. SIGARCH Comput. Archit. News 30, 2 (May 2002), 233–244.

[21] Ashutosh S. Dhodapkar and James E. Smith. 2003. Comparing program phase detection techniques. In Proceedings of

the 36th IEEE/ACM International Symposium on Microarchitecture (MICRO’03). IEEE Computer Society, 217.

[22] Kristof Du Bois, Stijn Eyerman, and Lieven Eeckhout. 2013. Per-thread cycle accounting in multicore processors.

ACM Trans. Archit. Code Optim. 9, 4, Article 29 (Jan. 2013), 22 pages.

[23] Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt. 2010. Fairness via source throttling: A configurable

and high-performance fairness substrate for multi-core memory systems. In Proceedings of the 15th International

Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’10). ACM, 335–346.

[24] Sriram Govindan, Jie Liu, Aman Kansal, and Anand Sivasubramaniam. 2011. Cuanta: Quantifying effects of shared

on-chip resource interference for consolidated virtual machines. In Proceedings of the 2nd ACM Symposium on Cloud

Computing (SOCC’11). ACM, Article 22, 14 pages.

[25] A. Gupta, J. Sampson, and M. B. Taylor. 2014. Quality time: A simple online technique for quantifying multicore exe-

cution efficiency. In Proceedings of the IEEE International Symposium on Performance Analysis of Systems and Software

(ISPASS’14). 169–179.

[26] Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Calder. 2005. SimPoint 3.0: Faster and more flexible program

phase analysis. J. Instruct.-Level Parallelism 7 (2005) 1–28.

[27] Johann Hauswald, Yiping Kang, Michael A. Laurenzano, Quan Chen, Cheng Li, Trevor Mudge, Ronald G. Dreslinski,

Jason Mars, and Lingjia Tang. 2015. DjiNN and Tonic: DNN as a service and its implications for future warehouse

scale computers. In Proceedings of the 42nd International Symposium on Computer Architecture (ISCA’15). ACM, 27–40.

[28] Johann Hauswald, Michael A. Laurenzano, Yunqi Zhang, Cheng Li, Austin Rovinski, Arjun Khurana, Ronald G. Dres-

linski, Trevor Mudge, Vinicius Petrucci, Lingjia Tang, and Jason Mars. 2015. Sirius: An open end-to-end voice and

vision personal assistant and its implications for future warehouse scale computers. In Proceedings of the 20th Inter-

national Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’15). ACM,

223–238.

[29] John L. Henning. 2006. SPEC CPU2006 benchmark descriptions. SIGARCH Comput. Archit. News 34, 4 (Sept. 2006),

1–17.

[30] C. Isci, G. Contreras, and M. Martonosi. 2006. Live, runtime phase monitoring and prediction on real systems with

application to dynamic power management. In Proceedings of the 39th IEEE/ACM International Symposium on Mi-

croarchitecture (MICRO’06). 359–370.

[31] Canturk Isci and Margaret Martonosi. 2006. Phase characterization for power: Evaluating control-flow-based and

event-counter-based techniques. In Proceedings of the International Symposium on High-Performance Computer Archi-

tecture (HPCA’06). 121–132.

[32] Jithin Jose, Mingzhe Li, Xiaoyi Lu, Krishna Chaitanya Kandalla, Mark Daniel Arnold, and Dhabaleswar K. Panda.

2013. SR-IOV support for virtualization on infiniband clusters: Early experience. In Proceedings of the 13th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing (CCGrid’13). IEEE, 385–392.

[33] R. S. Kannan, A. Jain, M. A. Laurenzano, L. Tang, and J. Mars. 2018. Proctor: Detecting and investigating interference

in shared datacenters. In Proceedings of the IEEE International Symposium on Performance Analysis of Systems and

Software (ISPASS’18).

[34] Ram Srivatsa Kannan, Lavanya Subramanian, Ashwin Raju, Jeongseob Ahn, Jason Mars, and Lingjia Tang. 2019.

GrandSLAm: Guaranteeing SLAs for jobs in microservices execution frameworks. In Proceedings of the 14th European

Conference on Computer Systems (EuroSys’19). ACM, 34.

[35] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. 2007. KVM: The Linux virtual machine moni-

tor. In Proceedings of the Linux Symposium, Vol. 1. 225–230. Retrieved from: http://linux-security.cn/ebooks/ols2007/

OLS2007-Proceedings-V1.pdf.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 3, Article 22. Publication date: June 2019.

http://linux-security.cn/ebooks/ols2007/OLS2007-Proceedings-V1.pdf
http://linux-security.cn/ebooks/ols2007/OLS2007-Proceedings-V1.pdf

22:24 R. S. Kannan et al.

[36] J. Lau, S. Schoenmackers, and B. Calder. 2005. Transition phase classification and prediction. In Proceedings of the

11th International Symposium on High-Performance Computer Architecture. 278–289.

[37] Christophe Leys, Christophe Ley, Olivier Klein, Philippe Bernard, and Laurent Licata. 2013. Detecting outliers: Do

not use standard deviation around the mean, use absolute deviation around the median. J. Experimental Soc. Psych.

49, 4 (2013), 764–766.

[38] Lei Liu, Yong Li, Zehan Cui, Yungang Bao, Mingyu Chen, and Chengyong Wu. 2014. Going vertical in memory

management: Handling multiplicity by multi-policy. In Proceedings of the 41st International Symposium on Computer

Architecuture (ISCA’14). IEEE Press, 169–180.

[39] Ming Liu and Tao Li. 2014. Optimizing virtual machine consolidation performance on NUMA server architecture for

cloud workloads. In Proceedings of the 41st International Symposium on Computer Architecuture (ISCA’14). IEEE Press,

325–336.

[40] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou Soffa. 2011. Bubble-up: Increasing utilization

in modern warehouse scale computers via sensible co-locations. In Proceedings of the 44th IEEE/ACM International

Symposium on Microarchitecture (MICRO’11). ACM, 248–259.

[41] Sean Marston, Zhi Li, Subhajyoti Bandyopadhyay, Juheng Zhang, and Anand Ghalsasi. 2011. Cloud computing—The

business perspective. Decis. Support Syst. 51, 1 (Apr. 2011), 176–189.

[42] Onur Mutlu and Thomas Moscibroda. 2007. Stall-time fair memory access scheduling for chip multiprocessors. In

Proceedings of the 40th IEEE/ACM International Symposium on Microarchitecture (MICRO’07). IEEE Computer Society,

146–160.

[43] V. Nagarajan, R. Hariharan, V. Srinivasan, R. S. Kannan, P. Thinakaran, V. Sankaran, B. Vasudevan, R. Mukundrajan,

N. C. Nachiappan, A. Sridharan, K. P. Saravanan, V. Adhinarayanan, and V. V. Sankaranarayanan. 2012. SCOC IP cores

for custom built supercomputing nodes. In Proceedings of the IEEE Computer Society Symposium on VLSI (ISVLSI’12).

[44] V. Nagarajan, K. Lakshminarasimhan, A. Sridhar, P. Thinakaran, R. Hariharan, V. Srinivasan, R. S. Kannan, and A.

Sridharan. 2013. Performance and energy efficient cache system design: Simultaneous execution of multiple applica-

tions on heterogeneous cores. In Proceedings of the IEEE Computer Society Symposium on VLSI (ISVLSI’13).

[45] V. Nagarajan, V. Srinivasan, R. Kannan, P. Thinakaran, R. Hariharan, B. Vasudevan, N. C. Nachiappan, K. P. Saravanan,

A. Sridharan, V. Sankaran, V. Adhinarayanan, V. S. Vignesh, and R. Mukundrajan. 2012. Compilation accelerator on

silicon. In Proceedings of the IEEE Computer Society Symposium on VLSI (ISVLSI’12).

[46] Arun A. Nair and Lizy K. John. 2008. Simulation points for SPEC CPU 2006. In Proceedings of the IEEE International

Conference on Computer Design (ICCD’08). IEEE, 397–403.

[47] Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. 2010. Q-clouds: Managing performance interference effects for

QoS-aware clouds. In Proceedings of the 5th European Conference on Computer Systems (EuroSys’10). ACM, 237–250.

[48] Kyle J. Nesbit, Nidhi Aggarwal, James Laudon, and James E. Smith. 2006. Fair queuing memory systems. In Proceedings

of the 39th IEEE/ACM International Symposium on Microarchitecture (MICRO’06). IEEE Computer Society, 208–222.

[49] Dejan Novaković, Nedeljko Vasić, Stanko Novaković, Dejan Kostić, and Ricardo Bianchini. 2013. DeepDive: Transpar-

ently identifying and managing performance interference in virtualized environments. In Proceedings of the USENIX

Conference on Annual Technical Conference (USENIX ATC’13). USENIX Association, 219–230.

[50] Heekwon Park, Seungjae Baek, Jongmoo Choi, Donghee Lee, and Sam H. Noh. 2013. Regularities considered harm-

ful: Forcing randomness to memory accesses to reduce row buffer conflicts for multi-core, multi-bank systems. In

Proceedings of the 18th International Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS’13). ACM, 181–192.

[51] Cavium Inc. 2017. NIC Partitioning and SR-IOV. https://www.marvell.com/documents/yezqlzan4x9tb2zxy37r/.

[52] E. Perelman, M. Polito, J. Bouguet, J. Sampson, B. Calder, and C. Dulong. 2006. Detecting phases in parallel appli-

cations on shared memory architectures. In Proceedings of the 20th IEEE International Parallel Distributed Processing

Symposium.

[53] Moinuddin K. Qureshi and Yale N. Patt. 2006. Utility-based cache partitioning: A low-overhead, high-performance,

runtime mechanism to partition shared caches. In Proceedings of the 39th IEEE/ACM International Symposium on

Microarchitecture (MICRO’06). IEEE Computer Society, 423–432.

[54] Jia Rao, Kun Wang, Xiaobo Zhou, and Cheng Zhong Xu. 2013. Optimizing virtual machine scheduling in NUMA

multicore systems. In Proceedings of the IEEE 19th International Symposium on High Performance Computer Architecture

(HPCA’13). 306–317.

[55] Gang Ren, Eric Tune, Tipp Moseley, Yixin Shi, Silvius Rus, and Robert Hundt. 2010. Google-wide profiling: A contin-

uous profiling infrastructure for data centers. IEEE Micro 30, 4 (July 2010), 65–79.

[56] Timothy Sherwood, Suleyman Sair, and Brad Calder. 2003. Phase tracking and prediction. In Proceedings of the 30th

International Symposium on Computer Architecture (ISCA’03). ACM, 336–349.

[57] Livio Soares, David Tam, and Michael Stumm. 2008. Reducing the harmful effects of last-level cache polluters with

an OS-level, software-only pollute buffer. In Proceedings of the 41st IEEE/ACM International Symposium on Microar-

chitecture (MICRO’08). IEEE Computer Society, 258–269.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 3, Article 22. Publication date: June 2019.

https://www.marvell.com/documents/yezqlzan4x9tb2zxy37r/

Interference Estimator for Multi-tenant Environments Sharing Architectural Resources 22:25

[58] Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and Onur Mutlu. 2015. The application slowdown

model: Quantifying and controlling the impact of inter-application interference at shared caches and main memory. In

Proceedings of the 48th IEEE/ACM International Symposium on Microarchitecture (MICRO’15). IEEE Computer Society,

13.

[59] G. Edward Suh, Srinivas Devadas, and Larry Rudolph. 2002. A new memory monitoring scheme for memory-aware

scheduling and partitioning. In Proceedings of the 8th International Symposium on High-Performance Computer Archi-

tecture (HPCA’02). IEEE Computer Society, 117.

[60] Lingjia Tang, Jason Mars, and Mary Lou Soffa. 2011. Contentiousness vs. sensitivity: Improving contention aware

runtime systems on multicore architectures. In Proceedings of the 1st International Workshop on Adaptive Self-Tuning

Computing Systems for the Exaflop Era (EXADAPT’11). ACM, 12–21.

[61] Lingjia Tang, Jason Mars, Wei Wang, Tanima Dey, and Mary Lou Soffa. 2013. ReQoS: Reactive static/dynamic com-

pilation for QoS in warehouse scale computers. In Proceedings of the 18th International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS’13). ACM, 89–100.

[62] Prashanth Thinakaran, Jashwant Raj Gunasekaran, Bikash Sharma, Mahmut Taylan Kandemir, and Chita R. Das. 2017.

Phoenix: A constraint-aware scheduler for heterogeneous datacenters. In Proceedings of the IEEE 37th International

Conference on Distributed Computing Systems (ICDCS’17).

[63] Prashanth Thinakaran, Jashwant Raj, Bikash Sharma, Mahmut T. Kandemir, and Chita R. Das. 2018. The curious case

of container orchestration and scheduling in GPU-based datacenters. In Proceedings of the ACM Symposium on Cloud

Computing (SoCC’18).

[64] A. N. Toosi, R. N. Calheiros, R. K. Thulasiram, and R. Buyya. 2011. Resource provisioning policies to increase IAAS

provider’s profit in a federated cloud environment. In Proceedings of the IEEE 13th International Conference on High

Performance Computing and Communications (HPCC’11). 279–287.

[65] O. Tuncer, E. Ates, Y. Zhang, A. Turk, J. Brandt, V. J. Leung, M. Egele, and A. Coskun. 2019. Online diagnosis of

performance variation in HPC systems using machine learning. IEEE Trans. Parallel Distrib. Syst. 30, 4 (2019), 883–

896. DOI:10.1109/TPDS.2018.2870403

[66] Ozan Tuncer, Emre Ates, Yijia Zhang, Ata Turk, Jim Brandt, Vitus J. Leung, Manuel Egele, and Ayse K. Coskun. 2017.

Diagnosing performance variations in HPC applications using machine learning. In High Performance Computing,

Julian M. Kunkel, Rio Yokota, Pavan Balaji, and David Keyes (Eds.). Springer International Publishing, Cham, 355–

373.

[67] Wikipedia. 2019. Amazon Elastic Compute Cloud. https://en.wikipedia.org/wiki/Amazon_Elastic_Compute_Cloud.

Accessed: 2015-08-10.

[68] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang. 2013. Bubble-flux: Precise online QoS management for

increased utilization in warehouse scale computers. In Proceedings of the 40th International Symposium on Computer

Architecture (ISCA’13). ACM, 607–618.

[69] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale, and John Wilkes. 2013. CPI2: CPU perfor-

mance isolation for shared compute clusters. In Proceedings of the 8th ACM European Conference on Computer Systems

(EuroSys’13). ACM, 379–391.

[70] Yilei Zhang, Zibin Zheng, and M. R. Lyu. 2011. Exploring latent features for memory-based QoS prediction in cloud

computing. In Proceedings of the 30th IEEE Symposium on Reliable Distributed Systems (SRDS’11). 1–10.

[71] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova. 2010. Addressing shared resource contention in

multicore processors via scheduling. In Proceedings of the 15th International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS’10). ACM, 129–142.

Received August 2018; revised March 2019; accepted March 2019

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 3, Article 22. Publication date: June 2019.

https://doi.org/10.1109/TPDS.2018.2870403
https://en.wikipedia.org/wiki/Amazon_Elastic_Compute_Cloud

