
Architectural Support for Convolutional Neural Networks
on Modern CPUs

Animesh Jain1, Michael A. Laurenzano1, Gilles A. Pokam2, Jason Mars1 and Lingjia Tang1

University of Michigan, Ann Arbor1, Intel Labs2

{anijain,mlaurenz,profmars,lingjia}@umich.edu,gilles.a.pokam@intel.com

ABSTRACT

A key focus of recent work in our community has been on de-

vising increasingly sophisticated acceleration devices for deep

neural network (DNN) computation, especially for networks

driven by convolution layers. Yet, despite the promise of sub-

stantial improvements in performance and energy consumption

offered by these approaches, general purpose computing is not

going away because its traditional well-understood program-

ming model and continued wide deployment. Therefore, the

question arises as to what can be done, if anything, to evolve

conventional CPUs to accommodate efficient deep neural net-

work computation.

This work focuses on the challenging problem of identifying

and alleviating the performance bottlenecks for convolution

layer computation for conventional CPU platforms. We begin

by performing a detailed study of a range of CNN-based ap-

plications on a modern CPU microarchitecture, finding that

designing a physical register file (PRF) capable of feeding com-

putational units is the primary barrier that prevents the addition

of more compute units in the CPU, limiting the performance

improvements that can be achieved by CPU on convolution lay-

ers. We present the design of a novel, minimally intrusive set

of microarchitectural and ISA extensions that address this prob-

lem and describe the code generation support needed to take

advantage our design. Through a detailed evaluation that cov-

ers 5 state-of-the-art neural network applications, we observe

that applying these extensions allows packing more compute in

the CPU while keeping PRF energy in check, achieving a 2×
performance improvement and a 2.7× energy-delay product

improvement against a popular Intel Haswell server processor

baseline.

CCS CONCEPTS

• Computer systems organization✙ Single instruction, mul-

tiple data; Neural networks;

KEYWORDS

Deep Neural Networks, Vector Instructions

ACM Reference Format:

Animesh Jain1, Michael A. Laurenzano1, Gilles A. Pokam2, Jason

Mars1 and Lingjia Tang1. 2018. Architectural Support for Convolu-

tional Neural Networks on Modern CPUs. In International conference

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components of
this work must be honored. For all other uses, contact the owner/author(s).

PACT ’18, November 1–4, 2018, Limassol, Cyprus

© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5986-3/18/11.
https://doi.org/10.1145/3243176.3243177

on Parallel Architectures and Compilation Techniques (PACT ’18),

November 1–4, 2018, Limassol, Cyprus. ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/3243176.3243177

1 INTRODUCTION

Deep Neural Networks (DNNs) have recently emerged as a

core computational component in user-facing applications that

include analyzing text, decoding speech, recognizing images

and searching the web, among others [23, 28, 34–37, 51, 55,

59, 61]. For DNNs based on convolutional layers, GPUs and

more specialized accelerators have gained significant traction

as the hardware platforms of choice for running convolution

computation [16, 17, 19, 48]. This dual-device acceleration

model that our community has focused on involves adding the

GPU or specialized accelerator to a conventional CPU platform,

typically over a loosely-coupled interconnect such as PCIe, QPI

or NVLink [3, 7, 8].

Looking at modern CPU offerings, it is clear that they offer

substantially fewer raw floating point operations per second

(FLOPS) than their GPU counterparts. However, CPUs are an

indispensable part of the design of any system, meaning they are

a well understood part of conventional system design practices

while offering the benefit of a seamless, familiar programming

model and software stack. Facebook uses CPUs for perform-

ing DNN inference at scale [27]. Recent work shows that the

programming models for accelerators are non-standard and un-

familiar to many programmers [49]; it is especially problematic

for asynchronous accelerator programming models that are er-

ror prone and difficult to master [13]. Due to the long history

of solving challenges that arise with CPUs across the comput-

ing stack, we have a well-oiled computing stack for CPUs for

quite sometime, and thus, general purpose CPU computing will

remain widely deployable. Therefore, alongside designing dual-

device acceleration platforms, it remains an equally important

question to understand what are the performance bottlenecks

for CPU in achieving high performance for CNNs and how to

design CPU hardware that can improve performance of CNNs

with minimum hardware changes while also performing all the

non-accelerable tasks for which CPUs are essential.

CPU designs have a long history of incorporating hard-

ware and ISA support for specialized domain-specific oper-

ations, evidenced by the near-universal support for cryptog-

raphy, virtualization, security and multimedia operations in

modern CPU offerings [4–6, 9, 10]. Unfortunately, despite

the large body of work in our community on accelerating

DNNs [11, 16, 18, 24, 25, 38, 41, 46–48], there is little un-

derstanding in the literature of the interplay among the factors

involved in improving CPU performance on convolution layers.

Simply increasing raw FLOPS by continuing down the path

of scaling vector widths, such as in the progression from SSE

https://doi.org/10.1145/3243176.3243177
https://doi.org/10.1145/3243176.3243177

to AVX to AVX2 among x86 platforms [22, 43], is unlikely

to continue for two reasons. First, the AVX2 vector width of

512 bits spans a full cache line, and thus longer vectors would

necessarily touch multiple cache lines per vector register load,

introducing significant performance penalties or substantial mi-

croarchitectural workarounds. Second, leveraging larger vector

widths puts the onus on programmers and compilers to find

additional sources of SIMD parallelism, an extremely difficult

task even for current vector widths that remains an active, open

area of research in the compiler community [12, 30, 45]. Thus,

it is clear that improving the computational capability of CPUs

for convolution layers requires an alternative approach, yet it

remains unclear what that approach is.

This paper is the first to undertake a detailed characterization

of the issues involved in improving CPU performance for convo-

lution layers. We find first that scaling the read bandwidth of the

physical register file (PRF) is one of the key constraints needed

to deliver additional data to increasingly capable compute units.

Second, we find that harnessing increasingly capable compute

units requires crafting a solution that spans both hardware and

software to take full advantage of the data reuse present in the

core of the CNN computation.

Building on this insight, we design Locality Extensions for

Deep Learning (LEDL). LEDL is a technique that spans both

hardware and software, consisting of a novel set of microarchi-

tectural and ISA extensions to increase the computational capa-

bilities of modern CPUs for CNNs. We present the design in

detail, which in hardware includes a handful of architecturally

visible remote registers that reside within the VFMA units in

the CPU and a set of inter-VFMA links that allow data to be

passed between units directly. In software, LEDL’s automatic

code generator, ACG, is carefully designed to generate code

that is robust to different microarchitectural implementations

while taking full advantage of the reuse opportunities exhibited

by convolution layer computation and aggressive prefetching

mechanisms within CPUs.

The contributions of this paper are as follows:

• Convolution layer/CPU Bottlenecks – we present the first

thorough characterization study of convolution layer per-

formance on CPUs, identifying the hardware factors that

constrain improving its performance, finding that scaling the

PRF read bandwidth is the key constraint that needs to be

solved to improve convolution performance on CPUs.

• Extensible Hardware for Convolution Layers – we de-

scribe the design and implementation of LEDL, a set of

microarchitecture and ISA extensions that allow modern

CPUs to seamlessly improve the performance of convolution

layer computation, while keeping the energy-hungry physi-

cal register file in check. We also show that these extensions

can accelerate certain varieties of fully-connected and long

short-term memory (LSTM) networks. The extensions are

evaluated across a large space of design points that offer

differing levels of computational capability.

• Robust Code Generation – we describe the design and

implementation of Automatic Code Generator (ACG), a code

generator that takes advantage of the heavy data reuse ex-

hibited within convolution layer computation and leverages

aggressive register tiling and hardware prefetching mecha-

nisms to produce high performance code across a large space

of microarchitectural design points.

Together, the hardware and software components of LEDL

produce a platform design capable of providing substantial

performance and energy improvements to convolution layer

computation on CPUs. When extending an Intel Haswell server

processor design with LEDL, we observe that across 5 state-of-

the-art neural networks we achieve performance improvements

that average 2× and energy-delay product improvements that

average 2.7×.

2 BACKGROUND AND MOTIVATION

2.1 CNN Computation

Machine learning research has been increasingly focused in

recent years on convolution neural networks (CNNs), as CNNs

have been shown to outperform the alternatives across a num-

ber of different machine learning tasks [20, 54]. It is also ev-

ident that convolution layers are becoming more prominent

as time goes on, specifically for tasks like object recognition,

video analysis, drug discovery and natural language process-

ing [23, 28, 34–37, 51, 55, 59, 61]. These CNN-driven networks

are becoming increasingly larger and deeper. For example, the

Alexnet image recognition network had only 5 convolution lay-

ers [37], while the recently released ResNet can have hundreds

of convolution layers [28].

CNN Characterization. Beyond making up a large number

of layers in modern CNNs, convolution layers consume a large

fraction of the computational cycles in the total execution time,

an observation that is in line with similar observations made by

prior work [16, 18, 46].

Convolution layer computation has a number of implemen-

tations that have been explored in the literature and adopted in

software packages [1, 19, 21, 38, 56]. We observe that there

are two main classes of implementations that appear in high

performance implementations: IM2COL + matrix multiplica-

tion (IM2COLMM) and winograd transform [38]. While each

of these different implementations differs in how broadly ap-

plicable they are and in their performance characteristics, the

computational kernel underlying all of them is the SGEMM

calculation. We observe that SGEMM computations on average

contributes to 78% of total execution time for our application

suite for IM2COLMM implementation. We observe similar

trend for Winograd algorithm as well. In addition, this SGEMM

computation has also been used as the underlying implemen-

tation of other widely used DNN layers like fully connected

and long short term memory layers [33] (we briefly discuss

these layers in Section 5.6). Thus, the key to increasing the per-

formance of CNN computation on CPUs is to achieve higher

performance on the SGEMM calculation.

2.2 CPU Bottleneck Identification

The current trend of increasing raw computational capability of

the CPUs is to simply scale the vector width of the SIMD units.

For example, the Intel x86 SIMD vector width extensions have

increased from 128-bits in SSE to 256-bits in AVX2 to 512-bits

in AVX-512. However, the vector width scaling trend is unlikely

to continue for two reasons. First, scaling vector width beyond

cache line width (512 bits) requires touching multiple cache

lines per vector register load, possibly introducing complex

microarchitectural workarounds to handle multiple variable-

latency memory requests. Second, larger vector widths makes it

2

Register BW
Arch. Registers
Phy. Registers
L1 Cache Size
L1 Cache BW

0x

0.5x

1x

1.5x

S
p
ee

d
u
p
 o

v
er

 H
as

w
el

l

Figure 1: Performance impact of doubling five memory-related microarchi-
tectural parameters, when VFMA units are increased to 4; Arch registers
and Reg BW are the key factors

increasingly difficult for the application developers or compilers

to find SIMD parallelism amenable to such large vector widths,

which is a difficult problem to solve even for current SIMD

widths [12, 30, 45]. Due to these issues with vector width

scaling, the only other obvious solution to increase raw CPU

FLOPS is to add additional vector math units.

However, adding more vector math units is not enough to

achieve higher CPU FLOPS. It is equally necessary to supply

data to these vector math units every clock cycle to take advan-

tage of this additional CPU compute. This leads to the question

- which memory-related microarchitectural parameters need to

be adjusted to keep vector units busy?

Bottleneck Analysis. To begin to answer this question, we

study five such microarchitectural parameters - L1 cache band-

width, L1 cache size, number of architectural registers and

number of physical registers and Register bandwidth to identify

which memory structure(s) should be focused on. In this study,

we increase the number of vector math units from 2 (Haswell

processor baseline) to 4 and measure the impact of doubling

the value of these five parameters in simulation, both in isola-

tion and in conjunction with each other, on the performance of

SGEMM kernel. We present our findings in Figure 1. There are

2 key observations. First, increasing cache bandwidth and/or

size alone (first 16 bars) does not improve SGEMM perfor-

mance. The reason is that SGEMM employs aggressive register

tiling, reusing the data in registers multiple times before go-

ing back to caches. Current L1 cache size and bandwidth are

sufficient for this usage. Similarly, current Intel machines have

enough physical registers for this usage. Second, we observe

that both the number of architectural registers and register

bandwidth have to be increased simultaneously (the rightmost

eight bars) to achieve substantial speedup. Register bandwidth

is necessary to supply the data to the vector math units ev-

ery cycle. And, increasing architectural registers is necessary

to achieve higher tile size, reusing data multiple times before

bringing more in from cache.

2.3 Challenges

Energy Consumption. Conventional out-of-order cores use

Physical Register File (PRF) for register renaming which helps

in extracting more instruction level parallelism. PRF size has

been increasing with every new CPU offering, currently set at

168 physical floating-point registers in Haswell processors. This

PRF size is large enough to support SGEMM kernel, given we

have enough software-visible architectural registers. Therefore,

the deciding parameter to keep vector math units busy is PRF

bandwidth.

To understand the impact of PRF bandwidth, it is neces-

sary to understand how SGEMM works. All SGEMM kernel

operations can be realized using Fused Multiply Add (FMA)

instructions. Fortunately, in recent years CPU vendors have

introduced vector fused multiply add (VFMA) units in the pro-

cessor that can be leveraged by SGEMM computation. Each

VFMA operation requires 3 vector register reads. Therefore,

adding a VFMA unit requires extra three read ports in the PRF,

introducing several challenges.

Firstly, the energy per access increases rapidly as the number

of PRF read ports increases. Thus, the inclusion of additional

read ports to feed a larger number of vector compute units

rapidly increases the energy per PRF read, which can quickly

turn the PRF a major contributor to the energy consumption of

the CPU. Secondly, additional read ports increase the access

latency to the PRF, where even a modest number of read ports

can begin to constrain clock rate. For instance, a PRF with 14

read ports at 22nm technology node can meet a 2.4GHz clock

rate, while a PRF with 15 ports cannot.

Therefore, it is clear that PRF reads are expensive and have to

be kept to a minimum to keep the energy-hungry PRF in check.

We observe that SGEMM kernel has high amount of data reuse,

which if exploited wisely can result in significant reduction in

PRF reads. For example, considering multiplication of matrices

A and B, first element of A is multiplied to every element in

the first row of matrix B, providing opportunity to cut the PRF

reads for first element of matrix A. And similarly, first element

of matrix B is multiplied to every element in the first column

of matrix A. These opportunities for reuse could, alongside

register tiling, be leveraged to substantially reduce the number

of reads to the PRF.

Code Generation. Another challenge is generating code that

can efficiently take advantage of the additional compute in the

CPUs. Libraries such as MKL are aggressively tuned to current

CPU specifications, and thus these libraries cannot be read-

ily ported to new hardware configurations having more VFMA

units without significant additional manual labor. Increasing the

number of VFMA units requires handling data movements be-

tween the memory, registers and the VFMA units in an effective

manner to keep the VFMA units busy. In addition, this interplay

changes with the number of architectural registers and VFMA

units in the processor, requiring an automatic code generation

technique that is robust to different microarchitectural imple-

mentations while taking full advantage of reuse opportunities

exhibited by SGEMM calculation.

3 OVERVIEW

This work focuses on devising a set of solutions to the afore-

mentioned physical register file (PRF) energy and performance

limitations. This section presents a sketch of the solution com-

ponents spanning both hardware and software that allow a

general purpose CPU design to overcome those limitations.

Hardware. Our solution, Locality Extensions for Deep Learn-

ing (LEDL), takes advantage of the substantial data reuse op-

portunities inherent in the SGEMM calculations to efficiently

utilize the scarce PRF bandwidth available on the CPUs. LEDL

centers around two key modifications in the CPU microarchi-

tecture to reduce the burden on PRF. First, we add an architec-

turally visible register, VFMA remote register, embedded in

each VFMA unit. Second, we add low-cost unidirectional inter-

VFMA links between the VFMA units, that a VFMA unit can

use to pass on the data to the connected VFMA unit. These mi-

croarchitectural modifications enable the programmer to reuse

3

VFMA

Remote

Register

Port 2Port 1 Port 3

output

next

VFMA
VFMA

pipeline

register

From

PRF

From

PRF

From

PRF

From InterVFMA link

To PRF
(b)

PRF 12 reads/cycle

VFMA

To PRF

PRF 6 reads/cycle

(a)

VFMA

To PRF

VFMA

To PRF

VFMA

To PRF

VFMA

To PRF

VFMA

To PRF

PRF 5 reads/cycle

VFMA

To PRF

VFMA

To PRF

VFMA

To PRF

VFMA

To PRF

(c)
VFMA Remote Register (Local reuse)

InterVFMA links (Inter-unit reuse)

(d)

Figure 2: Architecture overview; (a) Haswell processor status with 2 VFMA units, (b) Straightforward extension to 4 VFMA units (c) LEDL introduces
VFMA remote register and InterVFMA links, and (d) LEDL modifications to VFMA input ports

the data multiple times, both within and across the VFMA units,

instead of reading from the PRF every time, effectively reduc-

ing the register reads per cycle while allowing to pack more

VFMA units in the CPU. We contrast LEDL to related work in

Section 6.

Software. We introduce Automatic Code Generator (ACG)

that automatically generates code for SGEMM calculations

suitable for a given number of architectural registers and VFMA

units, while maximizing the data reuse. ACG leverages two

optimization strategies - Register tiling and Prefetcher-friendly

layout transformation - to keep compute units busy. These

optimization parameters depend on the number of architectural

registers and VFMA units. ACG analytically finds a suitable set

of optimization parameters that structure the computation in a

manner necessary to achieve high data reuse not only within the

PRF, but also within and across the VFMA units as facilitated

by LEDL microarchitectural additions.

4 DESIGN AND IMPLEMENTATION

CNN applications have high compute and energy requirements.

Improving performance of CNN applications on CPUs requires

adding more VFMA units, while keeping the energy-hungry

PRF in check. In this section, we present LEDL hardware

and software implementation details designed to improve CPU

energy efficiently for CNNs.

4.1 Hardware Design

4.1.1 Energy-Efficient PRF Usage. LEDL’s goal is to

reduce the burden on PRF, while being able to pack more

compute in the CPUs. It utilizes the data reuse inherent in

SGEMM calculations to reduce PRF reads, effectively reducing

the PRF bandwidth and energy requirements. We achieve this

energy-efficient usage of PRF by making minor modifications

in the VFMA units.

Figure 2 gives an overview of the current state of the PRF and

FMA units and our microarchitectural extensions. Figure 2(a)

shows the status of current Intel Haswell processor design hav-

ing 2 VFMA units connected to the PRF. Each VFMA unit

requires 3 register operands from the PRF and writes 1 register

in the PRF, requiring a total of 6 PRF reads per cycle for Intel

Haswell. Figure 2(b) shows a straightforward extension of Intel

Haswell architecture, having 4 VFMA units. This configuration

requires PRF bandwidth of 12 register reads per cycle, incur-

ring significantly high energy cost. SGEMM calculations have

high data reuse opportunity which can be exploited to reduce

the number of PRF reads per cycle substantially. To utilize this

data reuse, we extend each VFMA unit to achieve temporal

reuse within and across the VFMA units, as shown in Fig-

ure 2(c). First, each VFMA unit has an architecturally visible

register, referred to as VFMA remote register capable of reusing

a vector register input locally (at the same unit) across multi-

ple operations. Second, the VFMA units are connected with

unidirectional links, referred to as InterVFMA links, adding

opportunity of inter-unit reuse across VFMAs.

Local Reuse - VFMA Remote Register. To reuse a data value

locally, each VFMA unit is augmented with an architecturally

visible register. This register is different from other architectural

registers in that it is coupled with a particular VFMA unit. It can

be written from the caches or from the other registers like other

architectural registers, but it cannot be written by the VFMA

itself. It is used for storing an input value that can be reused

multiple times, which would have otherwise come from PRF.

Localizing the usage of the remote register to its VFMA unit,

while also disallowing the VFMA to update it, results in little

hardware overhead. VFMA remote register adds a capability

of reducing the PRF bandwidth requirement by a maximum of

one-third if the application data-reuse is efficiently utilized.

Inter-unit Reuse - InterVFMA links. Further, LEDL exposes

inter-unit reuse capability in VFMA units by connecting them

via a unidirectional link, as shown in Figure 2(c). The VFMA

unit can obtain one of its operands from the InterVFMA link,

instead of reading it from PRF. These links help in achieving

inter-unit reuse, where an operand can be read just once from

the PRF and then can be reused across VFMA units by using

InterVFMA links. When coupled with VFMA remote registers,

this further cuts down the PRF reads by around one-third by

reusing the same value across different VFMA units. Similar

to VFMA remote register, InterVFMA links transfer only the

input data and do not support transfer of VFMA output to next

VFMA input (discussed more in Section 6).

VFMA Input Ports. To take advantage of local and inter-

unit reuse, we modify VFMA input port design so that it is

flexible enough to take inputs from PRF, its Remote Register

and InterVFMA link. Figure 2(d) shows the implementation

details of VFMA ports. Typical VFMA unit has 3 input ports

and 1 output port. In current Haswell architecture, each of these

input ports is connected to the PRF. We modify input port 1 to

take the input from either Remote register or PRF and input

port 2 to obtain the input from either InterVFMA link or PRF.

Input port 3 is kept unmodified, receiving the operand from the

PRF. The VFMA output port is also kept unmodified, writing

back the value in the PRF as usual.

4.1.2 Instruction Set Architecture. Here, we describe the

ISA extensions required to utilize the microarchitectural data

reuse capabilities exposed by LEDL. We use x86 operations to

explain the workings of these ISA extensions, but the ideas can

be applied to other ISAs as well.

4

VFMA ID 0

a0 a1

b2, b1, b0
c3, c1, c0

 Tags are shown by [VFMA ID tag, Group ID tag]

0 : Loads for values b0, b1 and b2

1 : #1 - vfma(a0, b0, c0)[0,0]

2 : #2 - vfma(a0, b1, c1)[0,1] #3 - vfma(a1, b0, c2)[1,1]

3 : Cache miss for b2 - Stalled

4 : Still waiting for b2 - Stalled

5 : #4 - vfma(a0, b2, c3)[0,2] #5 - vfma(a1, b1, c4)[1,2]

6 : #6 - vfma(a1, b2, c5)[1,3]

VFMA ID 1

c5, c4, c2

c3, c1, c0
c5, c4, c2

Figure 3: Example of leveraging VFMA ID and Group tags for instruction
scheduling

Remote Register Instructions. VFMA Remote Registers are

architecturally visible registers that can be written by conven-

tional move operations, moving the data from memory or other

architectural registers to the remote registers. From a program-

mer’s perspective, these are new registers that are dedicated to

the VFMA units. An example of move operation from memory

to a VFMA remote register(%vfma0reg) is:

vmov 0(%rcx), %vfma0reg

where vmov instruction transfers a vector word from the mem-

ory to the VFMA0 Remote Register.

VFMA Instructions. Most of the our ISA extensions are re-

stricted to VFMA instructions. These extensions provide the

select signal for the multiplexers in the VFMA input ports

shown in Figure 2(d), resulting in 4 categories of VFMA opera-

tions:

vfma <PRF>, <PRF>, <PRF>

vfma <RR>, <PRF>, <PRF>

vfma <PRF>, <LINK>, <PRF>

vfma <RR>, <LINK>, <PRF>

where <RR>, <LINK> and <PRF> denote that the operand is read

from Remote Register, InterVFMA link and Physical Regis-

ter File respectively. Note that the first category is the class

of VFMA operations currently supported in a conventional

microarchitecture, choosing all the operands from PRF.

VFMA and Group ID Tags. To facilitate precise instruction

scheduling of VFMA instructions to take advantage of our

design (discussed next in Section 4.1.3), we add two fields

to the VFMA opcode specification. First, each VFMA unit is

assigned a tag that can be specified in each instruction. The in-

struction scheduler extracts this tag from the VFMA instruction

opcode and then issues the instruction to the specific VFMA

unit as identified by the tag. Second, a Group ID tag provides

another layer of precise scheduling capability by informing

the instruction scheduler about the instructions that should be

issued simultaneously. All the VFMA instructions that have

the same Group ID tag must be scheduled simultaneously. This

means that every instruction, in the group of VFMA instruc-

tions with same Group ID tag, must have its operands ready

before the whole group can be issued. This can be seen as intro-

ducing a degree of in-orderness to the execution of these groups

of instructions, however we show in Section 5.2 that this effect

has minimal impact on the application performance.

4.1.3 Instruction Scheduling. Dynamic Instruction sched-

ulers in CPUs have the responsibility of scheduling ready-to-

issue instructions to the functional units as they become avail-

able. In current Haswell processors, whenever the dynamic

a0a1
a2a3
a4a5

b0 b1 b2 b3

b4 b5 b6 b7

M K

K N

Mt

Kt
Nt

Kt

1

2

3

4

2

1 M

N

c0 c1 c2 c3

c4 c5 c6 c7

c8 c9 c10c11

Nt

Mt

1

3

4

2

Matrix A Matrix B Matrix C

X =

1 computes partial sum of output tile C for input tile A and B
Repeating computes one output tile to completion1 2

computes Nt columns of ouputs1 2 3Repeating

finishes matrix multiplication1 2 3 4Repeating

Figure 4: Register tiling steps performed by ACG

scheduler encounters a ready VFMA instruction, it schedules it

on either of the VFMA units, whichever is available.

However, our extensions pose two challenges in the instruc-

tion scheduling - (a) The VFMA instructions need to be care-

fully scheduled to the relevant VFMA units. Since each Remote

Register is local to its VFMA, and Inter FMA links are also

unidirectional, the operations have to be orchestrated in a cer-

tain manner and cannot be scheduled randomly as done by the

current dynamic scheduler. (b) In addition, some of the instruc-

tions in this pre-defined sequence might not be ready because

one of their operands might be waiting for a cache miss to get

resolved. To address these challenges, the instruction scheduler

takes advantage of the two fields – VFMA ID tag and Group

ID tag – included in the VFMA instruction specification.

Figure 3 shows the usage of these two tags, using an in-

struction sequence operating on 2 VFMA units connected via

InterVFMA links. VFMA remote registers are already loaded

with operands a0 and a1. The sequence of operands that go

on the InterVFMA links is b0, b1 and b2. The third operand,

also the output register, comes from the register file and de-

noted by ci. The figure shows the instruction sequence where

each instruction has the associated tags in the square brackets

[VFMA ID tag, Group ID tag]. In cycles 1 and 2, the VFMA ID

tag directs the scheduling of instruction in the corresponding

VFMA units. Also Cycle 1 and Cycle 2 have different Group

IDs, forcing the instruction scheduler to follow the sequence.

Cycle 3 shows an event where operand b2 is unavailable due to

a cache miss. Since instructions 4 and 5 share the same Group

ID tag, even though instruction 5 is ready to be issued, instruc-

tion scheduler delays its issue until Cycle 5, when instruction

4 operand b2 is also available. Group ID and VFMA ID tag,

therefore, help in achieving precise instruction scheduling that

is necessary to utilize the local and inter-unit reuse capabilities

exposed by LEDL.

4.2 Code Generation

Increasing VFMA units in the CPU requires an automatic code

generator that can generate the code as per the availability

of hardware resources, while also maximizing the heavy data

reuse exhibited in the SGEMM calculations. Our code gen-

erator, ACG, leverages two optimization strategies - Register

Tiling and Prefetcher-friendly layout transformation - to maxi-

mize data reuse and keep VFMA units busy. Using these opti-

mizations, ACG structures the computation in a manner, where

data can be reused within and across the VFMA units. ACG,

then, maps the computation to LEDL using the ISA extensions

described in Section 4.1.2.

4.2.1 Register Tiling. SGEMM kernel calls have high

data reuse, providing opportunities of achieving high compute

5

1 // The output tile is kept in registers - c0, c11

2 vmov b0, r0; vmov b1, r1; vmov b2, r2; vmov b3, r3 // Load tile B

3

4 vbroadcast a0, r4 // Read element from tile A

5 // Calculate partial sum for the first row of output tile

6 vfma r0, r4, c0; vfma r1, r4, c1; vfma r2, r4, c2; vfma r3, r4, c3

7

8 // Perform the same compuation for next output rows

9 vbroadcast a2, r4

10 vfma r0, r4, c4; vfma r1, r4, c5; vfma r2, r4, c6; vfma r3, r4, c7

11 vbroadcast a4, r4

12 vfma r0, r4, c8; vfma r1, r4, c9; vfma r2, r4, c10; vfma r3, r4, c11

13 // Repeat line 4-12 for next row of tile B and next colum of tile A (unroll Kt times)

1 // The output tile is kept in registers - c0, c11

2 vmov b0, rr0; vmov b1, rr1; vmov b2, rr2; vmov b3, rr3 // Load tile B

3

4 vbroadcast a0, r4; vbroadcast a2, r5; vbroadcast a4, r6

5

6 // Compute partial sums (Column is VFMA ID tag, row inst have same group ID tag)

7 vfma rr0, r4, c0;

8 vfma rr0, r5, c4; vfma rr1, Link, c1;

9 vfma rr0, r6, c8; vfma rr1, Link, c5; vfma rr2, Link, c2;

10 vfma rr1, Link, c9; vfma rr2, Link, c6; vfma rr3, Link, c3;

11 vfma rr2, Link, c10;vfma rr3, Link, c7;

12 vfma rr3, Link, c11;

13 // Repeat the same steps for next row of tile B and next colum of tile A

(a) (b)

Figure 5: Code generation template for the partial sum output tile calculation for (a) non-LEDL and (b) LEDL hardware

to memory ratio. To take advantage of this reuse, it is necessary

to perform aggressive vector register tiling in the CPUs. We

show later in Section 5.8 that by utilizing the registers effi-

ciently, we can achieve upto 5× performance improvements as

compared to a software that underutilizes the registers.

The details of our register tiling approach are illustrated in

Figure 4, showing the steps involved in applying register tiling

when multiplying input matrices A and B to produce output

matrix C. The tiling is performed for both input and output

matrices. As shown in the figure, the input A tile size if Mt ×
Kt , and the input B tile size is Kt × Nt , resulting in an output

tile size of Mt × Nt . The output tile holds the partial sum for

the multiplication of A and B input tiles. Structuring SGEMM

calculations in this manner not only exposes data reuse in PRF,

but also within and across VFMA units, where LEDL can be

leveraged to achieve better energy characteristics.

We show the details of the partial output calculation for non-

LEDL hardware in 1 in Figure 4, while the corresponding code

template is shown in Figure 5(a),where the tiling parameters

– Mt , Nt , Kt – are set at (4,24,2). Firstly, first row of the input

B tile (Nt elements) is read from the memory into the registers

(line 2). These values are reused before moving on to the next

row. Now, elements from the first column of the input tile A

are read one-by-one and used to compute the partial sums for

the first row of output (line 4 - line 12). Note that element A

is a scalar, which has to be replicated by vector length (shown

as broadcast instruction in line 4), as the same value is multi-

plied to each element in each vector of the current row of input

tile B. Once all the elements in the column of A are used, we

move to second column of tile A and second row of tile B. This

essentially translates into unrolling the loop by Kt times.

Once this partial sum calculation finishes, there are several

options to choose from. We observed that computing an output

tile to completion results in the best performance, as it achieves

maximum reuse possible for the output matrix. We achieve this

by moving the tile horizontally in matrix A and vertically in

matrix B, shown in the figure by 2 , resulting in the completion

of the output tile of elements Mt × Nt . We then move the

output tile vertically down shown by 3 . Repeating 1 , 2 and

3 results in the completion of M × Nt output elements. Finally,

we move to the next column, as shown by 4 . Repeating 1 , 2 ,

3 and 4 results in the completion of matrix multiplication.

While the underlying basics for performing register tiling

using LEDL features remain same, the implementation details

change slightly. The corresponding template is shown in Fig-

ure 5(b) which can be understood in conjunction with Figure 6

showing the values that are used within (local reuse) and the

values that are used across the VFMA units (inter-unit reuse).

The row elements of input tile B are brought into the VFMA

remote registers (shown by rr in line 2), reusing these operands

locally. All the column elements of input tile A are read into

the registers before the actual computation starts (line 4). The

values of these registers is now passed one by one to the first

VFMA register which then transfers the value to the next units

using InterVFMA links, enabling inter-unit reuse. While hoist-

ing all the input tile reads to the start increases the register

pressure, it results in better performance as it hides the memory

latency to large extent.

Identifying Suitable Tiling Parameters. An objective of our

code generation step is to find suitable tiling parameters that

fit the hardware specifications, while also maximizing the data

reuse opportunities. Analyzing the aforementioned template,

we can easily find the relationship between the tiling parameters

and the number of architectural registers. In addition, we can

also calculate compute-to-memory-access ratio (CMAR) which

captures data reuse at the PRF. ACG, using these relationships,

generates a software variant by choosing an efficient set of

tiling parameters that maximizes data reuse while fitting in

available architectural register count.

As we can see from the template, for the software that does

not use LEDL capabilities, 1 requires 1 register for input tile

A, Nt/V L registers for input tile B and Mt ∗Nt/V L registers for

input tile C, where VL refers to the Vector Length; the number

of floating point elements that can fit into a vector. For compute-

to-memory-access ration (CMAR), the template performs Mt ∗
Nt/V L VFMA operations for every 1 memory read from input

tile A and Nt/V L memory reads from input tile B. Therefore,

the resulting relationship between tiling parameters and register

tiling and CMAR is

Arch Registers = 1+Nt/V L+Mt ∗Nt/V L (1)

CMAR = (Mt ∗Nt/V L)/(1+Nt/V L) (2)

Similarly, the relationships when we leverage LEDL capabili-

ties are

Arch Registers = Mt +Nt/V L+Mt ∗Nt/V L (3)

CMAR = (Mt ∗Nt/V L)/(Mt +Nt/V L) (4)

Depending on whether the HW supports LEDL, ACG chooses

the relevant equations and picks the tile parameters that has the

highest compute-to-memory ratio, while also fitting inside the

available architectural register file size.

4.2.2 Prefetcher-friendly Layout Transformation. We

observe that for many convolution layers, even after applying

aggressive register tiling, the generated code variants still have

low VFMA utilization, sometimes as low as 50%. Upon fur-

ther investigation, we find that CPU is heavily stalled on cache

misses, even though the memory access pattern seems to be pre-

dictable for the cache prefetchers. The reason for this slowdown

is that the prefetchers are not allowed to prefetch beyond page

boundaries. In convolution layers, the matrices are typically

large resulting in stride larger than a page boundary when the

the data access pattern jumps to next row of the matrix.

6

a4, a2, a0

VFMA

b0 c8, c4, c0

VFMA

b1 c9, c5, c1

VFMA

b2 c10, c6, c2

VFMA

b3 c11, c7, c3

a4, a2, a0 a4, a2, a0 a4, a2, a0

c8, c4, c0 c9, c5, c1 c10, c6, c2 c11, c7, c3

Figure 6: Computation and data movement for the LEDL code

To solve this issue, before starting any SGEMM computa-

tions, ACG performs a prefetcher-friendly layout transforma-

tion on the input matrices A and B, so that the memory access

pattern becomes a continuous back-to-back sequence during

the compute part. The overhead of performing this transforma-

tion (in the order of O(M ∗K+K ∗N)) typically gets amortized

because of an order of magnitude higher number of FMA op-

erations (in the order of O(M ∗N ∗K)), where the transformed

data is reused multiple times. With this layout transformation,

the prefetchers work very efficiently bringing most of the data

in L1 caches before it is actually required, resulting in higher

compute utilization. ACG uses the tiling parameters with vector

memory operations (like Intel AVX vmov instruction) to gen-

erate the code for layout transformation. The transformation

code is same irrespective of whether the code is utilizing LEDL

reuse features. Figure 7 shows this transformation for input

matrices A and B for the example discussed in Section 4.2.1.

The transformation can be viewed as flattening the 2-dimension

matrix into a 1-dimensional matrix, such that every next access

is located contiguously in this flattened array.

Interleaving Transformation and Compute. To further re-

duce the cost of layout transformation, ACG interleaves some

portion of compute with the layout transformation. Since layout

transformation typically stalls on the memory, the interleaving

utilizes the unused VFMA units to complete a small portion of

SGEMM calculation in parallel. This technique is particularly

useful for the cases where the amount of computation in the

SGEMM computation is smaller, where the impact of hiding

the overhead of the transformation becomes more visible.

5 EVALUATION

5.1 Methodology

Applications. We evaluate our hardware and software mecha-

nisms on 5 state-of-the-art CNN applications – Alexnet, Over-

feat, VGG 16, NiN and ResNet [28, 37, 42, 50, 52]. These are

medium to large CNNs, presenting a large variation in con-

volution layer shapes and sizes. The number of convolution

layers in the five CNN applications are 5, 5, 13, 12 and 50

respectively. Additionally, we evaluate our hardware on a va-

riety of other widely used DNN layers like Fully Connected

and Long short-term memory layers (a type of Recurrent layer).

The configuration of these networks is detailed in Section 5.6.

Performance and Energy Measurement. We use Sniper-

sim [15] to evaluate the performance impact of LEDL hardware

and software mechanisms. We have augmented the Snipersim

infrastructure to simulate the vector instruction extensions de-

scribed in Section 4.1.2, along with VFMA Remote Register

and InterVFMA link implementations. We took efforts to en-

sure that Snipersim achieved similar performance statistics in

simulation to the characteristics observed on real Haswell pro-

cessors for the Intel MKL and ACG generated software variants.

Our experiments use McPAT infrastructure [40], extended to

include the techniques described by Sam et al. [60], to model

a0a1
a2a3
a4a5

b0 b1 b2 b3

b4 b5 b6 b7

a0 a1a2 a3a4 a5 b0 b3b1 b4b2 b5b6b7
....

Mat A Mat B

Figure 7: ACG’s Prefetcher-friendly layout transformation

energy and area consumption. The energy and area measure-

ments used throughout the evaluation include core and all three

levels of caches.

Baseline and Hardware Configurations. Our baseline, where

not stated otherwise, is derived from a currently available Intel

Haswell server processor design whose configuration details

are described in Table 1. Physical floating point registers in

our designs are fixed to 168, similar to the Haswell baseline.

We increase the number of architectural registers to 96, unless

otherwise specified. We never observed structural hazards due

to unavailability of physical registers in our experiments.

We study the impact of local and inter-unit reuse by evaluat-

ing across three supported modes of VFMAs:

• NR (No Reuse): The VFMA unit reads all 3 register operands

from PRF, requiring 3 PRF reads per cycle.
• LR (Local Reuse): The VFMA reads one operand from its Re-

mote Register and other two from the PRF, taking advantage

of local reuse, requiring 2 PRF reads per cycle.
• FR (Full Reuse): The VFMA reads one operand from its

Remote Register, one from its InterVFMA link and one from

the PRF, utilizing both local and inter-unit reuse, requiring 1

PRF read per cycle.

Table 2 lists the hardware design points that we use for our

evaluation. We observe that for 2, 3 and 4 VFMAs, the PRF

can have enough read ports to support NR mode. However, 5

and 6 VFMAs require 15 and 18 PRF read ports, at which point

PRF cannot meet the timing constraints. Using VFMAs in LR

and FR modes does not require 18 read ports. Therefore, we

use a hybrid design for 5 and 6 VFMAs, where the number of

PRF read ports are kept to 12 (2 per VFMA). Unless otherwise

specified, we use these hardware design points for evaluation.

Processor
8-wide OoO core, 2.4 GHz
192-entry ROB, 72-entry load queue

Private L1 cache 32 KB, 8-way, 2-cycle, 64 B block

Private L2 cache 256 KB, 8-way, 5-cycle, 64 B block

Shared LLC 8 MB, 16-way, 12-cycle, 64 B block

Main memory 1 GB, 65 ns latency

L1, L2 and LLC prefetcher Line prefetcher

Table 1: Baseline hardware configuration, modeled after an Intel Haswell
server configuration

Design point name VFMAs PRF read and write ports

2-VFMA (Baseline) 2 6 read and 2 write

3-VFMA 3 9 read and 3 write

4-VFMA 4 12 read and 4 write

5-VFMA-Hybrid 5 12 read and 5 write (NR not supported)

6-VFMA-Hybrid 6 12 read and 6 write (NR not supported)

Table 2: Hardware design points

5.2 Performance and Energy Improvements

In this section, we examine the characteristics of LEDL to

understand the tradeoffs the different hardware design points

offer in terms of performance and energy usage.

7

alexnet overfeat NiN vgg_16 resNet geoMean
0x

0.5x

1x

1.5x

2x

2.5x

3x 3.1x
E

D
P

 i
m

p
ro

v
em

en
t

n
o
rm

al
iz

ed
 t

o
 H

as
w

el
l

2−VFMA, NR

5−VFMA−Hybrid, FR

3−VFMA, NR

6−VFMA−Hybrid, FR

4−VFMA, FR

Figure 8: EDP improvement of increasing the VFMA units for end to end
total convolution runtime.

alexnet overfeat NiN vgg_16 resNet geoMean
0x

0.5x

1x

1.5x

2x

2.5x

3x

S
p
ee

d
u
p

n
o
rm

al
iz

ed
 t

o
 H

as
w

el
l

2−VFMA, NR

5−VFMA−Hybrid, FR

3−VFMA, NR

6−VFMA−Hybrid, FR

4−VFMA, FR

Figure 9: Performance improvements of increasing the VFMA units for end
to end total convolution runtime

Energy Delay Product. In the first experiment, we use ACG

to generate software for each convolution layer in the CNNs of

our application suite. We then measure the energy consumption

of each layer for our hardware designs points and each VFMA

mode. We accumulate the energy for each convolution layer per

DNN and measure the Energy delay product (EDP). The find-

ings of this experiment are presented in Figure 8, showing the

EDP improvement for the best FMA mode for each hardware

design point, over the Intel Haswell baseline.

We observe that increasing the number of VFMA units re-

sults in significant EDP improvements over the Haswell base-

line. LEDL extensions substantially reduce the number of PRF

reads, resulting in average EDP improvements of 2.0×, 2.5×
and 2.7× with FR mode on 4, 5 and 6 VFMA units. For lower

number of VFMA units (2 and 3), NR mode achieves better

EDP due to better tile characteristics.

Performance. Next, we perform the same experiment and mea-

sure the performance of each layer for our hardware designs

points and each VFMA mode, giving us the total convolution

runtime. The findings of this experiment are presented in Fig-

ure 9, showing the speedup of the best reuse mode for each

hardware design point against the Haswell baseline.

We observe that adding VFMA units results in geometric

mean speedup of 1.4×, 1.7× for 3 and 4 VFMA units for

NR mode. Further, PRF cannot meet latency constraints for

supporting NR mode when the number of VFMA units are

increased to 5 and 6. Here, LEDL’s reuse capabilities reduce the

PRF bandwidth requirements, resulting in hybrid designs that

improve compute capacity, achieving a performance speedup

of 2.0× and 2.1× for FR mode on 5 and 6 VFMA units.

5.3 Impact of FMA modes

The LEDL-enabled FMA modes – LR and FR – reduce the num-

ber of PRF reads by taking advantage of local and inter-unit

reuse, resulting in better energy consumption characteristics. In

this section, we study the energy effect of these FMA modes by

measuring the energy and execution time of each CNN layer

in our application suite, giving us the total EDP of accumu-

lated CNN layer execution. This experiment is performed for

alexnet overfeat NiN vgg_16 resNet geoMean
0x

0.2x

0.4x

0.6x

0.8x

1x

1.2x

E
D

P
 i

m
p
ro

v
em

en
t

ag
ai

n
st

 r
es

p
ec

ti
v
e

N
R

2−VFMA, NR

2−VFMA, LR

2−VFMA, FR

3−VFMA, NR

3−VFMA, LR

3−VFMA, FR

4−VFMA, NR

4−VFMA, LR

4−VFMA, FR

Figure 10: LEDL-enabled FMA modes comparison for 2, 3 and 4 VFMA
units; LEDL-enabled modes achieve better EDP design point at 4 VFMA
units

alexnet overfeat NiN vgg_16 resNet geoMean
0x

0.2x

0.4x

0.6x

0.8x

1x

1.2x

1.4x

1.6x

E
D

P
 i

m
p
ro

v
em

en
t

ag
ai

n
st

 4
V

F
M

A
−

N
R

5−VFMA Hybrid, LR

5−VFMA Hybrid, FR

6−VFMA Hybrid, LR

6−VFMA Hybrid, FR

Figure 11: LEDL-enabled FMA modes comparison for 5 and 6 VFMA units.
NR mode is not supported as PRF latency constraints cannot be met

all hardware designs on the 3 VFMA modes. We present the

findings of this experiment in Figures 10 and 11.

First, we show the impact of FMA modes on 2, 3 and 4

VFMA units in Figure 10. The figure shows EDP improve-

ment of LEDL-enabled LR and FR modes normalized to the

currently-supported NR mode for 2, 3 and 4 VFMA units. We

observe that for 2 and 3 VFMA units, the LR and FR reuse

modes result in minimal improvement. This is because the tile

characteristics of code variant for LR and FR modes have higher

energy consumption compared to NR mode. In this experiment,

we also observe that PRF power is 10% of the total power at 2

VFMA units, but increases to 18% for 4 VFMA units. Due to

this high increase in PRF power, we observe that at 4 VFMA

units, LEDL starts achieving better EDP characteristics than

NR mode. On average, LR and FR achieve EDP improvements

of 8% and 10% for 4 VFMA units, respectively, compared to

NR mode.

However, beyond 4 VFMA units, NR mode is not viable

because the PRF latency constraints could no longer be met.

LEDL, on the other hand, relaxes PRF bandwidth require-

ments, packing more VFMA units while keeping PRF latency

in check. We therefore compare the EDP characteristics of

LEDL-enabled modes on 5 and 6 VFMA units to 4 VFMA

units with NR mode, the best hardware design point currently

supported by NR mode. This comparison in shown in Figure 11.

We observe that LEDL-enabled modes result in significant EDP

improvements, achieving an EDP improvement of 1.35× and

1.47× for 6 VFMAs with FR mode.

5.4 Impact of Microarchitectural Parameters

In this section, we study the impact of microarchitectural pa-

rameters on the energy characteristics of different FMA modes

on our hardware design points. We perform the analysis on the

conv2 layer of Alexnet (Alexnet’s most time-consuming layer).

In this experiment, we measure EDP for Alexnet conv2 layer

for different number of architectural registers and different hard-

ware design points. The experiment is conducted for all three

VFMA modes. We show the result of this experiment for NR

mode, modeling the baseline Haswell processor configuration,

8

● ● ●

2 3 4 5 6

1x

1.5x

2x

2.5x

3x

3.5x

4x

E
D

P
 i

m
p
ro

v
em

en
t

ag
ai

n
st

(2
−

V
F

M
A

s
+

 1
6
 R

eg
)

PRF failsPRF fails

latencylatency

constraintsconstraints

(a) No Reuse − VFMAs

● ● ● ● ●

2 3 4 5 6

1x

1.5x

2x

2.5x

3x

3.5x

4x

(b) Local Reuse − VFMAs

● ● ● ● ●

2 3 4 5 6

1x

1.5x

2x

2.5x

3x

3.5x

4x

(c) Full Reuse − VFMAs

● Vector Reg = 16 Vector Reg = 24 Vector Reg = 32 Vector Reg = 64 Vector Reg = 96

Figure 12: Impact of increasing architectural registers and VFMA units on
Alexnet conv2 layer for different FMA modes

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ●

●
● ● ● ● ● ●

al
ex

ne
t_

to
p1

al
ex

ne
t_

to
p2

al
ex

ne
t_

to
p3

al
ex

ne
t_

to
p4

al
ex

ne
t_

to
p5

ov
er

fe
at

_t
op

1

ov
er

fe
at

_t
op

2

ov
er

fe
at

_t
op

3

ov
er

fe
at

_t
op

4

ov
er

fe
at

_t
op

5

N
iN

_t
op

1

N
iN

_t
op

2

N
iN

_t
op

3

N
iN

_t
op

4

N
iN

_t
op

5

vg
g_

16
_t

op
1

vg
g_

16
_t

op
2

vg
g_

16
_t

op
3

vg
g_

16
_t

op
4

vg
g_

16
_t

op
5

re
sN

et
_t

op
1

re
sN

et
_t

op
2

re
sN

et
_t

op
3

re
sN

et
_t

op
4

re
sN

et
_t

op
50.5x

1x

1.5x

2x

2.5x

3x

3.5x

4x

E
D

P
 i

m
p

ro
v
em

en
t

n
o

rm
al

iz
ed

 t
o

 H
as

w
el

l

● 2−VFMA, FR 3−VFMA, FR 4−VFMA, FR 5−VFMA, FR 6−VFMA, FR

Figure 13: LEDL’s EDP improvements on FR mode for the top 5 most time
contributing layers of our application suite

and LR and FR modes, LEDL enabled modes that reduce the

number of PRF reads, in Figure 12(a), (b) and (c) respectively.

The figures show EDP improvements for different hardware

design points against a hardware design point having 2 VFMA

units and 16 architectural registers.

VFMA units and VFMA modes. First, we observe that in-

creasing VFMA units result in significant EDP improvements

for 96 architectural registers. But more importantly, we observe

that this increase is limited to 2.4× for 4 VFMA units in NR

mode. Adding any more VFMA units requires extra PRF band-

width, reaching a point where PRF latency constraints could no

longer be met for NR mode (shown by the grey box in (a)). LR

and FR modes reduce the number of PRF reads, substantially

reducing the PRF bandwidth requirements. This lets us pack

more compute units, extending the number of VFMA units to 5

and 6 for LR and FR modes, increasing the EDP improvements

to 3.5× and 3.7× respectively, as shown in (b) and (c).

Architectural Register Count. Next, we analyze the impact

of architectural register count. There are three key observations.

First, from (a), we observe that current Intel machines, which

have 16 architectural registers, can improve their EDP by 35%

just by increasing the architectural registers to 24. Second, num-

ber of architectural registers limit the EDP improvements when

we increase the number of VFMA units for all VFMA modes.

For example, in (a), 4 VFMA units achieve an EDP improve-

ment of 2× at 24 registers, which can be increased to 2.4× at

32 registers. And last, we observe that FR and LR require larger

number of architectural registers for same number of VFMA

units as compared to NR (equations 1, 3). For example, for 3

VFMA units, NR requires 24 registers but FR requires 32.

5.5 Layer-by-Layer Analysis

Different convolution layers within the same network can have

different performance and compute requirements. In this sub-

section, we present a layer-by-layer EDP analysis of our appli-

cation suite. Due to space limitations we show only the top 5

layers in each network (ranked by their contribution to execu-

tion time).

al
ex

ne
t_

to
p1

al
ex

ne
t_

to
p2

al
ex

ne
t_

to
p3

al
ex

ne
t_

to
p4

al
ex

ne
t_

to
p5

ov
er

fe
at

_t
op

1

ov
er

fe
at

_t
op

2

ov
er

fe
at

_t
op

3

ov
er

fe
at

_t
op

4

ov
er

fe
at

_t
op

5

N
iN

_t
op

1

N
iN

_t
op

2

N
iN

_t
op

3

N
iN

_t
op

4

N
iN

_t
op

5

vg
g_

16
_t

op
1

vg
g_

16
_t

op
2

vg
g_

16
_t

op
3

vg
g_

16
_t

op
4

vg
g_

16
_t

op
5

re
sN

et
_t

op
1

re
sN

et
_t

op
2

re
sN

et
_t

op
3

re
sN

et
_t

op
4

re
sN

et
_t

op
5

0%

20%

40%

60%

80%

100%

R
u
n
ti

m
e

n
o
rm

al
iz

ed
to

 H
as

w
el

l

Layout transformation time Compute time

Figure 14: Breakdown of runtime in compute and layout transformation
time, as the number of VFMA units are increased (2, 3, 4, 5 and 6 from left
to right in each cluster)

EDP Analysis. In this experiment, we evaluate layer-by-layer

EDP improvement when the number of VFMA units are in-

creased. The number of architectural registers are kept fixed at

96. ACG takes the number of architectural registers and VFMA

units as input and generates a code variant that uses FR mode

for all the VFMAs. The findings of this experiment are pre-

sented in Figure 13, showing the EDP improvements over the

Haswell baseline.

We observe that LEDL reuse features achieve significant

EDP improvements when the number of VFMA units are in-

creased. Alexnet, for example, achieve close to 2.5x EDP im-

provement for the top 4 most contributing layers. However we

also observe, that some layers like top 3 layers of VGG do not

achieve similar EDP improvements. This can be attributed to

the high layout transformation time for these layers, which we

evaluate next.

Layout Transformation Overhead. To understand the varia-

tion of EDP improvements across different convolution layers,

we investigate the application execution time breakdown across

compute and layout transformation steps. The findings of this

experiment are presented in Figure 14, showing the breakdown

of layer execution time across compute and layout transforma-

tion portion when the number of VFMA units are increased.

The runtime is normalized to Haswell baseline.

There are two keys observations from this experiment. First,

the compute time scales down gracefully as more VFMA units

are added into the CPU. Second, the data transformation time

remains constant and is not affected by the VFMA units. These

two factors explain the EDP improvement variations observed

earlier in Figure 13. VGG 16 layers have large data transfor-

mation cost, resulting in smaller EDP improvements. Such

layers are characterized by small value of M (rows in matrix

A) and large values of K and N (rows and columns, respec-

tively, in matrix B). Therefore, the compute time, in the order

of O(M ∗N ∗K), in these layers is comparable to data layout

transformation time, which is in the order of O(M ∗K +N ∗K).
Alexnet and ResNet, on the other hand, have low layout trans-

formation overhead, leading to higher EDP improvements.

5.6 Applicability to Other DNNs

Fully Connected and Recurrent Neural Networks. We next

measure LEDL impact on two other widely used DNN layers -

Fully Connected (FC) and Long Short Term Memory (LSTM)

layers (a type of recurrent layer) - that are also implemented

atop SGEMM [33]. Recently, Google released an ASIC, having

a fast matrix multiplication unit, to accelerate DNN inference

– Tensor Processing Unit [33]. The research also showed that

a subset of their FC and LSTM layers were compute bound

on CPUs (refer to Figure 6 in [33]). Therefore, the extensions

9

Pos LangModel ImCaption SentAnalysis seq2seq geoMean

(fc) (lstm) (lstm) (lstm) (lstm)

0x

0.5x

1x

1.5x

2x

2.5x

3x
E

D
P

 i
m

p
ro

v
em

en
t

n
o
rm

al
iz

ed
 t

o
 H

as
w

el
l

2−VFMA, NR

5−VFMA−Hybrid, FR

3−VFMA, NR

6−VFMA−Hybrid, FR

4−VFMA, FR

Figure 15: LEDL shows good EDP improvements for other widely used
DNN layers – FC and LSTM

V
1

V
2

V
3

V
4

V
5

V
6

V
7

V
8

V
9

V
1

0
V

1
1

V
1

2
V

1
3

V
1

4
V

1
5

V
1

6
V

1
7

V
1

8
V

1
9

V
2

0
V

2
1

V
2

2
V

2
3

V
2

4
V

2
5

V
2

6
V

2
7

V
2

8
V

2
9

V
3

0
V

3
1

V
3

2
V

3
3

V
3

4
V

3
5

V
3

6

4 4 4 4

5 5 5 5

6 6 6 6 7 7 7 7
9

10 10 10 10 9 9 9

13 13 13 11 13 11 11 11
16 16 16 16

0x

0.2x

0.4x

0.6x

0.8x

1x

S
p

ee
d

u
p

 n
o

rm
al

iz
ed

to
 M

K
L

Chosen variant

Figure 16: Performance of ACG variants against Intel MKL code. Variant
register usage is shown at the top of each bar

offered by LEDL have the potential to improve energy and

performance in these cases as well.

To study the applicability of LEDL on these layers, we eval-

uate a variety of FC and LSTM layers from five application

domains – FC layer for Parts of Speech [26], LSTM layer of

200 cells for Language Modelling [62], LSTM layer of 128

cells for Image Captioning [39], LSTM layer of 500 cells for

Sentiment Analysis [58] and LSTM layer of 1024 cells for

Sequence to Sequence encoder [53]. In this experiment, we

measure the EDP improvement for these layers for all hardware

design points and VFMA modes. The findings of this experi-

ment are presented in Figure 15, showing EDP improvement for

the best VFMA mode for all hardware design points normalized

to a conventional Intel Haswell baseline.

We observe that increasing VFMA units achieve significant

EDP improvement for 4 out of 5 layers. As we increase the

number of VFMAs to 4, FR mode starts showing better EDP

characteristics, resulting in average speedup of 1.7×, 2.0×
and 2.3× for 4, 5 and 6 VFMA units. The last application,

seq2seq LSTM layer, shows low EDP improvement because

this layer is memory bandwidth bound, resulting in diminishing

improvements for additional VFMA units.

5.7 Area Overhead

Increasing raw computation capacity of a CPU requires adding

more VFMA units as well as increasing the number of read

ports in PRF. LEDL, in addition, introduces additional mi-

croarchitectural elements to reduce the PRF read bandwidth

requirements. However, LEDL microarchitectural additions

have minimal area overhead as VFMA remote register is local

to its VFMA and InterVFMA links are also uni-directional with

single link between two VFMAs. Therefore, the two major

factors that govern the area overhead are VFMA units and PRF.

We use McPAT to capture this area overhead for our hardware

design points.

The area measurement is performed assuming a traditional

CPU server, having 8 CPU cores, each having private L1 and

L2 caches and sharing a LLC, whose parameters are listed

in Table 1. We observe that the additional area for 3-VFMA,

4-VFMA, 5-VFMA and 6-VFMA-Hybrid design is 4%, 8%,

11% and 15% respectively. Most of this increase is because

al
ex

ne
t_

to
p1

al
ex

ne
t_

to
p2

al
ex

ne
t_

to
p3

al
ex

ne
t_

to
p4

al
ex

ne
t_

to
p5

ov
er

fe
at

_t
op

1

ov
er

fe
at

_t
op

2

ov
er

fe
at

_t
op

3

ov
er

fe
at

_t
op

4

ov
er

fe
at

_t
op

5

N
iN

_t
op

1

N
iN

_t
op

2

N
iN

_t
op

3

N
iN

_t
op

4

N
iN

_t
op

5

vg
g_

16
_t

op
1

vg
g_

16
_t

op
2

vg
g_

16
_t

op
3

vg
g_

16
_t

op
4

vg
g_

16
_t

op
5

re
sN

et
_t

op
1

re
sN

et
_t

op
2

re
sN

et
_t

op
3

re
sN

et
_t

op
4

re
sN

et
_t

op
5

1x

3x

5x

7x

9x

11x

13x

S
p

ee
d

u
p

 n
o

rm
al

iz
ed

 t
o

ag
g

re
ss

iv
e

ca
ch

e
ti

li
n

g

Aggressive cache tiling

Register tiling

Register tiling + Layout transformation

Register tiling + Layout transformation + Interleaving

Figure 17: Speedup achieved by different ACG’s optimizations

● ● ● ●

●

● ●
● ●

●

●
● ●

●

●

●

●

●

● ●

●

● ● ● ●

0%

20%

40%

60%

80%

100%

Including layout transformation overheadF
M

A
 u

ti
li

za
ti

o
n

● 2−VFMA 3−VFMA 4−VFMA 5−VFMA−Hybrid 6−VFMA−Hybrid

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ●
● ● ● ● ● ● ●

Excluding layout transformation overhead

al
ex

ne
t_

to
p1

al
ex

ne
t_

to
p2

al
ex

ne
t_

to
p3

al
ex

ne
t_

to
p4

al
ex

ne
t_

to
p5

ov
er

fe
at

_t
op

1

ov
er

fe
at

_t
op

2

ov
er

fe
at

_t
op

3

ov
er

fe
at

_t
op

4

ov
er

fe
at

_t
op

5

N
iN

_t
op

1

N
iN

_t
op

2

N
iN

_t
op

3

N
iN

_t
op

4

N
iN

_t
op

5

vg
g_

16
_t

op
1

vg
g_

16
_t

op
2

vg
g_

16
_t

op
3

vg
g_

16
_t

op
4

vg
g_

16
_t

op
5

re
sN

et
_t

op
1

re
sN

et
_t

op
2

re
sN

et
_t

op
3

re
sN

et
_t

op
4

re
sN

et
_t

op
5

0%

20%

40%

60%

80%

100%

F
M

A
 u

ti
li

za
ti

o
n

Figure 18: VFMA utilization achieved by ACG including and excluding the
layout transformation overhead

of the additional VFMA units. For example, 14% area (com-

pared to total of 15%) for 6 VFMA-hybrid design point is just

because of additional VFMA units. Pollack’s Rule states that

performance increase due to microarchitectural advances are

roughly proportional to the square root of increase in complex-

ity, where complexity refers to the area [14]. We observe that

LEDL leads to significant performance and energy improve-

ments, that greatly outstrip the typical Pollack’s Rule tradeoff.

5.8 Code Generator Efficacy

ACG is designed to generate codes that can take advantage of

additional VFMA units, while also maximizing the local and

inter-unit reuse. In this section, we evaluate the efficacy of the

ACG, both on real hardware and simulation.

ACG Software Variants. In this experiment, we show the

inner workings of ACG for Alexnet Conv2 layer on real Intel

Haswell machines. Instead of choosing a particular set of tile

parameters, we use ACG to sweep the tiling parameters over

a small range to generate many software variants and measure

their performance on real hardware. The results of this exper-

iment are presented in Figure 16. The figure shows variants’

performance against Intel MKL, an aggressively tuned code for

Intel Haswell machines. The register usage of each software

variant is presented at the top of its bar.

There are two key observations from the figure. First, to

achieve the high performance, the SW variant has to efficiently

utilize the register storage. Current Intel Haswell processor

has 16 architectural registers. The figure shows that the high-

est performing variant utilizes all of these registers. Second,

ACG achieves close to Intel MKL performance, which is an

aggressively hand-tuned library.

ACG Optimization Breakdown. ACG uses Register tiling,

Prefetcher-friendly layout transformation and Interleaving to

achieve high performance on CPUs. In this experiment, we

analyze the importance of each of these optimizations on Intel

Haswell processor across the top 5 most contributing layers

10

for each network in our application suite. The performance

speedup of the optimizations is presented in Figure 17.

We start with an aggressively Cache-tiled code, that per-

forms cache tiling across L1, L2 and L3 caches. We observe

this code performs poorly, leading to heavy under utilization of

CPU resources. We then apply Register tiling to our software,

leading to huge performance improvement for several convo-

lution layers. Next, we apply the prefetcher-friendly layout

transformation. This optimization makes accesses prefetcher

friendly, again leading to substantial performance improve-

ments. Finally, we apply Interleaving between compute and

transformation, reducing transformation cost by overlapping it

with some compute portion, leading to small additional perfor-

mance improvements.

FMA Utilization. Finally, we study ACG performance when

the number of FMA units are increased. In this experiment,

we analyze the VFMA utilization for the top 5 most contribut-

ing layers for each of our network. We increase the number

of VFMA units and instruct ACG to generate software using

the FR mode of the VFMAs. We present VFMA utilizations

of this experiment with and without the transformation over-

head in Figure 18 (a) and (b) respectively. We observe that

ACG efficiently utilizes the compute for majority of Alexnet,

Overfeat and ResNet CNN layers. However, top three layers of

VGG 16 have low utilization. To investigate this low VFMA

utilization, we exclude the transformation overhead and mea-

sure the VFMA utilizations. The findings, presented in part (b),

show that ACG achieves high VFMA utilization in SGEMM

compute portion.

6 RELATED WORK

Systolic Arrays. A significant amount of accelerator research

has been done on DNNs in past few years [16, 18, 24, 29,

33, 41, 46]. Spatial architectures, having distributed compute

and memory, have been gaining attention as deep learning

accelerators. The Catapult CNN accelerator for FPGAs [46],

TPU [33] and Eyeriss [18] are examples of spatial architectures

that use or can be configured as systolic arrays to transfer partial

sums between the distributed compute elements. DianNao and

DaDianNao research present DNN accelerators, focusing on

minimizing off-chip as well on-chip data accesses [16, 17].

LEDL’s InterVFMA links, enabling inter-unit reuse of data,

have some similarities with the systolic dataflow model pre-

sented in the spatial architecture DNN research. However, there

are substantial differences between the amount of compute and

memory in CPUs as compared to spatial architectures. Dis-

tributed compute and memory helps spatial architectures divide

up the work in a coarse-grained manner where several PEs can

compute partial sums for a small subset of inputs in parallel and

then transfer these partial sums between the compute elements.

This is not possible in CPUs, because there is a centralized

PRF and the amount of compute is also limited, preventing

coarse-grained division of work. As a result, FMA latency be-

comes a critical constraint while passing partial sums between

the VFMA units on CPUs, resulting in low performance for

dataflows employing partial sum transfers. Therefore, instead

of passing partial sums, we transfer the input elements between

the compute units while maximizing the partial sum usage at

PRF.

Multiply-Accumulate units. Similarly, other accelerators use

MAC units instead of FMA units to store the intermediate

results. However, switching to MAC units in CPUs is not a suit-

able alternative to get performance improvement for SGEMM

kernel. As compared to accelerators, CPUs have very limited

number of compute units. The required software dataflow (tiling

and resulting memory access pattern) when using the MAC

units in CPUs has a very small tile for the output matrix as

governed by the number of vector units/intermediate registers.

This small partial output tile prevents us from reusing the data

in the tiles of input matrices very efficiently, resulting in un-

derutilized hardware. This is in contrast with the FMA units,

that has small input matrix tiles and a large partial output tile

(in the PRF), providing opportunity to efficiently reuse the data

across small input tiles. However, using MAC units might be

an efficient design point in accelerators because they can pack

more compute units, allowing a large tile for the output matrix.

Weight Pruning and Precision Reduction. Convolution lay-

ers show high opportunity of pruning weights, substantially re-

ducing the data footprint and the costs associated with the data

movements. Research efforts have focused on either achieving

this pruning or designing hardware solutions taking advantage

of the pruned datasets [11, 18, 24, 25]. In addition, many DNN

applications do not require 32 bits of precision, further reducing

the weight storage requirements. DNNs retain their accuracy

even after converting the data format to 8/16-bit fixed point

format [31, 32, 41, 47]. Many insights from these efforts are

orthogonal to LEDL, resulting in additional speedups when

applied in conjunction with LEDL.

Software. On software-focused efforts, there have been an

increasing number of efforts in writing aggressively hand-tuned

codes for hardware, like Intel MKL and NNPACK for CPUs,

Nvidia CuDNN and Nervana Neon for GPUs [1, 2, 19, 21],

extracting every last ounce of compute packed on the machines.

In addition, there have been efforts to reduce the arithmetic

complexity of convolution algorithms [38, 56]. Our code gen-

erator stands in a similar category of software efforts with

focus on automatic code generation for a given number of CPU

VFMA units, instead of hand-tuning it for one hardware design

point [44, 57].

7 CONCLUSION

In this work, we focus on identifying and alleviating the mi-

croarchitectural bottlenecks that prevent us from improving

CPU performance on CNN computations. Our study shows that

designing a PRF capable of feeding computational units is the

primary barrier on achieving higher CPU FLOPS. We present

Locality Extensions for Deep Learning (LEDL) , a novel, min-

imally intrusive set of microarchitectural and ISA extensions

that address this problem, along with an automatic code gen-

erator needed to take advantage of our design. Our detailed

evaluation shows that applying these extensions allows packing

more compute in the CPUs, and can achieve a 2× performance

improvement and a 2.7× energy-delay product improvement

compared to Haswell processors.

REFERENCES
[1] Intel Math Kernel Library. In http://software.intel.com/en-us/articles/intel-

mkl/.
[2] NervanaGPU library. In https://github.com/NervanaSystems/nervanagpu.

11

[3] An introduction to the intel quickpath interconnect.
In http://www.intel.com/content/www/us/en/io/quickpath-
technology/quickpath-technology-general.html, 2009.

[4] Virtualization is coming to a platform near you. In
https://www.arm.com/files/pdf/System-MMU-Whitepaper-v8.0.pdf,
2011.

[5] Intel advanced encryption standard (aes) new instructions set. 2012.
[6] AMD64 architecture programmer’s manual. 2013.
[7] Nvidia nvlink high-speed interconnect. In

http://www.nvidia.com/object/nvlink.html, 2016.
[8] Nvidia nvlink high-speed interconnect. In

http://www.nvidia.com/object/nvlink.html, 2016.
[9] ARM architecture reference manual. 2017.

[10] Intel 64 and ia-32 architectures software developer’s manual. In Volume 3,
2017.

[11] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos. Cnvlutin: Ineffectual-neuron-free deep neural network com-
puting. In International Symposium on Computer Architecture (ISCA),
2016.

[12] S. S. Baghsorkhi, N. Vasudevan, and Y. Wu. Flexvec: Auto-vectorization
for irregular loops. In Programming Language Design and Implementation
(PLDI), 2016.

[13] L. Barroso, M. Marty, D. Patterson, and P. Ranganathan. Attack of the killer
microseconds. Communications of the ACM, 60(4):48–54, 2017.

[14] S. Borkar and A. A. Chien. The future of microprocessors. In Communica-
tions of the ACM, 2011.

[15] T. E. Carlson, W. Heirman, and L. Eeckhout. Sniper: Exploring the level
of abstraction for scalable and accurate parallel multi-core simulation. In
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), 2011.

[16] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam. Dian-
nao: A small-footprint high-throughput accelerator for ubiquitous machine-
learning. In International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), 2014.

[17] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,
N. Sun, and O. Temam. Dadiannao: A machine-learning supercomputer. In
International Symposium on Microarchitecture (MICRO), 2014.

[18] Y.-H. Chen, J. Emer, and V. Sze. Eyeriss: A spatial architecture for energy-
efficient dataflow for convolutional neural networks. In International Sym-
posium on Computer Architecture (ISCA), 2016.

[19] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer. cuDNN: Efficient primitives for deep learning. In
arXiV:1410.0759, 2014.

[20] L. Deng and D. Yu. Deep learning: Methods and applications. Technical
report, 2014.

[21] M. Dukhan. NNPACK: Acceleration package for neural networks on multi-
core cpus. In https://github.com/Maratyszcza/NNPACK, 2016.

[22] F. Franchetti, S. Kral, J. Lorenz, and C. W. Ueberhuber. Efficient utilization
of simd extensions. In Proceedings of the IEEE, 2005.

[23] E. Grefenstette, P. Blunsom, N. de Freitas, and K. M. Hermann. A deep
architecture for semantic parsing. In arXiV:1404.7296, 2014.

[24] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J.
Dally. EIE: Efficient inference engine on compressed deep neural network.
In International Symposium on Computer Architecture (ISCA), ISCA ’16,
2016.

[25] S. Han, J. Pool, J. Tran, and W. J. Dally. Learning both weights and
connections for efficient neural networks. In Neural Information Processing
Systems (NIPS), 2015.

[26] J. Hauswald, Y. Kang, M. A. Laurenzano, Q. Chen, C. Li, T. Mudge, R. G.
Dreslinski, J. Mars, and L. Tang. Djinn and tonic: Dnn as a service and
its implications for future warehouse scale computers. In International
Symposium on Computer Architecture (ISCA), 2015.

[27] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov,
M. Fawzy, B. Jia, Y. Jia, A. Kalro, J. Law, K. Lee, J. Lu, P. Noordhuis,
M. Smelyanskiy, L. Xiong, and X. Wang. Applied machine learning at face-
book: A datacenter infrastructure perspective. In 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2018.

[28] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. 2015.

[29] P. Hill, A. Jain, M. Hill, B. Zamirai, C.-H. Hsu, M. A. Laurenzano,
S. Mahlke, L. Tang, and J. Mars. Deftnn: Addressing bottlenecks for
dnn execution on gpus via synapse vector elimination and near-compute
data fission. In Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, 2017.

[30] J. Holewinski, R. Ramamurthi, M. Ravishankar, N. Fauzia, L.-N. Pouchet,
A. Rountev, and P. Sadayappan. Dynamic trace-based analysis of vector-
ization potential of applications. In Programming Language Design and
Implementation (PLDI), 2012.

[31] A. Jain, P. Hill, S. C. Lin, M. Khan, M. E. Haque, M. A. Laurenzano,
S. Mahlke, L. Tang, and J. Mars. Concise loads and stores: The case
for an asymmetric compute-memory architecture for approximation. In
International Symposium on Microarchitecture (MICRO), 2016.

[32] A. Jain, A. Phanishayee, J. Mars, L. Tang, and G. Pekhimenko. Gist: Effi-
cient data encoding for deep neural network training. In 2018 ACM/IEEE
45th Annual International Symposium on Computer Architecture (ISCA),
2018.

[33] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao,
C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaem-
maghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg,
J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khai-
tan, D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le,
C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Ma-
hony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Nor-
rie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek,
E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg,
A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,
R. Walter, W. Wang, E. Wilcox, and D. H. Yoon. In-datacenter perfor-
mance analysis of a tensor processing unit. In International Symposium on
Computer Architecture (ISCA), ISCA ’17, 2017.

[34] N. Kalchbrenner, E. Grefenstette, and P. Blunsom. A convolutional neural
network for modelling sentences. In arXiV:1404.2188, 2014.

[35] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei.
Large-scale video classification with convolutional neural networks. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2014.

[36] Y. Kim. Convolutional neural networks for sentence classification. In
arXiV:1408.5882, 2014.

[37] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with
deep convolutional neural networks. In Neural Information Processing
Systems (NIPS), 2012.

[38] A. Lavin. Fast algorithms for convolutional neural networks. 2015.
[39] J. Li, D. Jurafsky, and E. H. Hovy. When are tree structures necessary for

deep learning of representations? In arXiV:1503.00185, 2015.
[40] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.

Jouppi. Mcpat: An integrated power, area, and timing modeling framework
for multicore and manycore architectures. In International Symposium on
Microarchitecture (MICRO), 2009.

[41] R. LiKamWa, Y. Hou, J. Gao, M. Polansky, and L. Zhong. Redeye: Ana-
log convnet image sensor architecture for continuous mobile vision. In
International Symposium on Computer Architecture (ISCA), 2016.

[42] M. Lin, Q. Chen, and S. Yan. Network in network. In arXiV:1312.4400,
2013.

[43] C. Lomont. Introduction to intel advanced vector extensions. In Intel White
Paper, 2011.

[44] T. M. Low, F. D. Igual, T. M. Smith, and E. S. Quintana-Orti. Analytical
modeling is enough for high-performance blis. ACM Trans. Math. Softw.,
2016.

[45] D. Nuzman, I. Rosen, and A. Zaks. Auto-vectorization of interleaved data
for simd. In Programming Language Design and Implementation (PLDI),
2006.

[46] K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers, K. Strauss, and E. Chung.
Accelerating deep convolutional neural networks using specialized hard-
ware. In HotChips, 2015.

[47] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M.
Hernández-Lobato, G.-Y. Wei, and D. Brooks. Minerva: Enabling low-
power, highly-accurate deep neural network accelerators. In International
Symposium on Computer Architecture (ISCA), 2016.

[48] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W. Keckler. Virtu-
alizing deep neural networks for memory-efficient neural network design.
2016.

[49] N. Satish, C. Kim, J. Chhugani, H. Saito, R. Krishnaiyer, M. Smelyanskiy,
M. Girkar, and P. Dubey. Can traditional programming bridge the ninja
performance gap for parallel computing applications? In ACM SIGARCH
Computer Architecture News, volume 40, pages 440–451. IEEE Computer
Society, 2012.

[50] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun.
Overfeat: Integrated recognition, localization and detection using convolu-
tional networks. In arXiv:1312.6229, 2014.

[51] K. Simonyan and A. Zisserman. Two-stream convolutional networks for
action recognition in videos. In arXiV:1406.2199, 2014.

[52] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. In arXiV:1409.1556, 2014.

[53] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with
neural networks. In arXiV:1409.3215, 2014.

[54] V. Sze, Y.-H. Chen, T.-J. Yang, and J. Emer. Efficient processing of deep
neural networks: A tutorial and survey. In arXiV:1703.09039, 2017.

[55] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. 2014.

[56] N. Vasilache, J. Johnson, M. Mathieu, S. Chintala, S. Piantino, and Y. LeCun.
Fast convolutional nets with fbfft: A GPU performance evaluation. In
arXiV:1412.7580, 2014.

[57] R. M. Veras, T. M. Low, T. M. Smith, R. A. van de Geijn, and F. Franchetti.
Automating the last-mile for high performance dense linear algebra. CoRR,
abs/1611.08035, 2016.

12

[58] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural
image caption generator. In arXiV:1411.4555, 2014.

[59] I. Wallach, M. Dzamba, and A. Heifets. Atomnet: A deep convolutional
neural network for bioactivity prediction in structure-based drug discovery.
2015.

[60] S. L. Xi, H. Jacobson, P. Bose, G. Y. Wei, and D. Brooks. Quantifying
sources of error in mcpat and potential impacts on architectural studies.
In International Symposium on High Performance Computer Architecture

(HPCA), 2015.
[61] J. Yosinski, J. Clune, A. M. Nguyen, T. J. Fuchs, and H. Lipson. Under-

standing neural networks through deep visualization. In arXiV:1506.06579,
2015.

[62] W. Zaremba, I. Sutskever, and O. Vinyals. Recurrent neural network regu-
larization. In arXiV:1409.2329, 2014.

13

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 CNN Computation
	2.2 CPU Bottleneck Identification
	2.3 Challenges

	3 Overview
	4 Design and Implementation
	4.1 Hardware Design
	4.2 Code Generation

	5 Evaluation
	5.1 Methodology
	5.2 Performance and Energy Improvements
	5.3 Impact of FMA modes
	5.4 Impact of Microarchitectural Parameters
	5.5 Layer-by-Layer Analysis
	5.6 Applicability to Other DNNs
	5.7 Area Overhead
	5.8 Code Generator Efficacy

	6 Related Work
	7 Conclusion
	References

