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Abstract—Cache capacity and memory bandwidth play critical
roles in application performance, particularly for data-intensive
applications from domains that include machine learning, numer-
ical analysis, and data mining. Many of these applications are
also tolerant to imprecise inputs and have loose constraints on
the quality of output, making them ideal candidates for approx-
imate computing. This paper introduces a novel approximate
computing technique that decouples the format of data in the
memory hierarchy from the format of data in the compute
subsystem to significantly reduce the cost of storing and moving
bits throughout the memory hierarchy and improve applica-
tion performance. This asymmetric compute-memory extension
to conventional architectures, ACME, adds two new instruction
classes to the ISA – load-concise and store-concise – along with
three small functional units to the micro-architecture to support
these instructions. ACME does not affect exact execution of
applications and comes into play only when concise memory op-
erations are used. Through detailed experimentation we find that
ACME is very effective at trading result accuracy for improved
application performance. Our results show that ACME achieves
a 1.3× speedup (up to 1.8×) while maintaining 99% accuracy, or
a 1.1× speedup while maintaining 99.999% accuracy. Moreover,
our approach incurs negligible area and power overheads, adding
just 0.005% area and 0.1% power to a conventional modern
architecture.

I. INTRODUCTION

Data-intensive applications from domains that include ma-

chine learning, numerical analysis and data mining are emerg-

ing as key processing bottlenecks in datacenter and server

applications [1, 2, 3]. The sheer volume of processing needed

to handle these workloads suggests that alternative computing

paradigms may be needed to keep pace. One such paradigm,

approximate computing, is a technique for exploiting inherent

application tolerance for inaccuracy for significant perfor-

mance improvements. Prior work has shown that a range

of applications have this tolerance [4, 5, 6, 7, 8] having

reasonable-quality outputs even when some processing is

performed approximately.

One of the main processing bottlenecks among data-

intensive applications is the memory subsystem, where ca-

pacity and bandwidth can be critical factors in determining

application performance. Prior work has made this observa-

tion, resulting in a class of techniques focused on the problem

of identifying and building systems that take advantage of
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(a) 32−bits
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(b) 16−bits
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(c) 10−bits

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

(d) 8−bits

Fig. 1. Kmeans clustering output when applying a range of

different storage formats. Similar accuracy for 32 (precise),

16 and 10 bits but poor accuracy for 8 bits

replication and redundancy across different data elements in

the memory hierarchy [9, 10, 11, 12, 13].

This work takes a new approach to addressing the problem,

focusing on marginal bits – bits within the data representation

that add little extra information among elements in a data

structure while consuming a significant fraction of the memory

and cache resources. Motivating this work is the observation

that a number of applications (1) are tolerant to the removal

of marginal bits, where the accuracy of results is minimally

impacted and (2) stand to benefit significantly in performance

and energy when the burden of storing and moving those

additional bits is removed.

This opportunity is illustrated in Figure 1, which shows

the output accuracy of Kmeans across a spectrum of different

input bit counts. Figure 1(a) uses the “precise” 32-bit single-

precision format, while (b), (c) and (d) use input elements

represented in 16, 10, and 8 bits, respectively. Note that

these experiments simply drop input bits; the computation still

happens at 32-bit single precision. We observe that using 16

or 10 bits changes the cluster membership of a few points,978-1-5090-3508-3/16/$31.00 c© 2016 IEEE



but the results remain almost indistinguishable from the exact

results. However, further reducing the input representation to

8 bits results in incorrect cluster membership for the majority

of points. We have observed a similar trend in numerous

applications, where dropping marginal bits from the input has

little impact on application accuracy but can significantly im-

prove performance. Our further investigation, as we will show

in Section II, provided two more insights – 1) storing data

with fewer bits while performing computation at full precision

removes more marginal bits compared to the approach where

fewer bits are used for both memory and compute, and 2)

the remaining bits after removing the marginal bits often do

not fit neatly into double, float or half, or any other

representation that is a multiple of 8.

The goal of this work is to take advantage of this oppor-

tunity, reducing the pressure on the memory subsystem by

enabling concise storage – a storage paradigm where the data

elements are stripped of their marginal bits, removing the

movement and storage costs associated with those bits in the

memory subsystem. However, several challenges emerge in

designing an approach that enables concise storage:

1) Flexibility – different applications need different numbers

of bits to achieve satisfactory accuracy. Therefore, the

design of a concise storage approach needs to have the

flexibility to capture the wide spectrum of design points

required by different applications and design objectives.

2) Highly Concise Storage – the approach should be able

to identify as many marginal bits as possible, and avoid

storing those bits throughout the memory subsystem while

still delivering high-quality computational results.

3) All Memory Levels – techniques focused on a particular

level of cache, or those focused solely on DRAM, only

alleviate pressure on part of the memory subsystem. A

better solution should reduce the burden of marginal bits

throughout all levels of memory.

4) Modular – the approach should reuse as much existing

compiler, architectural and micro-architectural infrastruc-

ture so that it can be easily built into those infrastructures.

It should also be backward compatible and should have

minimal impact on exact applications.

To address these challenges and enable concise storage

throughout the memory hierarchy, this work motivates and

describes ACME, an asymmetric compute-memory extension

for conventional architectures. In ACME, data can be treated

asymmetrically; computation is done on conventional 32-

bit IEEE 754 single precision [14] values – while data is

stripped of its marginal bits before being used in the memory

hierarchy. ACME includes a simple ISA extension that can

be leveraged by the programmer and compiler, adding two

new instruction classes to the ISA to operate on concise data

– load-concise and store-concise – to perform conversions

between concise and single precision format via three small

additional micro-architectural units. The asymmetric approach

significantly increases the ability to achieve concise storage

with small precision loss.

This asymmetric approach is flexible, allowing the appli-

cation programmer and compiler make clear choices as to

how much space is used to store data. The approach results

in highly concise storage, significantly outperforming prior

approaches based on leveraging redundancy across data ele-

ments or cache lines. The approach impacts all memory levels,

converting between concise and full-precision formats at the

boundary of the memory hierarchy, ensuring that data is stored

concisely throughout the hierarchy. Finally, the approach is

backward compatible and reuses existing hardware, adding

three small additional micro-architectural units on top of

existing designs to perform address generation for concise data

accesses and to perform format conversion between concise

and native data formats.

The specific contributions of this paper are as follows:

1) Asymmetric Compute-Memory Extension – we intro-

duce ACME, a novel asymmetric compute-memory ex-

tension to conventional architecture that facilitates storing

data concisely – without the marginal bits that add little

to the accuracy of computation while significantly increas-

ing the cost of storing and moving data. These concise

formats allow bit-level specification of the exponent and

mantissa components of float-point data formats, providing

significant improvements in effective storage capacity and

bandwidth while delivering high accuracy.

2) Format Selection Assistant – we introduce a Format

Selection Assistant (FSA), a compiler component that au-

tomatically identifies the concise format given an accuracy

specification from the application developer.

3) Compiler, ISA and Hardware Support – we describe

compiler, ISA and hardware support needed to enable

ACME. In particular, our approach adds two new classes

of instructions, load-concise and store-concise that operate

on concisely stored data. These instructions utilize three

small additional hardware units responsible for performing

address generation and for converting between concise and

native data formats.

We perform an evaluation of ACME on 10 applications cov-

ering a range of data-intensive and compute-intensive applica-

tions. We find that the approach is able to achieve speedups

that average 1.3× (up to 1.8×) while losing a maximum of

1% end-to-end application accuracy.

II. BACKGROUND AND MOTIVATION

In this section, we discuss the limitations of prior work in

achieving highly concise storage, and make the case for an

asymmetric compute and storage technique.

A. Limitations of Prior Work

Lossless cache compression techniques [9, 10, 11, 12]

focus on removing redundant bits by reducing the incidence

of replicated values in last-level caches (LLCs). These ap-

proaches are designed to work with fixed-point and integer

programs. However, cache compression has been shown to

achieve negligible compression ratios for floating-point data

because floating-point data lacks the value-level replication
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Fig. 2. Accuracy comparison between (a) symmetric approxi-

mation and (b) asymmetric approximation for Kmeans, show-

ing that asymmetry achieves same accuracy with significantly

fewer bits as compared to symmetric approach

that is often found in integer and fixed-point data [9, 13].

Others have explored extending the definition of replication to

include softer definitions of replication, treating LLC lines of

similar floating point data as replicas [13]. These techniques

achieve better compression for floating-point values than loss-

less compression techniques. However, as we show later in

Section V, these softer definitions of replication still leave

large numbers of marginal bits in cache. Moreover, the narrow

focus of prior work on last-level cache only partially addresses

this problem, leaving all data in place in private caches and

DRAM.

In addition, different applications need different numbers

of bits to achieve satisfactory accuracy. Therefore, the design

of a concise storage approach needs to have the flexibility

to capture the wide spectrum of design points required by

different applications and design objectives. Current architec-

tural designs that include support for double, float and

(occasionally) half precision floating-point configurations

are of limited applicability, as they do not capture a rich

enough range of options and leave a significant opportunity

on the table. Moreover, recent prior work focused on building

approximate storage structures also does not provide sufficient

flexibility because its approximation settings are built into the

hardware at design time [13].

To address the limitations of prior techniques, our approach

uses custom-precision floating-point formats. In our approach,

each number still has sign, exponent and mantissa fields,

however the number of mantissa and exponent bits are not

fixed. This makes our approach highly flexible, providing a

rich spectrum of design points with different numbers of man-

tissa and exponent bits to choose from, resulting in a highly

concise storage. Our approach is fundamentally different from

previous works [9, 10, 11, 12, 13] as it identifies marginal

bits by carefully characterizing the impact of bits in the data

elements, while the previous works apply softer definitions of

data replication across LLC lines, missing the opportunity to

remove all the marginal bits.

B. The Problem with Asymmetry

One might posit that concise storage could be achieved via

a system using custom precision formats that is symmetric in

compute and memory, using a concise format in both memory

and compute. However, there are two reasons that make such

an approach impractical.

First, it would be extremely invasive and hardware-

intensive, requiring major changes to the functional units,

pipeline, datapaths and so forth to support using concise data

formats throughout.

Second, we have observed in our experiments that a sym-

metric approach tends to lose accuracy very quickly as the

number of bits in the data format are reduced. This is

illustrated in Figure 2(a) and (b), which show the result

accuracy of running Kmeans using symmetric and asymmetric

approaches, respectively, for a range of different exponent

and mantissa lengths. The asymmetric approach stores data

concisely throughout the memory hierarchy while performing

computation at full precision. Each plot shows the accuracy

of a range of different formats, where darker colors indicate

higher accuracy results. The key observation is that the asym-

metric approach can achieve a particular level of accuracy

with far fewer bits. Value saturation causes steep dropoffs in

accuracy when reducing the number of bits in the symmetric

approach (e.g., going from 4 to 3 exponent bits in Figure 2a).

Such reductions in the number of bits reduce the range of

values supported by the functional units, frequently leading to

saturated intermediate and output values and highly inaccurate

computation. For example, the symmetric approach requires 15

bits to achieve 99% accuracy, while the asymmetric approach

requires just 5. This trend holds true across applications – on

average across 10 test applications, we find that the symmetric

approach requires 1.7× as many bits as the asymmetric

approach to attain 99% accuracy.

C. Bridging the Format Divide

An asymmetric approach has significant benefits over a

symmetric approach in terms of hardware simplicity and

accuracy, but there remains one main difficulty to solve to

enable the asymmetric approach – bridging the format divide

by converting between precise and concise data formats at the

boundary of the memory hierarchy.

An obvious way to perform these conversions to extract

precisely formatted data from concise data is to leverage

existing software mechanisms such as shifts, masks and other

operations. Such an approach would work by loading concise

data using conventional memory operations, then convert and

distribute it (potentially across multiple registers) by shifting,

masking and other bit-level operations. The main difficulty

making software conversion approach impractical is that many

such operations may be needed per memory operation, intro-

ducing significant amounts of additional processing overhead

to support concise storage.

While such an approach may reduce capacity and bandwidth

requirements in the memory hierarchy, through experimenta-

tion (not shown here) we have observed that it significantly

undermines the ability of the approach to improve application

performance on net, often introducing non-negligible slow-

downs due to the cost of converting data every time it is

loaded. This suggests that the key to enabling an effective



Fig. 3. ACME system architecture; a) ACME compiler finds a suitable precision for the application and produces concise

loads and stores for the annotated variables. b) and c) show execution of these concise loads and stores in hardware.

approach to leveraging an asymmetric compute-memory ap-

proach lies in efficiently bridging the format divide.

III. OVERVIEW OF ACME

ACME is designed to address these problems. ACME is

based on an asymmetric compute-memory architecture; the

data is stored concisely in memory while computation happens

on full precision. ACME reduces pressure on the memory

subsystem exploiting marginal bits to reduce the cost of storing

and moving data.

A. Challenges

However, there are several challenges in converting these

savings in memory storage and bandwidth to performance

improvements.

Quick Format Conversion. ACME is based on an asymmetric

compute and storage paradigm, resulting in a format divide

between compute and memory. Therefore, each concise load

requires conversion from the concise format to the single pre-

cision format. Similarly, each concise store requires conversion

from the single precision format to the concise format to bridge

this format divide. These conversions must be fast to extract

maximum performance benefit from the concise storage.

Bit-level Interactions in Byte-addressable Memory. Achiev-

ing highly concise storage requires storing values of arbitrary

length in the memory. This gives rise to situations in which

the concise data element might not start at a byte boundary.

Since conventional memory subsystem is byte-addressable,

ACME needs to support certain bit-level interactions in a byte-

addressable memory environment.

Choosing Precision. Different applications have varying ac-

curacy requirements, and thus varying format requirements.

Finding a suitable precision requires navigating through a non-

trivial search space (23 mantissa * 8 exponent = 184 for each

variable). Therefore, ACME requires quickly finding the right

level of precision for the application.

B. Key Components

We introduce these components to address the challenges

outlined earlier.

Fast Conversion Units. ACME introduces two small addi-

tional units, Concise to Exact (C2E) and Exact to Concise

(E2C), to bridge the format divide between compute and

storage. These units perform format conversions in a single

cycle. The C2E unit converts the concise data element into

single precision format before writing it into the register file.

Similarly, the E2C unit converts the data element format from

single precision format to concise format before sending it to

memory.

Concise Address Generation Unit. ACME uses a Concise

Address Generation Unit (CAGU) to calculate the memory

address of concise data elements. Our approach keeps the

memory byte-addressable. CAGU generates a byte-level mem-

ory address that is closest preceding to the concerned concise

data element. It works in concert with the E2C and C2E to

access the memory response at a bit-level granularity.

Format Selection Assistant. ACME employs a Format Se-

lection Assistant (FSA) to find an appropriate format for an

application. For a specified accuracy target, ACME performs

a binary search over the number of exponent and mantissa bits

to quickly identify a suitable precision for each approximated

variable.

ISA Support. We propose two ISA extensions in the form

of load-concise (ldc) and store-concise (stc) instructions.

These instructions support arbitrary length storage in the

memory hierarchy, leveraging the CAGU, E2C and C2E units

to realize the asymmetric compute and storage architecture.

IV. DESIGN AND IMPLEMENTATION

ACME is an end-to-end system that stores data concisely by

removing marginal bits while performing computations at full

precision, an approach that improves performance of memory-

intensive applications by increasing effective cache size and

effective memory bandwidth. In this section, we describe the

details of the ACME system architecture.

A. System Architecture

Figure 3 illustrates a high level overview of ACME. illus-

trating the hardware support (left) and the software support

(right).

Hardware Support. Concise loads and stores are supported

in the hardware via the CAGU, E2C and C2E units. For the

ldc instruction, as shown in Figure 3a, the processor sends

a load request for the memory address generated by CAGU.



Fig. 4. Execution of exact and concise loads

The data response is passed through the C2E unit to convert

the data element format from concise to single precision,

before writing it into the register file. For stc instructions

(Figure 3b), the processor first performs a companion load

to find the data contents at the requested memory address.

In parallel to the companion load, the processor removes

marginal bits from the store value using the E2C module,

converting the data element format from single precision to

concise. The concise data is then inserted at the appropriate

location in the companion load response, which is later written

to the load-store queue (LSQ).

Software Support. The ACME compiler allows the pro-

grammer to annotate those variables that are amenable to

approximation, as is done in prior work [15, 16, 17, 18, 19]. In

ACME, these take the form of #pragma directives in order to

ensure the compatibility of ACME-enabled code with NON-

ACME compilers. The ACME compiler takes the annotated

application, an accuracy specification and a representative

input dataset as input and generates an application executable

that uses ldc and stc to enable concise storage. As illus-

trated in Figure 3c, the compiler generates ldc and stc for

the annotated variables with the precision information (format

length) as instructed by FSA. The resulting executable is then

profiled and the accuracy and performance statistics are sent to

FSA. FSA uses this information to decide the format length of

the next step of binary search. In addition, the ACME compiler

provides a cmemcpy (concise memcpy) function that uses

concise memory operations to remove marginal bits from the

approximated input variables, after the variables have been

initialized.

B. Hardware Execution

ACME uses ldc/stc instructions to enable precise compu-

tation on concise data elements. These instructions reuse most

of the existing processor micro-architecture with the help of

three small additional hardware units - CAGU, C2E and E2C.

1) Execution of Concise Loads: Every load instruction

(with or without ACME) has 2 steps as shown in Figure 4 –

i) Load address generation, where Address Generation Unit

(AGU) calculates the effective address to be sent to the mem-

ory, and ii) Register file writeback, where the data response

from the memory is written back into the register file. ACME

introduces additional hardware units in both of these steps to

bring concise data elements into the processor and convert

them to the single precision format.

Fig. 5. Block diagram of Concise Address Generation Unit

(CAGU)

Load Address Generation. Conventional processors have

dedicated functional units to calculate the effective memory

address for loads and stores. These functional units are called

Address Generation Units (AGU). By adding dedicated AGUs,

memory instructions do not use integer ALUs for address

generation, creating opportunities for executing more indepen-

dent integer instructions in parallel. The compiler encodes the

necessary information to perform address generation into the

memory instructions while generating the application binary.

This information is extracted by the instruction decoder and

passed on to the AGUs. For example, in x86, array traversal

uses a base register, index register for the array and the

data size of each element (in bytes). In this case, the AGU

performs the following integer arithmetic operation to gen-

erate the effective memory address: (base_register) +

data_size * index_register.

However unlike conventional loads, ACME requires the

capability of storing a data element of any arbitrary length

in the memory, breaking the assumption that data elements

are byte-aligned. This gives rise to situations where ACME

requires bit-level access while the memory is byte-addressable.

ACME solves this challenge by introducing the CAGU and

C2E unit, allowing bit-level access in the data response of

the concise loads while the caches and memory remain byte-

addressable. These units thus serve as a transparent layer

between the processor and the memory where everything else

is byte-addressable by design while ACME has bit-level access

in the data response.

To accomplish this, the CAGU generates a byte-level mem-

ory address and a bit-offset to completely specify the address

of a concise data element. The byte-level memory address is

the closest byte preceding the requested concise data element.

The bit-offset is the number of bits that are present between

the above byte-address and the concise data element location.

As shown in Figure 4, the CAGU first sends this byte-level

address to the memory. The C2E unit then extracts the relevant

bits from the data response using the bit-offset, converts them

into the single precision format and stores the final 32-bit value

into the register file.

Figure 5 illustrates the design of the CAGU. The instruction

decoder extracts the precision information (the number of

exponent and mantissa bits) from concise loads and stores to

calculate the length of the concise format. CAGU multiplies

the length of the concise format with the index register. Since

the maximum length of a concise data element is 31, the

format length can be encoded using 5 bits. Therefore, the

above multiplication requires a 32x5 (for the index register



Fig. 6. Block diagram of Concise to Exact (C2E) unit

and format length, respectively) integer multiplication unit.

This intermediate value is the number of bits between the base

address and the concise data element. Therefore, masking off

the last 3 bits of this value results in a byte-level memory

address which is closest byte-level memory address preceding

the requested concise data element. Moreover, the least signif-

icant 3 bits of the intermediate value form the bit-offset, i.e.

the number of bits to ignore in the memory response to get to

the requested data.

While sending the concise load request, the CAGU also

sends the bit-offset and the precision information along with

the request. These are required later by the C2E unit to extract

the relevant bits from the data response. If a cache miss

happens, then the bit-offset and the packing information gets

stored in the MSHR entries. The bit-offset requires 3 bits

and the packing information requires �log2(8 exponent ×
23 mantissa)� = 8 bits of storage. Therefore, each MSHR

entry needs extra 11 bits of storage.

Note that exact loads also go through AGUs which have

their own integer arithmetic units. Therefore, the CAGU does

not add to the critical path of the processor for non-concise

memory operations. We synthesize and report the timing

characteristics of the CAGU in Section V.

Register File Writeback. On receiving a concise load mem-

ory response, the C2E unit extracts the relevant bits using

the bit-offset and precision information present in the memory

response. The data is converted to the single precision format

and stored into an intermediate register before being written to

the register file. In the next cycle, ACME performs a lookup

on the LSQ to find the destination register and performs a

writeback into the register file.

Since each concise load performs format conversion from

concise to single precision, this conversion has to be fast to

provide the maximum performance benefits of concise storage.

We introduce a Concise to Exact (C2E) unit to address this

challenge. It converts the concise data into the single precision

Fig. 7. Execution of concise stores

format in a single cycle. Figure 6 gives a step-by-step walk-

through of this conversion process in the C2E unit. The process

can be broken down into 5 steps – a) the C2E unit shifts the

data response by bit-offset to align the relevant bits at the

end, b) it masks and shifts this value to get the sign bit at

the right position, c) similar operations are performed to put

mantissa bits at the right position, d) the concise data has a

raw (unbiased) exponent. This raw exponent is extracted, sign-

extended and a bias of 127 is added to it to calculate the final

exponent value. This exponent is then shifted and put at the

correct position e) lastly, the C2E unit performs a logical OR

operation on the sign, exponent and mantissa portions to get

the final value in the IEEE floating-point format. This final

value is written to an intermediate register.

In the next cycle, an LSQ look up is performed to find

the destination register and the data is written back into the

register file. From this point, the data is in single precision

format and the computation happens precisely.

2) Execution of Concise Stores: Supporting arbitrary length

concise stores in hardware is challenging because concise

stores require partial byte modifications, while memory is

typically byte-addressable. Concise loads solve this problem

by reading the memory first and performing bit manipulations

later. However, concise stores need to preserve parts of a byte

in memory while modifying another part of the byte.

We solve this problem by performing a companion load to

the relevant memory location alongside every concise store.

This data returned by the companion load is then used to

prepare the final store data to be written back to the memory.

In our experiments, we have observed that extra companion

loads have minimal performance impact, as they are greatly

outnumbered by concise and conventional loads.

Concise store execution can be broken down into 3 steps

as shown in the Figure 7 – a) Performing a companion load,

b) removing the marginal bits from the register value, and c)

preparing the store value.

Companion Load. Concise stores perform a companion load

using the CAGU as shown in Figure 7a. This is performed to

keep track of the bits (other than the required data element)

that need to be preserved at the time of storing in the memory.

Removal of Marginal Bits. In parallel to companion load

execution, the register value that needs to be written to the

memory is stripped of its marginal bits using the Exact

to Concise (E2C) unit. Figure 8 gives a step-by-step walk-

through of this process – a) The register value is first rounded.



Fig. 8. Block diagram of Exact to Concise unit

This rounded value is used to find b) exponent, c) sign and d)

mantissa portions separately which are then e) logically ORed

to generate the concise value. Intuitively, these calculations are

reverse of C2E calculations described earlier. In case the regis-

ter value is beyond the range supported by current precision, it

is clamped at the format-supported maximum/minimum value,

whichever is closer. For representing value 0, we set all the

bits in the concise format to 1.

Store Data Preparation. Finally, ACME prepares the store

value to be written back to the memory as shown in Figure 7c.

ACME first left shifts the concise value by the bit-offset and

brings it to the right position. The data response from the

companion load is masked at the bit-locations that are going

to be written by the concise value. These two values are then

logically ORed. This value is then written to the LSQ. Finally,

the value in the LSQ is written to the memory on instruction

commit.

C. Software Support

ACME provides the flexibility to handle many levels of

approximation by adding concise loads and stores; load-

concise (ldc) and store-concise (stc) instructions. The

ACME compiler is responsible for generating these concise

loads and stores for the annotated variables. These instructions

support storage of the concise data in memory with precise

computation using the CAGU, E2C and C2E units. In addition,

the compiler adds support for a cmemcpy function to remove

marginal bits from the input dataset in the application code .

ISA extension. We use x86 assembly instruction movl to

explain the workings of the ldc and stc instructions, though

the idea can be extended to other ISAs as well. Consider the

following load and store instructions:

movl (%ebx, %esi, 4), %eax ## Load

movl %eax, (%ebx, %esi, 4) ## Store

For traversal of an array, these memory operations use i)

base address (%ebx in this example), ii) index register (%esi),

and iii) data size (4). Since the base address and index are not

known at the compile time, the memory address calculation

(%ebx + %esi * 4) happens in the AGU at runtime.

Concise memory operations differ from their exact counter-

parts in the data size field. Here, compiler encodes the number

of exponent and mantissa bits as instructed by FSA (23 ×
8 = 184 combinations, 8 bits). For example

ldc (%ebx, %esi, #E_#M), %eax

stc %eax, (%ebx, %esi, #E_#M)

In hardware, this precision information is extracted by the

instruction decoder and passed on to the CAGU to perform

memory address calculations.

Concise Memcopy Function. ACME requires a mechanism

to remove the marginal bits from the annotated variables.

There are several ways to perform this removal – directly

converting the input data into concise format while initializing

the approximated variables, or performing removal after the

initializations are complete. We take the latter approach be-

cause it enables us to carefully evaluate the impact of removing

marginal bits on the application speedup.

The ACME compiler adds support for a cmemcpy function

that can be applied in the application code just after the

variable initializations complete. All the variables are in IEEE

format just after the initialization. The cmemcpy function is

a simple loop that makes a pass over the annotated array,

creating an in-place (smaller) concise copy of the data using

concise store operations. In this way, the annotated input data

elements are now stored concisely, fitting more elements in

the memory hierarchy. In Section V, we experimentally show

that the overhead of applying cmemcpy is very small (<1%

of application execution time).

D. Format Selection Assistant

ACME uses highly flexible ISA extensions providing a wide

spectrum of precision configurations to choose from. Different

applications have varying precision requirements, resulting in

different number of marginal bits. ACME requires finding out

this precision requirement for an application at a specified

accuracy target. This requires navigating through a search

space of precision configurations consisting of 23 mantissa

* 8 exponent = 184 options for each annotated variable.

We introduce a Format Selection Assistant (FSA) to help

ACME in quickly finding this suitable precision level. It takes

an application, a set of representative inputs, an error metric

and an error bound (i.e., the maximum error an application

can tolerate). It generates the minimum number of bits (e.g.,

number of exponent and mantissa bits for floating point

numbers) to represent the input.

Tuning Algorithm. This approach leverages the observation

that the accuracy of an application in asymmetric storage and

compute will typically monotonically increase with length of

exponent and mantissa bits. This enables us to leverage a

greedy binary-search based approach to reduce the complexity
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Fig. 9. ACME performance benefits. ACME achieves good

speedup for memory-bound applications

of the accuracy space exploration. The algorithm is greedy

because it finds a suitable precision configuration for the first

variable while keeping others exact, then it fixes the precision

of first variable and moves on to the second variable while

keeping the others exact, and so on. In this way, this algorithm

finds suitable precision for each variable one-by-one.

We use the intuition that exponent is typically much more

important than mantissa for mathematical operations. Thus, we

explore the exponent values first, using the maximum number

of mantissa bits. For 32-bit IEEE floating point numbers, we

start with 4 bits of exponent with 23 bits of mantissa. Once

we determine the number of exponent bits using binary search,

we again perform binary search over the length of mantissa

bits. For each variable, this will require at most �log2(8)� +
�log2(23)� = 8 executions instead of 8×23 = 184 executions

in exhaustive approach. The Format Selection Assistant (FSA)

can also be configured to apply a single format to all concise

variables in the application, where the search occurs over 1

variable and the formats of all variables are kept in lockstep

throughout the tuning algorithm. This reduces the search space

significantly at the cost of some reduction in data conciseness,

a tradeoff we evaluate in Section V-C.

The final precision configuration at the end of the binary

search is used for approximating the application. In addition to

accuracy, this exploration also records performance of different

precision configurations. In case the approximation results in

a performance degradation compared to the exact execution,

FSA instructs the compiler to drop the approximation.

V. EVALUATION

A. Methodology

Applications. We evaluate ACME across 10 applications.

We use matrixMul, symm and syr2k from PolyBench [20],

Kmeans, FuzzyKmeans, inversek2j, fft and blackscholes from

AxBench [16] and hotspot and lu from Rodinia benchmark

suite [21]. These floating point applications are at the core of

emerging machine learning and data mining workloads, having

a mix of compute-bound and memory-bound applications and

thus presenting a wide spectrum of program characteristics for

evaluating ACME.

Accuracy Measurement. We use average relative error [13,

16, 17] as the error metric for our applications. Average
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Fig. 10. ACME energy benefits. ACME provides significant

energy savings for memory-bound applications

relative error can be calculated using following equation,

where vi is the exact value and v∗
i

is the approximated value.

AverageRelativeError =

[ N∑
i=1

|vi − v∗
i
|/vi

]
/N

Performance and Energy Measurement. We evaluate the

performance of ACME on Gem5 simulator [22]. We extend

x86 ISA support in Gem5 by adding load-concise and store-

concise instructions. We also add functional and timing models

of ACME hardware components, CAGU, C2E and E2C units.

A penalty of one cycle is added to concise loads and stores to

account for conversion latency as detailed in Section V-E.

Processor
8-wide OoO core, 3.0 GHz
192-entry ROB, 72-entry load queue

Private L1 cache 32 KB, 8-way, 2-cycle, 64 B block

Private L2 cache 256 KB, 8-way, 5-cycle, 64 B block

Shared LLC 2 MB, 16-way, 12-cycle, 64 B block

Main memory 1 GB, 200-cycle latency

L1 prefetcher Tagged prefetcher

L2 and LLC prefetcher Stride prefetcher

TABLE I. Hardware configuration

Table I lists the specifications of the relevant hardware compo-

nents that are configured to model an Intel Haswell processor.

The applications are simulated for 5 billion instructions or

to completion whichever is sooner. For measuring energy, we

use McPat [23] and CACTI [24] to calculate the static and

dynamic energy of core, caches, DRAM and ACME hardware

units.

FSA Testing and Training. We partition the inputs into

training and testing sets for all applications. We use the FSA to

identify a suitable precision for the application on the training

set and then used the same precision on the testing set. We

found that the precision obtained from training satisfied the

accuracy targets during testing. Unless otherwise noted, our

experiments configure the FSA to use a single format for all

application variables. The impact of using single- and multi-

format configurations is explored in depth in Section V-C.

B. Performance and Energy Benefits

In this section, we evaluate ACME performance and energy

tradeoffs for six accuracy targets. For each accuracy target, the

number of exponent and mantissa bits is determined by the
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Fig. 11. ACME performance study with varying format length. Smaller length yields less cache and memory pressure,

resulting in higher application speedup

FSA. We use this precision configuration to find the speedup

and energy savings compared to the exact execution.

Performance Accuracy Tradeoff. The performance-accuracy

tradeoffs are shown in Figure 9. The figure shows the speedup

of ACME against exact execution carried out on a non-ACME

hardware for six accuracy targets. We observe significant

speedup for applications that can benefit from larger caches.

This occurs because ACME removes marginal bits from the

memory subsystem, fitting more data elements into the lower

level of memory closer to the processor. As one might expect,

speedup goes up with looser accuracy constraints. Neverthe-

less, ACME gets speedup of 10% while attaining 99.999% ac-

curacy. This is possible because some applications have large

number of marginal bits whose contribution to the application

accuracy is minute. For compute-bound applications, the FSA

chooses exact execution, as reducing the data representation

size has minimal impact on performance. For an accuracy

target of 99%, ACME achieves a speedup of 1.8x for matMul,

with an average of 1.3x for the whole application suite.

Energy Accuracy Tradeoff. Figure 10 presents the energy-

accuracy tradeoffs of the same experiment. The figure shows

the total energy consumed during the ACME execution com-

pared to exact execution for six accuracy targets. Again,

we observe that memory-bound applications consume lower

energy compared to the exact execution. There are 2 reasons

for this improvement. First, the application finishes sooner,

leading to reduced static energy, and second, ACME reduces

the number of DRAM requests leading to lower dynamic

DRAM energy. ACME hardware components are small and

consume minimal amount of energy. For an accuracy target of

99%, ACME reduces the energy consumption to 85% energy

of the non-ACME hardware on average.

Impact of Format Length. We next carry out a detailed

performance evaluation of ACME with varying number of bits.

The experimental setup consists of executing an application

with different format lengths (number of bits used to represent

a data element). For a particular format length, we can have

different configurations of exponent and mantissa bits. The

graph presents the one with the highest accuracy. The results

of this experiment are presented in Figure 11.

ACME is able to achieve significant speedup for all

memory-bound applications with small format lengths. Due

to increased effective memory capacity and bandwidth, we

observe higher speedup for smaller format lengths. These

improvements outweigh the clock-cycle penalty of the C2E

unit. With larger format lengths, the benefit of storing data

concisely diminishes and extra clock cycle penalty by C2E

becomes more prominent. For example for application symm,

ACME achieves good speedup for small format lengths that

use <16 bits but shows slight performance degradation for

larger format lengths >24 bits.

We also observe that a few of the data points do not follow

the speedup trend. For example, Kmeans at length = 20 and

syr2k at length = 16 . This happens because mapping of data

elements to physical cache lines changes with format length.

A particular strided-access pattern for a certain format length

can cause relatively more conflict misses than the adjacent

format lengths. We observe abrupt increase in the number of

misses for a certain cache for such format lengths. This is a

well-studied cache effect [25].

Finally, as expected ACME does not improve performance

for compute-bound applications: blackscholes and inversek2j.

Blackscholes has minimal performance degradation because

it has good ILP to keep its pipeline busy hiding the cycle

penalty induced by the C2E unit. This is not the case in

inversek2j, where the C2E penalty delays execution of depen-

dent instructions, resulting in higher degradation. However,

we note that the FSA recommends not using concise types

for these applications, and thus these applications do not slow

down when compiled with ACME compiler.

The experiment demonstrates ACME’s ability to improve

the memory behavior of applications resulting in significant

speedup and energy improvements for applications sensitive

to cache and memory performance.

C. Format Selection Assistant

In this section, we show details of FSA-chosen concise

format for different accuracy targets, shown in Figure 12. The

figure shows the breakdown between the number of exponent
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Fig. 13. Comparison of FSA-chosen configuration perfor-

mance against an oracle format selector. The FSA achieves

> 98% of oracle performance on average

and mantissa bits. We always keep the sign bit in the concise

format.

We make 2 key observations from these results. First, the

same application has different number of marginal bits for

different accuracy targets. For example, matrixMul needs 8 bits

for 90% accuracy but 24 bits for 99.999% accuracy. Second,

different applications have different number of marginal bits

for the same accuracy target. For example, Kmeans achieves

99% accuracy with just 5 bits whereas lu needs all 32 bits to

achieve 99% accuracy. The results effectively demonstrates the

need of designing a flexible approximation approach in order

to get the desired accuracy targets.

For compute-bound applications, blackscholes and in-

verske2j, FSA chooses exact 32-bit representation for all

accuracy targets.

Comparison to Oracle. We next compare performance

achieved by the FSA configuration against an oracle system

that finds the best precision configuration for the application

by performing an exhaustive search over all the representation

formats. The findings of this experiment are shown in Fig-

ure 13. For most of the applications, the accuracy increases

and performance decreases with increasing the number of

exponent and mantissa bits. Therefore, the greedy binary-

search heuristic achieves performance close to the oracle

in most cases. But as explained previously, some precision

configurations result in relatively more conflict misses which

results in sub-optimal performance compared to the oracle.
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Fig. 15. ACME reduces #off-chip memory requests which is

a major source of speedup

Overall, FSA is able to achieve > 98% of the optimal speedup

for all accuracy targets.

Different Formats Across Variables. The ACME hardware

and compiler support using different formats among the dif-

ferent variables in an application. However, using different

formats increases the complexity of the FSA tuning algorithm

and thus increases compilation time. Here we evaluate the

impact on performance of using a multi-format approach in

the FSA. We allow the FSA to select formats among all

applications in both multi-format and single-format modes at

a 90% accuracy target, presenting our findings in Figure 14.

We observe that multi-format FSA precision settings pro-

vide minimal performance benefit on most applications.

Kmeans, FuzzyKmeans and lu have only one variable suitable

to approximation, and thus do not see any additional perfor-

mance benefit when using multi-format mode in the FSA. For

the compute-bound applications blackscholes and inversek2j,

the FSA chooses exact execution in both multi-format and

single-format mode. For 4 the remaining 5 applications that

have multiple variables and are not compute bound, we

observe negligible performance improvements when using the

multi-format FSA. This occurs because, while the working set

size may be somewhat improved by using the multi-format

FSA, it often fails to reduce the footprint by enough to fit the

application working set into a closer cache level. The single

case where we observe a significant preformance improvement

is for symm, where such a reduction occurs.
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D. Memory Behavior

ACME achieves concise storage by removing the marginal

bits throughout the memory subsystem. This results in an

increase in effective capacity and bandwidth, improving per-

formance. A major source of speedup comes from reduction

in LLC misses. LLC misses are expensive as processor has to

wait for DRAM to satisfy the miss. In this section, we per-

form experiments to understand how ACME impacts memory

behavior.

LLC Miss Reduction. We compare the LLC Misses for FSA-

chosen configuration for six accuracy targets against exact

execution, presented in Figure 15. As expected, ACME brings

down the number of LLC misses substantially, which is one of

the major causes of performance improvement with ACME.

On average, ACME reduces the number of LLC misses by

85% at an accuracy target of 99%.

Impact of Working Set Size. In this experiment, we perform

a detailed study on matrixMul with varying working set

problem sizes. The experimental setup consists of running

exact and ACME version of matrixMul with different problem

sizes and then measuring the effect on IPC and LLC misses.

The format length chosen for the concise storage is 8 bits

which enables us to fit 4 times as many elements in memory-

subsystem as compared to exact. The results of this study are

shown in Figure 16 where the problem size varies from 1 MB

to 9 MB.

When the the problem size is less than 2 MB (the size

of our LLC), both the exact and approximate data fits into

LLC. Therefore, the number of exact and approximate LLC

misses are similar resulting in similar performance for exact

and ACME execution. However, as the exact problem size goes

beyond 2 MB, we start seeing larger number of exact LLC

misses. ACME is still able to fit the data in LLC because

it is using only 8 bits to represent the input elements. It is

only for configurations larger than 8 MB that ACME begins

to introduce increasing numbers of LLC misses.

E. System Overheads

In this section, we discuss the overhead associated with

different components of ACME. Note that all these overheads

are already included in other parts of the evaluation.

Packing Overhead. ACME compiler adds a cmemcpy in

the application code to represent the input elements more
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Fig. 17. Overhead of cmemcpy function. The function con-

sumes minute portion of total application execution time

concisely. Figure 17 shows the portion of application execution

time spent in cmemcpy function. We see that this overhead

is <1% in all the applications. Our hardware implementation

removes the marginal bits by performing complex conversions

quickly in the hardware, resulting in a minimal overhead.

We also implemented a software implementation of store-

concise instruction and used it for the cmemcpy function.

However, we observed as much as 10% overhead with the

software implementation, resulting in reduced performance

improvements.

Hardware Overhead. In this section, we discuss area, power

and frequency numbers for the additional hardware compo-

nents. We implement CAGU, C2E and E2C unit in Verilog

and synthesize it using ARM Artisan IBM SOI 45 nm library.

The area, power and frequency of the C2E unit is 0.0034mm2,

9.41 mW and 2.78 GHz respectively. Similarly, the numbers

are 0.0023mm2, 4.23 mW and 2.78 GHz respectively for

the E2C unit, and 0.0044mm2, 12.7 mW and 2.22 GHz

respectively for CAGU. Our baseline is a mainstream core-

i7 Haswell processor that operates at a frequency of 3.0 GHz

and consumes 177mm2 of die area. We see that the additional

overhead of ACME units is minimal: 0.0052% area overhead

and <0.1% power overhead. By using technology scaling

trends [26] to project the frequency for hardware components

for 22nm, we find that ACME units can operate at the target

frequency of 3 GHz at 22nm. This study shows that additional

hardware components are fast and consume minimal area and

power.

F. Comparison to Prior Work

In this section, we compare ACME against a state-of-the-art

approximate computing cache technique; Doppleganger [13].

Doppleganger increases effective LLC capacity by finding

LLC lines that are similar. Approximately similar cache lines

are mapped to single line resulting in increase in effective

cache size.

Doppleganger finds approximately similar cache lines by

encoding the range and average of the values present in the

cache lines. This encoding takes form of an N-bit hash map.

Two cache lines are treated approximately similar if they

produce same map value. Lower the value of N, higher is the

compression ratio at the expense of higher application error.
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99% Accuracy 95% Accuracy 90% Accuracy

Doppleganger−Ideal ACME

Fig. 18. ACME vs Doppleganger-Ideal; ACME achieves higher concise storage throughout the memory hierarchy resulting

in better application speedup

Doppleganger builds this N-bit hash function into the hardware

at design time, preventing any accuracy knob. Consequently,

Doppleganger might not be able to satisfy an accuracy target

with a N-bit hash function. We create an idealized version of

Doppleganger, Doppleganger-Ideal, where it is not restricted

by a fixed value of N. Instead, it finds the minimum value of

this N for each application and accuracy target separately. This

lets us measure the approximate similarity in the application

which is equivalent to the magnitude by which the effective

LLC size is increased. To simulate this effective increase in

LLC size for Doppleganger-Ideal, we increase the actual size

of LLC as per the measured similarity without increasing the

cache latency.

The comparison between ACME and Doppleganger-Ideal is

presented in Figure 18. Doppleganger-Ideal shows speedup for

some applications for 90% and 95% accuracy but its speedup

drops significantly for 99% accuracy. We see that ACME

performs better than Doppleganger-Ideal in all the applica-

tions, except inversek2j for accuracy target of 90%. There

are 2 reasons for this performance difference. First, ACME

achieves more concise storage compared to Doppleganger-

Ideal. Doppleganger is limited by finding redundancy across

cache blocks. ACME, instead, finds the bits that marginally

contribute to the accuracy and removes them from the data rep-

resentation. Second, ACME achieves concise storage through-

out the memory hierarchy, compared to Doppleganger-Ideal

which operates only on the LLC.

VI. RELATED WORK

One common way to reduce application cache footprint is

using cache compression. The majority of cache compression

techniques strives to reduce value replication in the memory

subsystem [9, 10, 11, 12]. However, these cache compression

techniques are limited to integer benchmarks. Prior work

shows that floating point data do not show redundancy to the

same degree as integer benchmarks [9, 13]. Our work, focusing

on floating-point data, is orthogonal and can be applied in

conjunction with cache compression.

There have been significant advances in using emerging

memory technology as approximate storage to trade-off stor-

age accuracy for performance and energy savings [4, 27, 28,

29]. Our approach is different from these works because we

focus on concisely representing the data elements in tradi-

tionally designed memory. Doppleganger maps approximately

similar cache lines to one physical cache line, resulting in

increased effective cache size [13]. Load-value approximation

approximates the value of a load on a cache miss [30].

Others have proposed techniques to reduce DRAM energy

consumption by adjusting DRAM refresh interval [31, 32, 33].

These techniques are specific to DRAM and focus on energy

savings. ACME achieves concise storage throughout the mem-

ory hierarchy and reduces DRAM accesses by fitting more

elements in the caches.

Recently, research in the field of machine learning has

shown that several neural networks require very few bits

for storing their input parameters [34, 35, 36]. However,

these works are targeted towards deep learning systems. Our

work is generic and presents an end-to-end system, tackling

challenges that come when converting these memory savings

into performance improvements.

There has been research to tune the precision level of

an application to tradeoff performance with accuracy. Prec-

imonious [37] and gappa++ [38] provide software precision

tuning algorithms to find suitable data types for an application.

However, these works are limited to float and double

data types. There has been extensive research in the pro-

gramming languages field to support approximate computing

[5, 6, 15, 19, 39, 40]. Our works uses programmer annotations

to identify approximation friendly variables as is done in prior

work [15, 16, 17, 18, 19]

VII. CONCLUSION

This paper introduces a novel asymmetric compute-memory

extension to conventional architectures, ACME, that decouples

the format of data in the memory hierarchy from the format of

data in the compute subsystem. ACME significantly reduces

the cost of storing and moving bits throughout the memory

hierarchy improving application performance. We add two in-

structions to the ISA - concise-loads and concise-stores which

are supported in hardware vis three small functional units.

Our results show that ACME achieves 1.3× speedup (up to

1.8×) while maintaining 99% accuracy, or 1.1× speedup while

maintaining 99.999% accuracy, while incurring negligible area

and power overheads; 0.005% area and 0.1% power to a

conventional modern architecture.
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