
Continuous Shape Shifting: Enabling Loop

Co-optimization via Near-Free Dynamic Code Rewriting

Animesh Jain, Michael A. Laurenzano, Lingjia Tang and Jason Mars
University of Michigan, Ann Arbor

{anijain, mlaurenz, lingjia, profmars}@umich.edu

Abstract—The class of optimizations characterized by manipu-
lating a loop’s interaction space for improved cache locality and
reuse (i.e, cache tiling / blocking / strip mine and interchange)
are static optimizations requiring a priori information about the
microarchitectural and runtime environment of an application
binary. However, particularly in datacenter environments, de-
ployed applications face numerous dynamic environments over
their lifetimes. As a result, this class of optimizations can result
in sub-optimal performance due to the inability to flexibly adapt
iteration spaces as cache conditions change at runtime.

This paper introduces continuous shape shifiting, a compilation
approach that removes the risks of cache tiling optimizations
by dynamically rewriting (and reshaping) deployed, running
application code. To realize continuous shape shifting, we present
ShapeShifter, a framework for continuous monitoring of co-
running applications and their runtime environments to re-
shape loop iteration spaces and pinpoint near-optimal loop tile
configurations. Upon identifying a need for reshaping, a new
tiling approach is quickly constructed for the application, new
code is dynamically generated and is then seamlessly stitched
into the running application with near-zero overhead. Our
evaluation on a wide spectrum of runtime scenarios demonstrates
that ShapeShifter achieves an average of 10-40% performance
improvement (up to 2.4×) on real systems depending on the
runtime environment compared to an oracle static loop tiling
baseline.

I. INTRODUCTION

The class of loop optimizations that reshape the iteration

space for cache locality and reuse are traditionally static

compiler optimizations [1, 2, 3, 4]. With a specification of

microarchitectural design and cache topology in a processor,

the computation in an application’s nested loops is restructured

with strip mine and interchange passes into tiles – small

subsets of the working set that fit into the cache – to take

advantage of data reuse and improve the effectiveness of

the cache for the computation. As a statically parameterized

optimization, tiling requires that the compiler control both

the size and shape of the tiles used in the computation. The

choice of these parameters is intimately linked to the charac-

teristics of architectural resources available to the application

as it runs [5, 6, 7]. However, this class of optimization was

conceptualized before the multicore era, which has introduced

numerous additional dynamic factors that affect application

runtime environments.

The advent of highly dynamic multicore/multiprocessor

environments necessitates the rethinking of how cache tiling

should be applied and deployed in commercial and production

0.25x

0.50x

0.75x

0x

1x

IP
C

 v
s B

es
t T

ili
ng

Tiled
Computation

Different
Architecture

Co-running
Application

Partitioned
Cache

Static

Ideal

T1 T1 T1 T2 T1 T3 T1 T4

T1
T1 T1 T1

T1 T2 T3 T4

Static Ideal

Fig. 1. The optimal tiling for one runtime environment can

perform poorly in other environments

contexts. The static assumptions used to aggressively tune the

tiling parameters can be easily broken by sources of post-

deployment dynamism. This concept is illustrated in Figure 1,

which compares two tiling approaches. First, an approach

that aggressively tiles for one runtime environment achieves

excellent performance in that environment, but may perform

poorly in other environments. Second an ideal approach that

aggressively tiles for each runtime environment. The figure

shows that pre-deployment best tile can result in sub-optimal

performance across different runtime environments.

Although there has been some prior work addressing par-

ticular challenges that arise from dynamism [8, 9, 10], these

works use white-box approaches to target particular sources

of inefficiency. Realizing a holistic approach that continu-

ously adapts to numerous, varied sources of post-deployment

dynamism requires a black box approach and remains an

open problem. In particular, three sources of dynamism must

be addressed to realize a loop iteration space specialization

that is deployable in modern commercial and production

environments. These sources of dynamism include:

1) Co-runner Dynamism. Cloud and datacenter operators

routinely co-run applications to improve server utiliza-

tion [11, 12, 13] and multi-program workloads have be-

come a norm on desktop and mobile platforms [14]. The

co-runners an application faces will vary in number and

character.

2) Microarchitectural Flexibility. Processor design has

evolved significantly since the original conceptualization978-1-5090-3508-3/16/$31.00 c© 2016 IEEE

of cache tiling. Now, microarchitectural parameters may

change over the course of an application run. For instance,

cache way-gating [15], processor power capping [16] and

cache partitioning [17, 18] may be used to slow, constrain,

or shut down architectural resources in order to limit power

consumption or provide performance isolation.

3) Microarchitectural Diversity. Datacenters operators typ-

ically house numerous architectural implementations [19,

20, 21], and heterogeneous architectures, for example ARM

big.LITTLE, are becoming common because of their en-

ergy efficiency. Moreover, the target platform for commer-

cial off the shelf (COTS) software is rarely known ahead of

deployment, and each platform may have different cache

configurations and microarchitectural implementations.

Each of these sources of dynamism impacts the availability

of important architectural resources to the application, sig-

nificantly affecting how cache tiling should be aggressively

employed. The set of factors impacting the choice of cache

tiling parameters is broad, have complex interactions, and may

change many times over the course of a single application

run. Handling this myriad factors therefore demands a novel,

dynamic solution that can quickly and seamlessly change the

tile structure to reflect changes to an application’s runtime

environment.

To design a cache tiling solution that can encompass these

numerous factors, two main challenges emerge:

(i) the solution should be accurate, generating tiles that

are customized to take full advantage of cache and

delivering significant performance benefits, and

(ii) monitoring application code for tiling opportunities and

rewriting application code to introduce new tiles must be

low-overhead, such that the overhead of those activities

does not outweigh the benefits of the improved tiles.

A key insight of this work is to use a rapidly and dynamically

constructed environment- and application-specific black box

model for predicting the performance of a host of tiling options

within the immediate environment. This paper introduces con-

tinuous shape shifiting with ShapeShifter, an end-to-end dy-

namic compilation infrastructure that enables continuous shape

shifting and aggressively rewrites running applications in re-

sponse to runtime dynamism. ShapeShifter uses a lightweight

monitoring infrastructure to examine the running applications

and the runtime environment to look for opportunities to tile

and re-tile the applications in response to changes in the

runtime environment. Upon identifying a suitable tile shape

based on the dynamically constructed model, ShapeShifter

rewrites and re-tiles the application leveraging a low-overhead

dynamic compilation capability to divert execution into the

aggressively tiled code with near-zero overhead.

In addition to continuous shape shifting, we propose a co-

optimization algorithm to perform retiling of multiple co-

runners simultaneously. It is a challenging problem to find

suitable tile shapes for multiple co-runners because optimizing

a tile shape for a co-runner can change the optimal tile

for an already optimized co-runner. We observed that cache

interference often has little to do with tile shape, i.e., different

tile shapes of the same tile size produce similar amount

of interference to other co-runners. This observation can be

leveraged to design an approach that quickly finds suitable

tile shapes. This is the first work to consider the effect of this

dynamic interference in the presence of multiple co-runners.

The specific contributions of this paper are:

• Study of Impact of Dynamism on Tile shapes – we study

the impact of several important sources of post-deployment

dynamism on the efficacy of cache tiling techniques. It

shows that static tiling approaches lose significant perfor-

mance opportunity unexploited amidst various sources of

dynamism.

• Continuous Runtime Tiling with ShapeShifter – we

introduce ShapeShifter, a system that runs continuously,

detecting and reshaping tiles within multiple running ap-

plications. ShapeShifter has negligible overhead, designed

to be suitable for continuous deployment in production and

commercial environments.

• Black-Box Dynamic Tile Generation – at the core

of ShapeShifter is a tile generation algorithm capable of

seamlessly handling numerous sources of dynamism. This

algorithm centers around a novel black box approach to

tile selection based on rapid online model creation for the

specific application and runtime environment into which the

application will be deployed.

• Real System Evaluation – we evaluate ShapeShifter on

real systems within a spectrum of runtime environments

spanning several architectural platforms, showing that by

aggressively retiling application tiles, we are able to achieve

an average of 10-40% performance improvement (up to

2.4×) over an oracle that aggressively tiles for a single

runtime environment.

II. MOTIVATION AND BACKGROUND

In this section, we investigate the opportunity available

in the presence of a solution that can aggressively re-tile

application code in the context of three common sources of

post-deployment dynamism.

A. Opportunity Analysis

The efficacy of a cache tile depends heavily on the runtime

environment, as there are numerous factors in the runtime

environment that can impact the availability of cache and

other microarchitectural resources. This study focuses on three

such sources of dynamism – the impact of co-running with

other applications, the impact of changing the amount of

cache available to the application, and the impact of mi-

croarchitectural diversity. Our baseline is an approach we

call StaticBest that exhaustively runs a large space of tiling

parameters to determine the best tiling configuration for a

runtime environment that (1) has no-co-running applications,

(2) is for a commodity server processor (AMD Opteron),

and (3) for which the application has full use of the 16-

way L2 cache. We evaluate on a host of applications from

Polybench [22].

0.4x

0.5x

0.6x

0.7x

0.8x

0.9x

1x
Sl

ow
do

w
n

1m
m

2m
m

3m
m ad
i

co
rr

el
at

io
n

co
va

ri
an

ce
dy

np
ro

g
fd

td
−

2d
fl

oy
d

ge
m

m
gr

am
ja

co
bi

−
1d

ja
co

bi
−

2d lu
se

id
el

−
2d

sy
r2

k
sy

rk
tr

m
m

ge
om

ea
n

(a) Co−runner

0.4x

0.5x

0.6x

0.7x

0.8x

0.9x

1x

Sl
ow

do
w

n

1m
m

2m
m

3m
m ad
i

co
rr

el
at

io
n

co
va

ri
an

ce
dy

np
ro

g
fd

td
−

2d
fl

oy
d

ge
m

m
gr

am
ja

co
bi

−
1d

ja
co

bi
−

2d lu
se

id
el

−
2d

sy
r2

k
sy

rk
tr

m
m

ge
om

ea
n

(b) Resized cache

0.4x

0.5x

0.6x

0.7x

0.8x

0.9x

1x

Sl
ow

do
w

n

1m
m

2m
m

3m
m ad
i

co
rr

el
at

io
n

co
va

ri
an

ce
dy

np
ro

g
fd

td
−

2d
fl

oy
d

ge
m

m
gr

am
ja

co
bi

−
1d

ja
co

bi
−

2d lu
se

id
el

−
2d

sy
r2

k
sy

rk
tr

m
m

ge
om

ea
n

(c) Different architectural target

Fig. 2. Suboptimal performance if the application code is not retiled to the application runtime environment

Co-runner Dynamism. We first evaluate the efficacy of

StaticBest when the assumption that the application has no

co-runners proves to be untrue (Figure 2(a)). For this compar-

ison, we run the applications again against a cache pressure

microbenchmark while employing each of the tiling parame-

terizations used to find StaticBest, then selecting the best per-

forming tiling, which we term AggressiveBest. The difference

in performance between StaticBest to AggressiveBest can be

interpreted as the slowdown resulting from a failure to tailor

the tiling approach to its runtime environment. Figure 2(a)

illustrates the resulting slowdown, which is over 19% on

average, and up to 41% for syr2k.

Microarchitectural Flexibility. We next evaluate the efficacy

of StaticBest when the assumption that the full L2 cache is

available to the application is violated. We use Bulldozer’s

way-locking feature to lock half the ways of the 16-way

L2 cache, effectively reducing the cache size by half. The

resulting slowdown if the applications are not re-tiled to

respond to this microarchitectural change is illustrated in

Figure 2(b). In this case, up to a 52% slowdown over the

optimized tile is observed for gemm, with an average of 19%

across all applications.

Microarchitectural Diversity. Finally, we evaluate the effi-

cacy of the optimized tile if the assumption that the target

architecture is an AMD Bulldozer is violated. To do this,

we find AggressiveBest when running the applications on an

Intel Haswell server and compare the resulting performance

to StaticBest on the Haswell server. Like the previous cases,

a significant performance opportunity is left unexploited if

applications are not re-tiled to reflect this different runtime

environment. The maximum resulting slowdown is 37% for

seidel-2d and averages 12% across applications.

B. Limitations of Prior Work

We compare ShapeShifter to the most relevant previous

work in Table 1 [8, 9, 10]. Both Defensive Tiling [8] and

Dynamic Selection of Tile Sizes [10] do not retile multiple

co-runners simultaneously. It is a necessary and challenging

problem to solve as optimizing the tile for one application

can change the best tile for an already optimized co-runner.

ShapeShifter has the capability of retiling multiple co-running

applications. We provide insights as to how tile shape and size

affects the interference between applications. We then present

an algorithm built upon that insight to find suitable tiles for co-

runners simultaneously. Reactive tiling [9] strives to find the

TABLE I. Comparison between ShapeShifter and prior retiling

works

Defensive Reactive Dynamic Shape-

Tiling[8] Tiling[9] Selection[10] Shifter

Retiling multiple co-runners �

Rectangular tiles � � �

Black-box model approach � � �

Compilation flexibility �

Real system evaluation � � �

Handles co-runner presence � �

Handles cache-partioning � �

Handles platform changes �

best tiling parameters in the presence of cache partitioning.

However, it is evaluated on simulators, which have limited

ability to capture industry-standard proprietary features such

as prefetcher designs and cache replacement policies. In ad-

dition, ShapeShifter supports dynamic compilation providing

the opportunity to use wide range of compiler optimizations

suitable to the runtime environment.

III. SYSTEM OVERVIEW

This section describes the design of ShapeShifter, a dynamic

compilation infrastructure that takes advantage of the opportu-

nity to aggressively re-tile running application code to reflect

the runtime environment. We discuss the main challenges in

designing such an infrastructure, and give an overview of how

ShapeShifter overcomes these challenges.

A. Challenges

Accuracy. Realizing a tiling approach that is universal, capa-

ble of identifying the right tile among a broad range of runtime

environments, is a challenging problem. Existing solutions

using detailed cache and memory access pattern models are

designed to focus on a narrow range of the possible runtime

environments. Thus, designing a new mechanism capable of

reasoning about cache tiling and correctly identifying the most

suitable tiling parameters among many runtime environments

is necessary for solving this problem.

Overhead. A dynamic re-tiling system must be left in place

continuously throughout application execution, available to

monitor the application and environment, and able to take steps

to exploit re-tiling opportunities as they arise. Having such a

capability that is low overhead is a challenging problem. Clas-

sic virtualization-based monitoring and dynamic compilation

Application 1

for(int i =0;i<N;i++){
…………..
…………..
…………..
…………..
…………..

}

Companion 1

z z
z

Application 2 Companion 2

z z
z

Code Cache
Dynamic
Compiler

Application 3 Companion 3 ShapeShifter

T
hr

ea
ds

C
om

po
ne

nt
s

PMU + HW
Monitor

Tile
Selector

Companion
Controller

z z
z

2 3

z z
z

1

Fig. 3. Dynamic compilation and monitoring infrastructure

infrastructures are ill-suited to this task, as the overhead in-

troduced by those infrastructures can easily outweigh benefits

of the optimizations themselves.

B. ShapeShifter System Architecture

ShapeShifter is an end-to-end dynamic system continuously

monitoring the running application and runtime environment

and looking for opportunities to re-tile the application code.

The runtime environment can change because of arrival/depar-

ture of co-runners, architectural policy changes and platform

changes.

To achieve this dynamic capability, ShapeShifter spawns

a runtime thread for each application as soon as it starts

execution, as shown in Figure 3. This thread, referred to as

Companion thread, provides a dynamic compilation capability

to its application. ShapeShifter continuously looks for tiling

opportunities by using a Runtime Environment monitor. When

an opportunity is identified, it triggers a Tile Generator module

that accurately predicts a suitable tile for the current runtime

environment. Finally, ShapeShifter instructs Companion thread

to introduce the new tiling strategy into the application code.

Companion threads, Tile Generator and Runtime Environ-

ment Monitor work in tandem to achieve continuous shape

shifting. Here we provide an overview of these components.

Companion Thread. Companion threads provide Dynamic

Compilation infrastructure inspired by protean code to intro-

duce re-tiled code into the running application [23]. The key

difference between protean code and other traditional heavy-

weight dynamic compilation infrastructures is that protean

code runs asynchronously to the application, without stalling

the application progress. The application continues running

the old code variant and switches to the new code variant

only when protean code has lazily stitched it into the running

application. Therefore, protean code incurs low overhead on

the application performance.

Companion threads are woken up only when a tiling op-

portunity is detected, as illustrated in Figure 3. Because of its

minimal interaction with the application, it provides a low-

overhead dynamic compilation solution to achieve continuous

shape shifting.

Runtime Environment Monitor. One of the key capabilities

of ShapeShifter is to detect opportunities to re-tile running

application code. This capability takes the form of a Runtime

Environment Monitor (REM), a lightweight process that occa-

sionally polls the machine state via hardware event monitors

and model specific registers (MSRs). It collects performance

and cache statistics counters that are used to guide tiling

decisions. MSRs often expose useful information about mi-

croarchitectural state. This information helps in constructing a

view of the application runtime environment. For example, the

AMD Bulldozer platform support way-locking in the L2 cache,

and MSRs expose the number of L2 cache ways available

at any given time. By monitoring the relevant machine state,

ShapeShifter can detect changes in the architectural policies

at any time.

Tile Generator. Tile Generator is responsible for predicting

a suitable tile for the application current runtime environment.

It uses the performance and cache statistics collected by REM

to generate an online black box linear model. Using this

model, ShapeShifter predicts a tile that is optimized for the

current runtime conditions. It instructs the Companion thread

to generate the corresponding tiled variant and stitch it into

the application code.

IV. SHAPESHIFTER DESIGN AND IMPLEMENTATION

In this section, we provide description of ShapeShifter

runtime system. The different components of ShapeShifter –

Companion threads, Tile Generator and Runtime Environment

Monitor – work hand-in-hand to identify and take advantage

of tiling opportunities. Figure 4 gives an overview of the

ShapeShifter runtime system. Whenever REM detects a tiling

opportunity, Tile Generator starts constructing an application-

and environment-specific tiling performance model. It instructs

the Companion thread to stitch a handful of different tile

parameterization codes into the application, where each is

run for short time. REM collects the performance and cache

statistics, referred to as Training data, while these tiles execute.

This training data is used by Tile Generator to construct a tiling

performance model on the fly. Tile Generator then selects the

tiling with the highest modeled IPC and invokes Companion

thread to introduce that tiling into the application. We show in

Section VI that this tile generation process is highly accurate,

choosing tiling strategies close to optimal-tiling performance.

We divide the above process into three parts: Online training

(§IV-A), Tile Generation (§IV-B), and Monitored execution

(§IV-C). We now describe these three steps in detail.

A. Online Training

Online training is triggered when the REM detects a change

in the application runtime environment. In this step, the REM

collects training data with the help of the Tile Generator and

Companion threads. This training data is then later used to

develop a tiling performance model. The process can be further

broken down into 2 steps. First, finding a suitable tile size for

the application and second, collecting training data.

1) Tile Size Selection: Both tile size and shape are impor-

tant tile characteristics that impact the performance of a tiled

loop nest. Tile size defines the working set of the application.

A working set larger than the targeted cache size slows down

 Monitored
execution (

Select tile size Choose training set Collect cache
stats

Online training (

Choose tile

Tile performance
model

Tile selection (

Runtime environment change

IV-A) IV-B)

IV-C)

Fig. 4. Tile selection in ShapeShifter is accomplished by running a small training set of tiling parameters, which is used to

model the IPC of a large space of tiling then to select the tiling with the highest IPC

the application because some memory requests take longer

to finish as they have to go to lower and slower levels of

memory hierarchy. On the other hand, a working set much

smaller than the cache size does not utilize the data reuse

efficiently. This step tackles the problem of finding a suitable

tile size for the application, whereas the problem of finding a

suitable tile shape is solved by the black box model described

in Section IV-B2.
On detecting a change in the application runtime environ-

ment, the REM reads in current cache size using software

visible registers and MSRs. This information is passed on

to Tile Generator that instructs the Companion thread to

generate a tile variant consuming a certain portion of the

available private cache size. Companion thread executes this

tile variant while REM collects the performance and cache

statistics during the tile execution. This process is repeated

with reduced tile size until the private cache miss rate is below

a certain threshold (<2% in our case). This low cache miss

rate signifies that the working set of the application now fits

in the cache. This produces a tile variant whose tile size is

tuned for the application current runtime environment.
2) Collection of Training Data: On finding a suitable tile

size, ShapeShifter starts collecting training data to help gen-

erate a tiling performance model. In this step, Tile Generator

generates a set of training tiles, Companion threads executes

these training tiles one by one for short duration while REM

collects the performance and cache statistics for each tile.

Algorithm 1 provides an overview of this whole process.

Algorithm 1 Online training

1: Input: TileSize

2: Output: TrainingData

3: function GETTRAININGDATA(TileSize)
4: GenTrainingSet(TileSize) � Tile Generator

5: for (i in 1:size(TrainingSet)) do
6: GenTiledVariant() � Dynamic Compiler

7: DispatchTileToApp() � Dynamic Compiler

8: RunTheTile()

9: data = CollectPerfMonData() � REM

10: TrainingData = TrainingData + data

11: end for
12: return TrainingData

13: end function

Tile Generator first generates a set of training tiles using

the tile size identified in the previous step but with varying

tile shapes. There is a broad range of tile shapes to choose

from. We classify the tile shapes in 3 categories: Broad tiles

– tiles with large number of rows but few columns, Narrow

tiles – tiles with few rows but large number of columns, and

Intermediate tiles – tiles that are neither broad not narrow. As

shown in Figure 4, Tile Generator chooses only a subset of

these tiles to profile the application. In total, the training set

consists of 5 versions of application - 2 broad-tiled, 2 narrow-

tiled, 1 intermediate-tiled.

Tile Generator instructs the Companion thread to introduce

training set into the application code. These tiles are then

executed one by one while REM collects performance counters

during their execution. Specifically, REM collects this infor-

mation for each tile in the training set: a) number of retired

instructions, and b) number of execution cycles . This creates

a training database which is later used to develop a tiling

performance model.

B. Tile Generator

The training data is now used to develop a model and

identify a suitable tiling strategy for the application runtime

environment. The runtime environment can change because of

various factors like arrival of co-runners, microarchitectural

policy changes and platform changes. Figure 5 gives an

overview of tile generation. Tile Generator uses the training

data collected by REM and creates an online black box model

for the current application and runtime environment. The

black-box model does not assume any prior knowledge of the

application and architecture, and is completely created on the

fly using the training data. Since the model has to capture only

the current application and runtime environment, a relatively

simple model can suffice to achieve high prediction accuracy.

This is in contrast to traditional white-box models that are

quite complex because they are designed to handle a wide

variety of cases.

1) Black-box Development: ShapeShifter uses the online

training data to develop a black box model. Our goal is to

generate a model that takes a tile Ti as an input and predicts

its corresponding performance IPCi. Tile Generator uses this

model to identify a suitable tilting strategy for the application

in its runtime environment.

We first define a tile Ti. It consists of three parameters

– t1i , t
2

i , t
3

i as we focus on widely used three-dimensional

tiling [8, 9, 10, 24]. Thus, a tile Ti can be represented as

IPCmax

Tile parameters

IPC

IPCpred

Training data

TshapeShifter

Blackbox model
Set of tile shapes
of predicted size

Fig. 5. ShapeShifter tile shape selection - Tile Generator

applies the blackbox model on a set of tiles and chooses the

tile with the highest predicted IPC

Ti =< t1i , t
2

i , t
3

i > (1)

The online training data has five training tile parameters and

their observed IPC. Tile Generator develops a linear model

between these training tile parameters and their corresponding

IPC. It applies a linear curve fitting method on these five data

points. This model can be formalized in the following manner.

f(Ti) =⇒ IPCi (2)

where IPCi is the modeled IPC for the application.

Note that the model is obtained by applying a linear curve

fitting method on just five data points. The overhead of

generating a linear model with so few points is minimal. Also

note that this model only captures current application runtime

environment. Therefore this model needs to be updated if a

new runtime environment is encountered.

2) Tile Shape Selection: This step uses the black box model

represented by Equation 2 and predicts a suitable tile shape for

the application in its current runtime environment. As shown

in Figure 5, Tile Generator applies the black box model on

a large span of tile shapes consisting a mix of broad, narrow

and intermediate tiles. Note that ShapeShifter is not executing

these tiles, it is just applying the black box model to predict

the IPC of each of the available tile shapes. The tile with

the maximum predicted IPC is chosen as the tile for further

execution. This tile is referred to as TshapeShifter.

Algorithm 2 Tile shape selection

1: Input: TrainingData

2: Input: AvailSet

3: Output: ShapeShifterTile
4: function GETSHAPESHIFTERTILE(TrainingData)
5: bbModel = GenBBModel(TrainingData)

6: predIPC = Apply(bbModel, AvailSet)

7: ShapeShifterTile = maxIPC(predIPC)

8: return ShapeShifterTile

9: end function

Algorithm 2 gives an overview of this step. This step can

be represented in the following manner

TshapeShifter : IPCshapeShifter = max
i∈avail tiles

f(Ti) (3)

Tile Generator invokes Companion thread to create a new

version of application with TshapeShifter parameters. This

version is used for execution from now on.

Fig. 6. REM detects the environment change and wakes up

companion threads to start training phase leading to creation

of ShapeShifter tile

A key point to notice is that the black box model does

not have to predict the IPC of each tile accurately. Even

ranking the tiles accurately is more than necessary for our

purpose. Minimally, ShapeShifter should be able to pick up

an acceptable tile when there is a large variation in the IPC of

available tile shapes. We show in Section VI that ShapeShifter

black box model is highly accurate. It asserts that a simple

linear model generated online is sufficient to identify suitable

tile parameters across a wide range of runtime environments.

C. Monitored Execution Phase

REM continuously monitors the runtime environment and

triggers online training in the presence of a tiling opportunity.

For detecting changes in architectural policies and platform,

REM periodically polls MSRs and other software visible

registers. In order to detect the presence of a co-runner,

ShapeShifter uses a simple technique of monitoring cache

misses. Arrival of a co-runner typically increases cache miss

rate. ShapeShifter assumes the presence of a software/hard-

ware mechanism that provides an estimate of cache size that

should be allocated to each co-runner. In the absence of

such a mechanism, ShapeShifter assumes that the co-runners

consumes half of the available cache capacity.

In addition, ShapeShifter remembers the tile for a particular

application and runtime environment. If the same runtime

environment shows up later, ShapeShifter uses the stored tile

for the application to avoid unnecessary training overhead.

The entire process is shown in Figure 6. In the figure, the

application is executing on core 0 while companion threads,

REM and Tile Generator are running on core 1. On detecting

a change in the runtime environment (event EA), the Tile

Generator starts the training process and instructs Companion

thread to generate the training tiles (tr1-tr5) and stitch them

in the application code. The application runs these training

tiles one-by-one while the REM keeps collecting cache and

performance statistics for each training tile execution (event

EB). After online training is complete, Tile Generator uses

the training data and predicts a suitable tile for the current

runtime environment (event EC). This tile is used for further

execution.

In frequently changing environment, REM detects a change

while the training is in process. In that case, ShapeShifter

●
●

●

●

●

●

●

●

●

0.6x

0.8x

1x

1.2x

1.4x

●
●

●

●

●

●

●

●

●

co
m

b
1

co
m

b
2

co
m

b
3

co
m

b
4

co
m

b
5

co
m

b
6

co
m

b
7

co
m

b
8

co
m

b
9

co
m

b
10

co
m

b
11

co
m

b
12

co
m

b
13

co
m

b
14

co
m

b
15

co
m

b
1

co
m

b
2

co
m

b
3

co
m

b
4

co
m

b
5

co
m

b
6

co
m

b
7

co
m

b
8

co
m

b
9

co
m

b
10

co
m

b
11

co
m

b
12

co
m

b
13

co
m

b
14

co
m

b
15

Tile shape variation Tile size variation

Pe
rf

or
m

an
ce

 v
ar

ia
tio

n

Fig. 7. Interference caused by different tile shapes is similar

whereas different tile sizes exert significantly different amount

of cache pressure

AMD Bulldozer Intel Haswell Intel Atom

Opteron 6272 Xeon E3-1240v3 Atom 330

16 cores 4 cores 2 cores

2.1 GHz 3.4 GHz 1.6 GHz

48K, 4-way, L1 (private)
2M, 16-way, L2 (shared)
12M, 128-way, L3 (shared)

Individual way-locking on
L2. Experiments use 16
-way/8-way and 4-way
unlocked configurations

32K, 8-way, L1 (private)
256K, 8-way, L2 (private)
8M, 16-way, L3 (shared)

24K, 6-way, L1 (private)
512K, 16-way, L2 (shared)

TABLE II. Platforms used in the evaluation

finishes the training and discards REM detection for a certain

duration.

V. LOOP CO-OPTIMIZATION

Applications are often co-run in datacenter operators to

improve server utilization [11, 12]. Also, executing multiple

programs are common on desktop and mobile platforms [14].

A universal tiling strategy needs to find suitable tile shape

and size for all the co-running applications such that the in-

terference between them is minimized. ShapeShifter provides

a capability of capturing this interference and adjust tiles of

multiple co-runners to their corresponding effective cache size.

We refer to this feature as co-optimization.

A major hurdle in achieving effective co-optimization is

the search space. Tiling for one application itself has a

huge search space. Adding co-runners makes the problem

intractable. Applying different tiles in one application creates

different runtime environments for the co-running applications,

and thus, optimizing tiling for one application can change

the best tiling strategy for an already optimized application.

This makes tiling for multiple co-runners simultaneously a

challenging problem.

An insight that can enable a solution to this problem is that

the interference caused by co-runners is largely a function of

their tile size, that is, different tile shapes of the same size

exert similar amount of cache interference. This is illustrated

in Figure 7. In this experiment, we take 15 pairs of co-runners

and study performance variation of the first application when

(left) only tile shape of the second application is varied while

keeping the tile size same and, (right) tile size of the second

application is varied. This shows that different tile shapes

among a tile size result in similar amount of interference,

while different tile sizes result in much larger performance

variation. This insight gives us a strong foundation to solve

the challenging problem of tiling for multiple co-runners.

Algorithm 3 Co-optimization

1: Input: Apps

2: function CO-TILING(Apps)
3: Initialize TileSize[Apps]

4: for (app in Apps) do � Optimize size

5: ToptSize = FindTileSize(app)

6: DynComp(app, ToptSize)
7: TileSize[app] = ToptSize

8: end for
9: for (app in Apps) do

10: Ts = TileSize[app]

11: trainingData = GetTrainingData(Ts) � Algo 1

12: TshapeShifter = GetShapeShifterTile(

trainingData) � Algo 2

13: DynComp(app, TshapeShifter)

14: end for
15: end function

Algorithm 3 gives an overview of our co-optimization.

ShapeShifter first identifies a suitable tile size for all the co-

runners as described in Section IV-A1. We refer to the tiles

after this step as Toptsize, as the tiles have been optimized for

size. Since the interference is dependent heavily on the tile

size and does not change significantly with the tile shape,

this step creates a stable runtime environment, whereafter

the cache interference does not change significantly as the

tile size changes. Therefore, ShapeShifter now optimizes the

tile shape of all the co-runners one-by-one. Since the cache

interference does not change with tile shapes, optimizing tile

shape once for all the co-runners results in suitable tiling

strategies. We observed that additional optimization on tile

shapes resulted in marginal performance improvements. We

evaluate co-optimization in Section VI-C.

VI. EVALUATION

A. Methodology

Applications. We evaluate ShapeShifter on the Polybench

application suite [22, 25, 26, 27, 28, 29], a collection of linear

algebra, stencil computation and data mining algorithms.

Implementation. We used Polly [30], a polyhedral optimizer

tool that is integrated into LLVM [31] to perform tiling.

We integrated Polly with protean code [23] to implement

ShapeShifter. Polly performs cache tiling on LLVM interme-

diate representation while protean code provides the dynamic

compilation capability.

Hardware Platforms. Our evaluation encompasses three de-

sign points with different microarchitectural and architectural

configurations, as summarized in Table II. These platforms

are an AMD Bulldozer, an Intel Haswell and an Intel Atom.

The AMD Bulldozer allows way-locking on its 16-way L2

cache, preventing a subset of ways in the cache from being

●●●
●●
●●●●

●
●●
●●●●●●●

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

●

1mm
Pr

ed
ic

te
d

R
un

tim
e

●●

●

●

●
●

●

●

●
●
●
●

●●
●●

●●

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

●

2mm

●●●●●
●
●
●●●
●●

●●
●●

●●

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

●

3mm

●●●●
●●●●●●●●●●●
● ●●

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

●

adi

●●

●

●●

●

●

●

●
●
●

●
●

●

●●●

●

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

●

correlation

●●

●●

●●

●●

●
●●
●●●●

●

●

●

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

●

covariance

●
●●
●
●●

●●
●●●●

●
●●

●
●●

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

●

dynprog

●●

●

●●
●●
●
●

●

●
●

●●

●

●
●
●

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

●

fdtd−2d

●●●●●●●●
●●
●
●●●●●
●●

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

●

floyd

●●
●●
●●

●●●●
●●●●●●

●●

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

●

gemm

Actual Runtime

Pr
ed

ic
te

d
R

un
tim

e

●
●

●
●
●
●
●
●●●●●
●
●
●●●●

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

●

gram

Actual Runtime

●

●●

●●

●

●● ●

●
●
●●●

●

●●●

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

●

jacobi−1d

Actual Runtime

●

●

●

●

●

●

●●

●●
●●

●●
●●

●●

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

●

jacobi−2d

Actual Runtime

●●●●
●●
●●●●●●●
●●●●●

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

●

lu

Actual Runtime

●●●●●●●●●●●●●●
●●●●

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

●

seidel−2d

Actual Runtime

●●●●●●●●●
● ●●

●●
●●

●●

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

●

syr2k

Actual Runtime

●●●●
●●

●●
●●

●●

●●

●●

●●

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

●

syrk

Actual Runtime

●●●●●●●●●●●●●●●●●●

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

●

trmm

Actual Runtime

Fig. 8. Actual runtime of applications vs. the runtime modeled by ShapeShifter’s dynamic Tile Generator

accessed by any application. We consider three configurations

of way-locked L2 in our evaluation: completely unlocked (all

16 ways are active), half locked (8 ways are available) and

mostly locked (4 ways are available).

Baselines. Our baseline is the best performing tile on the

largest cache across all the machines. We find this tile by

statically running an exhaustive search space on the largest

cache in our experimental setup. We term this baseline as

Static Best approach to tiling.

B. Tile Selection Accuracy

This section evaluates the black box modeling technique at

the core of the tile selection algorithm. The goal of the model

is to map tiling parameters to performance, thus allowing

the Tile Generator to choose the tiling strategy with the best

performance of the available tiles. For these experiments, we

statically compile and perform a run of the application with

a host of different tiling strategies, measuring the runtime of

each.

The results of this experiment are presented in Figure 8,

where each plot shows the modeled vs. actual runtime for a

particular benchmark, normalized to the runtime of the fastest

tiling strategy. Inside each plot, the position of a particular

point on the x-axis gives the actual runtime for a single tiling,

while its position on the y-axis gives the modeled runtime from

the black box model. As a guide, each plot has a line at x=y

to show where perfect predictions (modeled runtime equals

actual runtime) would reside. Also in each figure is a circled

point, showing the tiling strategy chosen by ShapeShifter’s

tiling selection algorithm, along with a line that illustrates the

actual runtime of that point.

Some applications, such as dynprog, result in precise models

where the actual and modeled runtimes track each other

closely across tiling parameters. However, a precise model

is far beyond what is necessary to select a high performance

tiling. To make this more clear, we highlight covariance, where

the modeled runtime of the tiling chosen by ShapeShifter is

70% of the actual runtime but the the tiling strategy is still the

fastest from among the available options. Similarly in jacobi-

2d, there are numerous tiling strategies offering similar high

performance and ShapeShifter chooses one from among them.

0.8x

1x

1.2x

1.4x

1.6x

Sp
ee

du
p

vs
. S

ta
tic

 B
es

t

1m
m

2m
m

3m
m ad
i

co
rr

el
at

io
n

co
va

ri
an

ce

dy
np

ro
g

fd
td

−
2d

fl
oy

d

ge
m

m

gr
am

ja
co

bi
−

1d

ja
co

bi
−

2d lu

se
id

el
−

2d

sy
r2

k

sy
rk

tr
m

m

ge
om

ea
n

bubble covariance 1mm

Fig. 9. ShapeShifter adjusts the tiling strategy of an application

in presence of diverse co-runners

This stresses the idea that our models do not need to predict

absolute performance precisely.

C. Dynamism in Co-runners

In the era of multicore processors, the common case is

that multiple applications are run together on a system at

the same time. These co-running applications compete for

shared resources, which includes caches. In this section, we

evaluate how ShapeShifter adapts to runtime environment in

the presence of co-runners. These experiments are run on

the AMD Bulldozer platform, and we measure co-runners’

performance as they run with ShapeShifter. We measure IPC

for all the co-running applications and use it compute weighted

speedup.

Stable Co-running Workloads. In this set, we conduct three

experiments where ShapeShifter is used among 1, 2 or 4

applications.

In the first experiment, we evaluate how co-optimization

performs if we limit it to optimize only one co-runner while

the other co-runner tile remains unchanged. The results of

this experiment are presented in Figure 9, which shows the

performance improvement ShapeShifter-tiled application nor-

malized to Static Best in the presence of three different co-

runners: (1) the bubble, a microbenchmark designed to place

pressure on a specific subset of the cache, which we configure

to place pressure on half the L2 cache (1MB), (2) covariance

from polybench, and (3) 1mm from polybench. These results

demonstrate that by re-tiling application code, ShapeShifter is

able to achieve sizable speedups over Static Best, achieving

0.8x

1x

1.2x

1.4x

1.6x
Sp

ee
du

p
vs

. S
ta

tic
 B

es
t

1m
m+co

rre
lat

ion

1m
m+co

va
ria

nc
e

1m
m+jac

ob
i−

2d

co
v+

co
rre

lat
ion

co
v+

jac
ob

i−
2d

co
va

ria
nc

e+
sy

rk

gr
am

+lu

jac
ob

i−
2d

+co
r

sy
r2

k+
2m

m

sy
rk

+co
rre

lat
ion

ge
om

ea
n

optSize
optShape for app1

Final − optShape for app2

0.8x

1x

1.2x

1.4x

1.6x

Sp
ee

du
p

vs
. S

ta
tic

 B
es

t

W
or

klo
ad

1

W
or

klo
ad

2

W
or

klo
ad

3

W
or

klo
ad

4

W
or

klo
ad

5

W
or

klo
ad

6

W
or

klo
ad

7

W
or

klo
ad

8

W
or

klo
ad

9

W
or

klo
ad

10

ge
om

ea
n

optSize
optShape for app1
optShape for app2

optShape for app3
Final − optShape for app4

Fig. 10. ShapeShifter co-optimization retiles multiple co-

runners resulting in better cache usage

Workload 1 1mm, covariance, gram, lu
Workload 2 jacobi-2d, covariance, correlation, 1mm
Workload 3 correlation, syr2k, syrk, jacobi-2d
Workload 4 gram, lu, jacobi-2d, 1mm
Workload 5 2mm, syr2k, covariance, 1mm
Workload 6 jacobi-2d, 2mm, syrk, correlation
Workload 7 covariance, correlation, 1mm, 2mm
Workload 8 jacobi-2d, 1mm, correlation, covariance
Workload 9 syrk, syr2k, covariance, correlation
Workload 10 1mm, correlation, jacobi-2d, covariance

TABLE III. Co-runner workloads of 4 applications

performance improvements of up to 1.5× (covariance vs.

bubble), and an average improvement of 1.1× on average.

In the second and third experiments, we demonstrate the

capability of ShapeShifter co-optimization to accurately select

tiling strategies in the presence of two and four co-running

applications. The results of this experiment are present in

Figure 10. Co-optimization works by first finding the right

tile size for each co-runner, then optimizing each application

tile shape one-by-one. The figure shows step-by-step speedup

during this co-optimization process for two and four co-

runners across 10 different workloads (Table III). We observe

that ShapeShifter co-optimization achieves performance im-

provement of up to 1.5× , with an average of 1.2× in both the

scenarios. We also experimented with running ShapeShifter

after all applications have been optimized once. We observed

that the additional benefits were negligible, supporting the key

insight that different tile shapes of same tile size does not have

a large effect.

Dynamically Changing Workloads. In this experiment,

we evaluate ShapeShifter co-optimization on a dynamically

changing runtime environment that demonstrates how it adapts

to the dynamism. In this experiment, at any given time there

are 2 co-runners sharing a cache. These co-runners change

with time along with the cache allocated to them as shown

in Figure 11(a). ShapeShifter weighted speedup is compared

C
ac

he
 A

llo
ca

tio
n

(K
B

)

0

512

1024

1536

2048

1mm syrk jacobi−2d syr2k gram
Co−runner A

syr2k correlation covariance 1mm lu
Co−runner B

Co−runner A Co−runner B

W
ei

gh
te

d
Sp

ee
du

p

1 x

1.5 x

2 x

2.5 x

200 400 600 800 1000 1200 1400

Time (s)

ShapeShifter
Static best

Fig. 11. ShapeShifter co-optimization continuously adjusts co-

runner tiles to changing runtime environment

against the weighted speedup obtained by running co-runners

aggressively tiled with Static Best strategy.

The result of this experiment are presented in Figure 11(b).

We observe that ShapeShifter continuously adapts to changing

runtime environment, finding a suitable tiling strategy for

both the co-runners at different cache allocations. It results in

significant speedup as compared to Static Best tiling strategy.

D. Microarchitectural Factors

In current systems, the architectural/microarchitectural pa-

rameters can change during the application execution. Here,

we evaluate ShapeShifter on cache resizing and platform

changes.
1) Cache Resizing: We begin by exposing applications to

diverse situations in which different amount of cache are

available. To conduct this experiment, we configure the way-

locking feature on the AMD Bulldozer to leave either 8 or

4 ways open, then run the application with ShapeShifter to

allow ShapeShifter to realize an aggressive tiling configura-

tion on that microarchitectural configuration. The results of

this experiment are presented in Figure 12, which is again

normalized to application performance when the application

is compiled to employ the Static Best tiling configuration.

We see large performance improvements over the Static

Best strategy. When 8 ways are available to the application,

ShapeShifter achieves performance improvements of 1.2× on

average and up to 1.7×. This contrast becomes more stark

when only 4 ways are available to the application, where an

even larger gap exists between the optimal tiling strategies

between the 4-way and 16-way configurations. In this case,

ShapeShifter achieves a speedup of 1.4× over Static Best,

with a maximum speedup of 2.4× on gemm.
2) Microarchitectural Diversity: We next examine how

ShapeShifter deals with significant microarchitectural diver-

sity, applying it on applications running on Intel Haswell

and Intel Atom platforms. Re-tiling occurs in ShapeShifter

0.8x

1x

1.2x

1.4x

1.6x

1.8x

Sp
ee

du
p

vs
. S

ta
tic

 B
es

t

1m
m

2m
m

3m
m ad
i

co
rr

el
at

io
n

co
va

ri
an

ce

dy
np

ro
g

fd
td

−
2d

fl
oy

d

ge
m

m

gr
am

ja
co

bi
−

1d

ja
co

bi
−

2d lu

se
id

el
−

2d

sy
r2

k

sy
rk

tr
m

m

ge
om

ea
n

AMD (4−way) AMD (8−way)

1.99x 1.86x 2.41x 1.94x

Fig. 12. ShapeShifter demonstrates significant speedup by

retiling for available cache size

0.8x

1x

1.2x

1.4x

1.6x

Sp
ee

du
p

vs
. S

ta
tic

 B
es

t

1m
m

2m
m

3m
m ad
i

co
rr

el
at

io
n

co
va

ri
an

ce

dy
np

ro
g

fd
td

−
2d

fl
oy

d

ge
m

m

gr
am

ja
co

bi
−

1d

ja
co

bi
−

2d lu

se
id

el
−

2d

sy
r2

k

sy
rk

tr
m

m

ge
om

ea
n

Atom
Haswell

Fig. 13. ShapeShifter shows sizable speedup by retiling for

different microarchitectures

as the application begins execution, arriving at an aggressive

tiling strategy for the specific microarchitecture. As a point of

comparison, we also measure the performance when running

applications that are tiled using the Static Best strategy on the

Haswell and Atom.

The results of the experiment are presented in Fig-

ure 13, phrased as the performance improvement achieved

by ShapeShifter over Static Best. These results demonstrate

the effectiveness of ShapeShifter at developing aggressive

tiling strategies across multiple microarchitectures, with a

performance improvement of up to 1.5× when running seidel-

2d on the Haswell system, an average performance improve-

ment of 1.1× on Haswell, and a 1.1× average performance

improvement on Atom.

E. Overhead Analysis

We now present the ShapeShifter runtime overhead. Com-

panion threads use a small amount of compute and memory

resources to dynamically compile new versions of code. This

causes interference to the primary application which can

in turn lead to slowdown. We term this slowdown due to

interference as dynamic compilation overhead. In addition,

whenever application is redirected to newly compiled tile, it

suffers an I-cache warmup phase. We refer to this overhead as

code redirection overhead. Finally, there is the online training

overhead. In this section, we provide quantitative analysis of

these overheads.

Dynamic compilation. In order to calculate just the dynamic

compilation overhead, we design a stress test experiment

where Companion thread continuously generates new tile

variants without redirecting the application to the generated

1m
m

2m
m

3m
m ad
i

co
rr

el
at

io
n

co
va

ri
an

ce

dy
np

ro
g

fd
td

−
2d

fl
oy

d

ge
m

m

gr
am

ja
co

bi
−

1d

ja
co

bi
−

2d lu

se
id

el
−

2d

sy
rk

sy
r2

k

tr
m

m

ge
om

ea
n0%

2%

4%

6%

8%

10%

O
ve

rh
ea

d

Dynamic compilation
Code redirection

Fig. 14. Runtime overhead of ShapeShifter dynamic compila-

tion infrastructure

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

● ●

0.75x

1x

1.25x

1.5x

1.75x

2x

2.25x

2.5x

Sp
ee

du
p

vs
. S

ta
tic

 B
es

t

10 20 30 40 50 60 70 80 90 100

Outermost Loop Iterations

●

●

●1mm
2mm
3mm
adi

correlation
covariance
dynprog
fdtd−2d

floyd
gemm
gram
jacobi−1d

jacobi−2d
lu
seidel−2d
syr2k

syrk
trmm
geomean

● ●

●

●
●

●
●

● ●

Fig. 15. Performance benefits of ShapeShifter as a function of

the how long the environment remains stable

code. The associated overhead in this case is the worst case

dynamic compilation overhead. Next, we allow application

redirection to new tile variants. The difference between the

former and latter experiment quantifies the code redirection

overhead. We show these overheads in Figure 14. We observe

that even in the stress testing, the overhead is minimal and

less than 1% on average.

In terms of absolute numbers, we found that ShapeShifter

takes 136 (336) ms on average with maximum of 430 (990)

ms on Intel haswell (AMD Bulldozer) across our benchmark

suite while the application is running on other core.

Training. As a part of the tile selection algorithm,

ShapeShifter runs a handful of diverse tiling strategies for

training, which can be less performant than the final tile

chosen. In this section, we weigh the overhead of that training

against the benefit obtained by running an optimized tiling

strategy. Our experimental setup is to run each application with

ShapeShifter for a number of iterations in a stable environment

(the AMD Bulldozer with 8 ways locked), measuring the

performance of the application over time as the training and

the final selected tiles are run.

The results are presented in Figure 15, which presents

the performance of each application normalized to the Static

Best approach (y-axis) over a number of iterations in the

application’s algorithm (x-axis). The results show that the

0x

0.2x

0.4x

0.6x

0.8x

1x
Sp

ee
du

p
vs

. O
ra

cl
e

1mm
2mm

3mm adi

correlation

covariance

dynprog
fdtd−2d

floyd
gemm

gram

jacobi−1d

jacobi−2d lu

seidel−2d
syr2k

syrk
trm

m

geomean

bubble co−runner
cov co−runner
1mm co−runner

AMD Bulldozer (16−way)
AMD Bulldozer (8−way)
AMD Bulldozer (4−way)

Intel Haswell
Intel Atom

Fig. 16. Comparison of ShapeShifter against a dynamic oracle, that chooses the ideal tiling strategy with no overhead;

ShapeShifter achieves 93% of the performance of the dynamic oracle

performance improvement achievable by ShapeShifter depends

on the amount of time the application stays in a stable

environment. For example, immediately after training (5 itera-

tions), the average performance improvement over Static Best

across applications is 1.08×, while after just 20 iterations,

substantially higher performance of 1.2× is realized.

F. Comparison to Dynamic Oracle

Our final point of evaluation is to compare the performance

achieved by ShapeShifter across a number of different runtime

environments to the performance achievable by a dynamic

oracle approach to tiling. To execute this experiment, we run

each application in the prescribed environment using each of

a large set of tiling strategies. Afterward, we choose the best-

performing tiling strategy from among them and call this the

measured performance of the dynamic oracle.

Figure 16 presents the results of this experiment. Across all

applications and runtime environments, ShapeShifter achieves

93% of the dynamic oracle’s performance on average (no

worse than 72%). This demonstrates that ShapeShifter is

effective in finding suitable tiling strategies across different

runtime environments.

VII. RELATED WORK

Prior research in finding the best tile size can be divided

into two categories: static techniques that develop a detailed

analytic model for a set of host environments and predict a

tile [4, 5, 6, 32], and dynamic techniques that use a model to

prune the search space, execute a subset of tiles and choose

the one with the least execution time [33, 34, 35, 36].

Static Techniques. This class of methods take an approach

of developing detailed white box analytic models for the

applications and runtime environments. TSS [7] studies how

tiling interacts with several level of caches. Defensive tiling [8]

considers tiling strategy in presence of last-level cache inter-

ference, with the goal of reducing the number of inclusion

victim misses. Coleman and McKinley [5] develop a cache

model to find the largest tile that suffers from minimum self-

interference misses. These models can deliver useful insights

about how applications interact with the runtime environment.

However, it is difficult and sometimes intractable for the white

box approaches to accurately model the complex set of factors

that impact the choice of tiling strategy. ShapeShifter differs

from these techniques as it creates a model on-the-fly.

Yuki et al. [24] discuss the limitations of the white box

approaches. They use a neural network to statically predict

a tile for an application. However, it is a completely static

technique unable to adapt to changing runtime environment.

In addition, they limit the search to only square tiles to reduce

the large training time, leaving a significant performance

opportunity on the table.

Dynamic Techniques. Reactive tiling [9] is a combined static

and dynamic technique that compiles an application with a

fixed set of tiling parameters and inserts mechanisms in the

code to switch between this set of tiles at runtime. Reactive

tiling focuses only on the scenarios where the cache is resized

during the application execution as opposed to ShapeShifter

that accounts for a wide range of sources of dynamism. We

compare ShapeShifter against reactive tiling in this particular

scenario of cache re-sizing in Figure 17. In this experiment,

we generate a time schedule of changing cache sizes where

the cache size is chosen randomly between 1x, 1/2x and 1/4x

of the cache size during the application run. We observe that

ShapeShifter achieves 10% speedup against reactive tiling as

reactive tiling is limited by the set of tiles available to it at

compile time.

1m
m

2m
m

3m
m ad
i

co
rr

el
at

io
n

co
va

ri
an

ce

dy
np

ro
g

fd
td

−
2d

fl
oy

d

ge
m

m

gr
am

ja
co

bi
−

1d

ja
co

bi
−

2d lu

se
id

el
−

2d

sy
r2

k

sy
rk

tr
m

m

ge
om

ea
n0.8x

0.9x
1x

1.1x
1.2x
1.3x
1.4x
1.5x

Sp
ee

du
p

vs
. R

ea
ct

iv
e

T
ili

ng

Fig. 17. Improvement of ShapeShifter over Reactive tiling on

a dynamic schedule for all applications

Some prior works mitigate the complexity of searching by

resorting to only square tiles (i.e., all tiling parameters must be

equal) [24, 34]. Such limitations are fundamental as they ex-

clude valuable tiling configuration possibilities. We observed

that performance difference between the best rectangle tile

was 1.11× (up to 1.5×) faster than best square for our test

applications. The ATLAS library generator [34] executes a

wide range of tiles on the target machine and chooses the one

with the best performance. However, the optimized kernels

cannot react to sources of dynamism.

VIII. CONCLUSION

This paper introduces ShapeShifter, a dynamic compilation

strategy that removes the risks of applying cache tiling by

dynamically re-tiling running application code. ShapeShifter

is designed to continuously monitor running applications

and their runtime environments to find tiling opportunities

and pinpoint near-optimal tile sizes. Upon finding such a

tiling opportunity, ShapeShifter quickly generates an optimal

tiling code for the application, then that code is seamlessly

stitched into the running application with near-zero over-

head. We evaluate ShapeShifter on real systems amidst three

classes of runtime environment changes spanning different co-

running applications, platforms, and dynamically shifting ar-

chitectural resources. Our evaluation shows that ShapeShifter

achieves sizable speedups across applications, averaging 1.1-

1.4× across different runtime environments.

ACKNOWLEDGEMENT

We thank our anonymous reviewers for their feedback and

suggestions. This research was supported by National Science

Foundation under grants NSF-CAREER-1553485, CCF-SHF-

1302682 and CNS-CSR-1321047.

REFERENCES

[1] M. E. Wolf and M. S. Lam, “A data locality optimizing algorithm,” in
Programming Language Design and Implementation (PLDI), 1991.

[2] M. Wolfe, “More iteration space tiling,” in Conference on Supercom-

puting (SC), 1989.
[3] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A

practical automatic polyhedral parallelizer and locality optimizer,” in
Programming Language Design and Implementation (PLDI), 2008.

[4] M. D. Lam, E. E. Rothberg, and M. E. Wolf, “The cache performance
and optimizations of blocked algorithms,” in Architectural Support for

Programming Languages and Operating Systems (ASPLOS), 1991.
[5] S. Coleman and K. S. McKinley, “Tile size selection using cache

organization and data layout,” in Programming Language Design and

Implementation (PLDI), 1995.
[6] S. Carr, K. S. McKinley, and C.-W. Tseng, “Compiler optimizations

for improving data locality,” in Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 1994.
[7] S. Mehta, G. Beeraka, and P.-C. Yew, “Tile size selection revisited,”

ACM Transactions on Architecture and Code Optimization (TACO),
2013.

[8] B. Bao and C. Ding, “Defensive loop tiling for shared cache,” in Code

Generation and Optimization (CGO), 2013.
[9] J. Srinivas, W. Ding, and M. Kandemir, “Reactive tiling,” in Code

Generation and Optimization (CGO), 2015.
[10] S. Tavarageri, L. Pouchet, J. Ramanujam, A. Rountev, and P. Sadayap-

pan, “Dynamic selection of tile sizes,” in High Performance Computing

(HiPC), 2011.
[11] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-

up: Increasing utilization in modern warehouse scale computers via
sensible co-locations,” in International Symposium on Microarchitecture

(MICRO), 2011.
[12] C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling for

heterogeneous datacenters,” in Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2013.
[13] Y. Zhang, M. A. Laurenzano, J. Mars, and L. Tang, “Smite: Precise

qos prediction on real-system smt processors to improve utilization in

warehouse scale computers,” in International Symposium on Microar-

chitecture (ISCA), 2014.
[14] C. Gao, A. Gutierrez, M. Rajan, R. G. Dreslinski, T. Mudge, and C.-J.

Wu, “A study of mobile device utilization,” in International Symposium

on the Performance Analysis of Systems and Software (ISPASS), 2015.
[15] K. Gillespie, H. R. Fair, C. Henrion, R. Jotwani, S. Kosonocky, R. S.

Orefice, D. A. Priore, J. White, and K. Wilcox, “Steamroller: An
x86-64 core implemented in 28nm bulk cmos,” in Solid-State Circuits

Conference (ISSCC),, 2014.
[16] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le, “RAPL:

memory power estimation and capping,” in International Symposium on

Low-Power Electronics and Design (ISLPED), 2010.
[17] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A

low-overhead, high-performance, runtime mechanism to partition shared
caches,” in International Symposium on Microarchitecture (ISCA), 2006.

[18] D. Sanchez and C. Kozyrakis, “Vantage: scalable and efficient fine-
grain cache partitioning,” in International Symposium on Computer

Architecture (ISCA), 2011.
[19] L. A. Barroso, J. Clidaras, and U. Hölzle, “The datacenter as a computer:

An introduction to the design of warehouse-scale machines,” Synthesis

lectures on computer architecture, 2013.
[20] J. Mars and L. Tang, “Whare-map: heterogeneity in homogeneous

warehouse-scale computers,” in International Symposium on Computer

Architecture (ISCA), 2013.
[21] “Amazon EC2 Spot Instances,” http://aws.amazon.com/ec2/purchasing-

options/, 2016, online; accessed 5-Aug-2016.
[22] L.-N. Pouchet, “Polybench: The polyhedral benchmark suite,” URL:

http://www. cs. ucla. edu/pouchet/software/polybench, 2012.
[23] M. A. Laurenzano, Y. Zhang, L. Tang, and J. Mars, “Protean code:

Achieving near-free online code transformations for warehouse scale
computers,” in International Symposium on Microarchitecture (MICRO),
2014.

[24] T. Yuki, L. Renganarayanan, S. Rajopadhye, C. Anderson, A. E.
Eichenberger, and K. O’Brien, “Automatic creation of tile size selection
models,” in Code Generation and Optimization (CGO), 2010.

[25] T. B. Jablin, P. Prabhu, J. A. Jablin, N. P. Johnson, S. R. Beard, and
D. I. August, “Automatic cpu-gpu communication management and
optimization,” in Programming Language Design and Implementation

(PLDI), 2011.
[26] J.-M. Arnau, J.-M. Parcerisa, and P. Xekalakis, “Parallel frame render-

ing: Trading responsiveness for energy on a mobile gpu,” in Parallel

Architectures and Compilation Techniques (PACT), 2013.
[27] J. Lifflander, S. Krishnamoorthy, and L. V. Kale, “Optimizing data

locality for fork/join programs using constrained work stealing,” in High

Performance Computing, Networking, Storage and Analysis (SC), 2014.
[28] S. Srinath, B. Ilbeyi, M. Tan, G. Liu, Z. Zhang, and C. Batten, “Archi-

tectural specialization for inter-iteration loop dependence patterns,” in
International Symposium on Microarchitecture (MICRO), 2014.

[29] D. Li, M. Rhu, D. R. Johnson, M. O’Connor, M. Erez, D. Burger, D. S.
Fussell, and S. W. Redder, “Priority-based cache allocation in throughput
processors,” in High Performance Computer Architecture (HPCA), 2015.

[30] T. Grosser, A. Groesslinger, and C. Lengauer, “Polly – performing
polyhedral optimizations on a low-level intermediate representation,” in
Parallel Processing Letters, 2012.

[31] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Code Generation and Optimiza-

tion (CGO), 2004.
[32] V. Sarkar and N. Megiddo, “An analytical model for loop tiling and

its solution,” in International Symposium on Performance Analysis of

Systems and Software (ISPASS), 2000.
[33] J. Xiong, J. Johnson, R. Johnson, and D. Padua, “SPL: A language and

compiler for dsp algorithms,” in Programming Language Design and

Implementation (PLDI), 2001.
[34] R. C. Whaley, A. Petitet, and J. J. Dongarra, “Automated empirical

optimizations of software and the atlas project,” Parallel Computing,
2001.

[35] C. Chen, J. Chame, and M. Hall, “Combining models and guided em-
pirical search to optimize for multiple levels of the memory hierarchy,”
in Code Generation and Optimization (CGO), 2005.

[36] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R. Vuduc,
R. Whaley, and K. Yelick, “Self-adapting linear algebra algorithms and
software,” Proceedings of the IEEE, 2005.

