
De�NN: Addressing Bo�lenecks for DNN Execution on GPUs via
Synapse Vector Elimination and Near-compute Data Fission

Parker Hill†, Animesh Jain†, Mason Hill1†§, Babak Zamirai†, Chang-Hong Hsu†

Michael A. Laurenzano†, Scott Mahlke†, Lingjia Tang†, Jason Mars†

†University of Michigan, Ann Arbor
{parkerhh, anijain, zamirai, hsuch, mlaurenz, mahlke, lingjia, profmars}@umich.edu

§University of Nevada, Las Vegas
hillm3@unlv.nevada.edu

ABSTRACT
Deep neural networks (DNNs) are key computational building
blocks for emerging classes of web services that interact in real time
with users via voice, images and video inputs. Although GPUs have
gained popularity as a key accelerator platform for deep learning
workloads, the increasing demand for DNN computation leaves a
signi�cant gap between the compute capabilities of GPU-enabled
datacenters and the compute needed to service demand.

The state-of-the-art techniques to improve DNN performance
have signi�cant limitations in bridging the gap on real systems.
Current network pruning techniques remove computation, but
the resulting networks map poorly to GPU architectures, yielding
no performance bene�t or even slowdowns. Meanwhile, current
bandwidth optimization techniques focus on reducing o�-chip band-
width while overlooking on-chip bandwidth, a key DNN bottleneck.

To address these limitations, this work introduces DeftNN, a
GPU DNN execution framework that targets the key architectural
bottlenecks of DNNs on GPUs to automatically and transparently
improve execution performance. DeftNN is composed of two novel
optimization techniques – (1) synapse vector elimination, a tech-
nique that identi�es non-contributing synapses in the DNN and
carefully transforms data and removes the computation and data
movement of these synapses while fully utilizing the GPU to im-
prove performance, and (2) near-compute data �ssion, a mechanism
for scaling down the on-chip data movement requirements within
DNN computations. Our evaluation of DeftNN spans 6 state-of-the-
art DNNs. By applying both optimizations in concert, DeftNN is
able to achieve an average speedup of 2.1⇥ on real GPU hardware.
We also introduce a small additional hardware unit per GPU core
to facilitate e�cient data �ssion operations, increasing the speedup
achieved by DeftNN to 2.6⇥.

1Work was conducted while at the University of Michigan.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO-50, October 14–18, 2017, Cambridge, MA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4952-9/17/10. . . $15.00
https://doi.org/10.1145/3123939.3123970

CCS CONCEPTS
•Computingmethodologies→Neural networks; •Computer
systems organization → Single instruction, multiple data; •
General and reference→ Performance;

KEYWORDS
GPU Architecture, Deep Neural Networks, Memory Bandwidth,
Performance Optimization
ACM Reference format:
Parker Hill, Animesh Jain, Mason Hill, Babak Zamirai, Chang-Hong Hsu,
Michael A. Laurenzano, Scott Mahlke, Lingjia Tang, and Jason Mars. 2017.
DeftNN: Addressing Bottlenecks for DNN Execution on GPUs via Synapse
Vector Elimination and Near-compute Data Fission. In Proceedings of MICRO-
50, Cambridge, MA, USA, October 14–18, 2017, 14 pages.
https://doi.org/10.1145/3123939.3123970

1 INTRODUCTION
As user demand for state-of-the-art technologies in the domains of
computer vision, speech recognition, and natural language process-
ing (NLP) continues to increase, system designers are tasked with
supporting increasingly sophisticated machine learning capabili-
ties [24, 25]. An important trend that impacts the design of current
and future intelligent systems is the convergence of industry to-
ward deep learning as the computational engine providing these
services. Large companies, including Google [59], Facebook [14],
and Microsoft [53], among others [39], are using deep neural net-
works (DNNs) as the primary technique underpinning machine
learning for vision, speech, and NLP tasks.

With an increasing number of queries requiring DNN computa-
tion on the critical path, a signi�cant challenge emerges vis-à-vis
the large gap between the amount of computation required to pro-
cess a DNN-based query relative to a traditional browser centric
query such as web search [25]. Researchers have recently been
investigating the role of accelerators such as ASICs and FPGAs to
help bridge this gap [1, 5, 6, 20, 25, 30, 61]. However, these special-
ized hardware solutions require substantial adjustments across the
hardware-software stack as well as re-designing and redeploying of
servers which is an obstacle for wide-scale adoption. To avoid this
burden on existing infrastructure, deep learning frameworks have
embraced commodity accelerators like GPUs [8, 18, 27, 29, 35]. How-
ever, signi�cant improvement beyond current GPU performance is
needed to bridge the scalability gap [25] for DNN computation.

786

https://doi.org/10.1145/3123939.3123970
https://doi.org/10.1145/3123939.3123970

MICRO-50, October 14–18, 2017, Cambridge, MA, USA P. Hill et al.

This work is driven by key insight that, much like biological
neural networks, DNNs are intrinsically resilient to both minor
numerical adjustments [12, 30, 56, 63] and eliding spurious neu-
rons and synapses [21, 22]. This characteristic can be leveraged to
achieve performance improvement. However, as we show later in
the paper, reduction of computation and data movement does not
directly translate to performance improvement. Techniques from
prior work either create a mismatch between the algorithm and
underlying architecture, or are not designed to address the real
hardware bottlenecks, leaving two open challenges in the way of
realizing performance bene�ts:

• Limitation 1: Irregular Computation –Network pruning [21, 22],
a state-of-the-art machine learning technique that reduces the
DNN topology focuses on reducing the memory footprint. How-
ever, their methodology fails to realize performance bene�ts on
GPUs. Although this technique signi�cantly reduces the amount
of raw computation (i.e. �oating-point operations), we show that
the hardware-ine�cient irregular DNN topology outweighs the
bene�ts and results in substantial slowdown (up to 61⇥) due to
increased branch divergence and uncoalesced memory access on
GPUs. We present details on this limitation in §2.1. To achieve
performance bene�ts, the challenge of reducing computation
while aligning the reduced computation with underlying hard-
ware must be addressed.
• Limitation 2: Not Optimized for Bottleneck – Our investigation
identi�es on-chip memory bandwidth to be the key bottleneck
for DNN execution on GPUs. However, prior works focus on im-
proving o�-chip memory bandwidth using compression [58], re-
moving non-contributing bits to increase the e�ective bandwidth.
This technique, however, fails to provide signi�cant speedups
for DNNs (details in §2.2). We evaluate o�-chip data packing and
observe a speedup of less than 4%. On the other hand, compared
to o�-chip techniques, it is more challenging to perform on-chip
compression because frequently reformatting data is di�cult to
achieve without introducing signi�cant overhead.

This work introduces DeftNN, a GPU DNN execution framework
that addresses these limitations. Firstly, synapse vector elimination
reduces the total problem size by automatically locating and dis-
carding non-contributing synapses in the DNN – those synapses
having negligible impact on the output results – to improve per-
formance. To address the limitation of irregular computation, our
insight is that it is necessary to preserve existing architectural op-
timizations in original GPU-e�cient applications. Utilizing this
insight, synapse vector elimination applies a novel transformation
to the DNN data layout, producing computations that e�ciently
leverage GPU hardware.

The second optimization, near-compute data �ssion, mitigates
the GPU on-chip memory bandwidth bottleneck by optimizing
the utilization of integer units during DNN execution. To address
the prior work’s limitation of providing only o�-chip bandwidth
optimization [58], as on-chip memory is closer to the functional
units, we design novel techniques that can support low-overhead
very �ne-grained data conversion. The key insight that makes near-
compute data �ssion feasible is that the focus of data conversion
must be shifted from high compression ratio to low decompres-
sion overhead. In addition to the bene�ts achieved by our carefully

optimized near-compute data �ssion technique on commodity hard-
ware, we describe a small additional unit called theData Fission Unit
(DFU) that can be added to existing GPU hardware to obviate data
�ssion overhead to realize additional bene�ts on future generations
of GPU hardware. The speci�c contributions of this work are:

• DeftNN. We introduce DeftNN, a state-of-the-art GPUDNN exe-
cution framework. This framework automatically applies synapse
vector elimination and near-compute data �ssion optimizations
to existing DNN software applications to dramatically improve
performance on today’s GPUs.
• Synapse Vector Elimination. We introduce a DNN optimiza-
tion technique for GPUs, synapse vector elimination, that shrinks
the topology of the neural network. This method is guided by the
insight that network pruning techniques in DNN systems must
have computational regularity to achieve signi�cant speedups.
Our experiments show that synapse vector elimination achieves
1.5⇥ average end-to-end speedups on a set of 6 state-of-the-art
DNNs on real GPU hardware.
• Near-compute Data Fission. We introduce near-compute data
�ssion, which improves performance by e�ciently packing on-
chip memory. To realize speedup, we �nd that the focus must
be shifted from minimizing data size to minimizing unpacking
overhead. We �nd that near-compute data �ssion provides 1.6⇥
end-to-end speedup on a set of 6 DNNs on real GPU hardware
available today by performing unpacking in software. We also
introduce a lightweight hardware extension (<0.25% area over-
head) to facilitate e�cient unpacking, achieving an additional
1.4⇥ speedup over software-only near-compute data �ssion.
• Real System Evaluation of DeftNN. We evaluate DeftNN on
real GPU hardware across 6 state-of-the-art DNNs, covering both
fully connected and convolutional layers – the most computation-
ally intensive DNN layer types. We show that DeftNN achieves
signi�cant performance improvements yielding 2.1⇥ speedups
on average.

2 CHALLENGES
In this section, we describe the key ideas and challenges in applying
real-system, GPU-based optimizations to DNNs.

2.1 Computation Elimination
Network pruning [21, 22] has been proposed to remove non-contributing
synapses and neurons by removing those with near-zero values.
These removed computations occur sporadically throughout the
DNN topology, limiting bene�ts on commodity architectures.

GPU hardware, requiring contiguous data structures for e�cient
execution, presents a signi�cant challenge when omitting arbitrary
neurons or synapses. Speci�cally, for GPUs, branch divergence [15]
and uncoalesced memory access [26] present two performance
pitfalls for execution on noncontiguous data structures:

(1) Branch divergence is where some of the threads, partitioned
into groups by hardware (e.g., warps in CUDA), need to execute
di�erent instructions than the other threads in its group [45].
The hardware is designed such that all of the threads in a group
execute instructions in lockstep. This requires that divergent

787

De�NN: Addressing Bo�lenecks for DNN Execution on GPUs via
Synapse Vector Elimination and Near-compute Data Fission MICRO-50, October 14–18, 2017, Cambridge, MA, USA

(a) (b) (c)

Original
Computation

Network
Pruning

Topological
Compression

Memory
accesses

Cores

Result

Result with redundant
computation in 2 cycles

Result with idle
hardware in 2 cycles Result in 1 cycle

1 1 5 5
7 7 3 3

1 5
7 3 7 1 3 5

Synapse Vector
Elimination

Figure 1: (a) Original DNN computation resulting in redun-
dant computation, (b) network pruning [21, 22] resulting in
underutilized hardware, and (c) synapse vector elimination
showing e�cient use of resources.

sections of code are executed sequentially, so omitted com-
putation that occurs irregularly due to noncontiguous data
structures results in idle hardware rather than more e�cient
execution.

(2) Uncoalesced memory access is a similar issue in the mem-
ory subsystem [26]. When multiple threads in a thread group
issue memory instructions, requests to consecutive addresses, a
result of contiguous data structures, can be grouped together to
utilize a wide memory bus. Values stored in noncontiguous data
structures are unlikely to have consecutive addresses, causing
substantial underutilization of the memory bus.

The challenge faced by network pruning is illustrated in Figure 1.
An example baseline computation is presented in Figure 1(a). The
original computation takes two cycles to complete because there
are eight inputs with four being completed each cycle. Figure 1(b)
shows the computational pattern produced by network pruning
where uncoalesced memory accesses, due to the sparse, noncon-
tiguous data structure, prevent high utilization of the arithmetic
cores. Therefore, it still takes two cycles to process four inputs,
since only two inputs are being processed per cycle. In practice,
this kind of sparse computation results in very poor hardware uti-
lization because it fails to take advantage of the GPU’s very wide
vector units. To validate the necessity of addressing this challenge,
we compare the performance of DNN inference subjected to con-
tiguous and noncontiguous data structures. In our real-system GPU
experiments, we observe that applying noncontiguous data struc-
tures, produced by network pruning, to DNN inference results in a
slowdown of 61⇥ (§5.8).

To e�ciently reduce the DNN topology, we propose synapse
vector elimination, which improves DNN performance during in-
ference by discovering and removing performance-exploitable non-
contributing synapses. Synapse vector elimination overcomes the
sparsity challenge by applying dynamically transformed input data
to the original hardware-e�cient computation. As shown in Fig-
ure 1(c), synapse vector elimination reduces the total execution time
by e�ciently utilizing hardware resources on the transformed in-
put. As shown in the diagram, our methodology results in only one
cycle to process four inputs, since the removed and retained data
is not interleaved. More details on our synapse vector elimination
technique are presented in §4.1.

Figure 2: GPU utilization when processing DNNs, showing
the on-chip memory bandwidth bottleneck.

2.2 On-chip Memory Bandwidth
In contrast to reducing the amount of work with synapse vector
elimination, another approach to achieve speedup is to alleviate the
DNN processing bottleneck on GPUs by e�ectively exchanging one
hardware resource for another. There are three main hardware re-
sources on a GPU that are susceptible to becoming a bottleneck: the
functional units, the o�-chip memory bandwidth, and the on-chip
memory bandwidth. We present kernel-weighted average utiliza-
tion metrics of these three components in Figure 2, which were
produced by pro�ling 6 state-of-the-art DNNs (application details
are presented in §5.1), using Ca�e [29] and running on an Nvidia
Titan X (Pascal) GPU.

The key takeaway from the �gure is that the system is greatly
limited by on-chip memory bandwidth. This utilization pro�le is a
result of optimized matrix multiplication, the main underlying GPU
kernel for DNN inference, which makes use of loop tiling [7]. Loop
tiling optimization allows on-chip memory storage and registers
to be traded for o�-chip memory bandwidth and on-chip memory
bandwidth, respectively. While there is su�cient on-chip memory
storage to su�ciently reduce o�-chip memory bandwidth, the on-
chip memory bandwidth remains a bottleneck due to the limited
number of registers available for loop tiling.

As an example, the state-of-the-art Titan X (Pascal) GPU provides
11 single-precision TFLOPS (i.e. 44 TB/s), but its on-chip memory
bandwidth is limited to 3.6 TB/s (f requenc� ⇥ # shared memor�
banks ⇥ bus width = 1 GHz ⇥ 28 banks ⇥ 128 bytes) [51]. While
loop tiling at the register level mitigates this throughput gap, on-
chip memory bandwidth is still the limiting resource due to the
limited number of registers available for tiling.

To alleviate the on-chip memory bandwidth bottleneck, unused
functional unit cycles can be leveraged to compress on-chip mem-
ory. Unfortunately, the most recent GPU memory compression
technique only applies to o�-chip memory [58]. This technique
works by compressing the data in o�-chip memory, while storing
the decompressed data in on-chip memory. Although this can re-
duce o�-chip memory bandwidth, it provides no bene�t for DNNs
because on-chip memory bandwidth is the performance bottleneck.

Moving existing memory compression techniques closer to the
functional units is more complex than simply applying the com-
pression technique at a di�erent place in the memory hierarchy.
The central challenge when moving the compressed data closer to
the compute is that the decompression overhead can outweigh the
gains of reduced memory bandwidth and storage. The bandwidth
for on-chip memory, however, is much greater than that of o�-chip
memory, making the size of the compressed data format less criti-
cal. The di�erences in proximity to functional units and available

788

MICRO-50, October 14–18, 2017, Cambridge, MA, USA P. Hill et al.

Data Fission (§4.2)Synapse Vector Elimination (§4.1)Baseline Infrastructure

Training Synapse Search Fine tuning DNN Runtime

Trained DNN Reduced DNN

Epoch

Lo
ss

Epoch

Lo
ss

Fine-tuned DNNDNN Config
Result

“Dog”

Training
Set

RF

RF

S E M S E M

8 231 8 231

81 7 81 7

Memon

Synapse Vector
Elimination Kernel

Inference with
Data Fission

Input

1

K-D D K-D D

K-D

D

K-D

D

4
2 3

5

Figure 3: Overview of the DeftNN framework.

bandwidth cause a fundamental shift in the compression design
space. While o�-chip data packing focuses on larger reductions
in memory bandwidth, a solution to this problem for DNNs must
focus on minimizing decompression overhead.

Our near-compute data �ssion technique mitigates the GPU
bottleneck in the system by targeting on-chip memory bandwidth.
It realizes speedup by treating �ssion overhead as the paramount
characteristic of the design. More details on our near-compute data
�ssion technique are presented in §4.2.

3 SYSTEM OVERVIEW
In this section, we present an overview of the DeftNN system, a
GPU DNN execution framework for optimizing DNN inference by
tailoring it to the underlying architecture. The two optimizations,
synapse vector elimination and near-compute data �ssion, are built
upon a standard DNN software framework, comprising an o�ine
training phase for optimizing the DNN topology and a runtime
system. Together, the o�ine and runtime systemswork in concert to
apply optimizations automatically and transparently to unmodi�ed
DNN applications. An overview diagram of the DeftNN framework
is presented in Figure 3.

1 Initial Training – First, as in all DNN execution frameworks,
a set of training inputs are used along with a DNN con�gura-
tion that speci�es the topology of the DNN. Using the training
inputs, the DNN parameters are adjusted iteratively until the
classi�cation loss function converges. This process produces a
trained DNN model.

2 Synapse Search – After producing the baseline trained DNN
model, DeftNN automatically performs a synapse search to �nd
the non-contributing synapse vectors – groups of synapses that
are architecturally e�cient to eliminate on the GPU. This pro-
cess, as detailed in §4.1.2, locates and removes non-contributing
synapse vectors, which we de�ne as any vector highly cor-
related with another vector. As illustrated in the �gure, the
synapse search results in a DNN model that has some set of
synapse vectors eliminated from the computation.

3 Fine Tuning – Although the retained synapse vectors are
chosen to be representative of those that were eliminated, the
nuanced impact of the missing, eliminated synapse vectors
can result in accuracy degradation if used directly. To remedy
this, DeftNN uses �ne tuning, a well-known technique used to

re�ne the DNN weights by applying a small number of DNN
training iterations [64]. This process allows the DNN model to
fully recover accuracy that is lost from minor perturbations of
the weights or topology. By using �ne tuning after applying
synapse vector elimination, DeftNN produces a DNN model
with negligible loss in inference accuracy.

4 Synapse Vector Elimination – Beyond the training mech-
anism used by DeftNN to produce an e�cient DNN model,
DeftNN services DNN applications using a runtime system that
seamlessly allows inputs formatted for the unoptimized DNN
model to be applied to the DNN model from synapse vector
elimination. The synapse vector elimination kernel, as shown in
the �gure, reorganizes input activation values prior to inference
so that they can be applied to the optimized DNN model. A
detailed description of the architecture-e�cient synapse vector
elimination kernel are provided in §4.1.1, though we note that
the reorganization takes a maximum of 5% of kernel execution
time (see Figure 6), an overhead dwarfed by the reduction in
computation facilitated by synapse vector elimination.

5 Near-compute Data Fission – In addition to reducing the
size of the DNN using synapse vector elimination, DeftNN
optimizes the key GPU bottleneck, on-chip memory bandwidth,
within the inference kernel using near-compute data �ssion.
Near-compute data �ssion packs DNN weights and activations
into on-chip memory by removing non-contributing bits from
the numerical representation. Since this technique resides in
the low-level computational DNN kernels at runtime, no further
changes are required to the baseline infrastructure to utilize
this optimization. A detailed description of near-compute data
�ssion is presented in §4.2.

4 OPTIMIZATION TECHNIQUES
In this section, we describe two novel optimization techniques,
synapse vector elimination and near-compute data �ssion. We
present the key insights and challenges of both techniques when
implemented on real GPU systems executing DNN workloads. In
addition to our real-system implementation, we observe that near-
compute data �ssion is amenable to acceleration and design a light-
weight GPU hardware extension to mitigate overhead. Synapse
vector elimination has minimal overhead when implemented in
software, not warranting the costs of additional hardware.

789

De�NN: Addressing Bo�lenecks for DNN Execution on GPUs via
Synapse Vector Elimination and Near-compute Data Fission MICRO-50, October 14–18, 2017, Cambridge, MA, USA

(a)

(b)

K-D

...

K-D

N

MxK

KxN

Mx(K-D)

(K-D)xN

Weight Matrix

...M

K

Input Matrix

...K

N

M

...

Mx(K-D)xN
operations

Matrix
Multiplication

MxK

KxN

Weight Matrix

...M

K

Input Matrix

...K

N

MxKxN
operations N

Output
Matrix

Matrix
Multiplication

Sy
na

ps
e

V
ec

to
r

El
im

in
at

io
n N

Output
Matrix

M

M

Figure 4: High-level view of synapse vector elimination,
showing that (a) the exact computation is an M ⇥ K by
K ⇥ N matrix multiplication, while (b) synapse vector elim-
ination preprocesses the input to make the computation an
M ⇥ (K � D) by (K � D) ⇥ N matrix multiplication.

4.1 Synapse Vector Elimination
Synapse vector elimination removes non-contributing synapses
from DNNs, thereby reducing the total computation required for
the DNN to process its inputs. Previous network pruning tech-
niques produce an ine�cient mapping of operations to hardware.
Speci�cally, these techniques modify the computational kernel to be
irregular, limiting performance bene�ts due to branch divergence
and uncoalesced memory access. Instead, synapse vector elimi-
nation retains a hardware-e�cient design by transforming DNN
inputs for similarly-structured but smaller DNN computations.

Many DNNs have a large number of synapses that can potentially
be eliminated. Without considering the underlying architecture,
the selection of non-contributing synapses is fairly straightforward:
network pruning techniques simply select the synapses with the
lowest weights [21, 22]. One of the insights motivating this work
is that the granularity of synapses that should be removed is con-
strained by the architecture, thus the selection of synapses becomes
amulti-dimensional optimization problem.We devise a novel search
technique to solve this problem based on the correlation matrix
formed by the architectural groups of synapse weights.

4.1.1 Architecture-e�icient Design. Here, we present the GPU
architecture-e�cient design of synapse vector elimination, our tech-
nique that avoids the performance pitfalls associated with network
pruning, as described in §2.1, by applying a preprocessing step to ef-
�ciently rearrange computation. First, we show a high-level view of
the approach in Figure 4. The original neural network computation
(Figure 4(a)) is carried out by multiplying theM ⇥ K weight matrix
by the K ⇥ N output matrix of the previous layer. The synapse
vector elimination variant of this operation (Figure 4(b)) prepro-
cesses the input and weight matrices to reduce the total problem

(a) Synapse
 Reordering

(b) Matrix
 Truncation

To be retainedTo be eliminated

Synapse Vector Elimination

Weight Matrix

...M

K K-D D K-D D

Preprocessed

Weight Matrix

K-D

...M

Input Matrix

...K

N

K-D

D

K-D

D

Preprocessed
Input Matrix

K-D

N

...

R
un

tim
e

In
fe

re
nc

e
O

ff
lin

e
Tr

ai
ni

ng

Figure 5: Internal workings of synapse vector elimination,
showing compacting retained synapses so that the matrix
can be trivially resized.

size. The weight matrix is preprocessed o�ine since it is reused
many times, while the input matrix is preprocessed during run-
time to allow seamless switching between the original computation
and the synapse vector elimination optimized computation. These
smaller matrices are then given to a standard matrix multiplica-
tion algorithm. The performance bene�ts are realized by applying
an inexpensive transformation that reduces the size of the inner
dimension (i.e. K in the �gure) of the matrix multiplication.

There are two main steps for our synapse vector elimination
transformation, as shown in Figure 5: synapse reordering and ma-
trix truncation. First, synapse reordering e�ciently repositions
rows and columns of the neural network matrices so that they are
easier to manipulate. Next, matrix truncation reduces the amount
of computation required for matrix multiplication while preserving
its uniform data structure. Finally, a correction factor is applied to
the matrices to retain the scale of the output values.
Synapse Reordering. First, we reorder synapses to simplify the
task of discarding unwanted synapses. The central goal of reorder-
ing is to preserve the data structure’s uniformity without diminish-
ing the gains of skipping synapses, so a quick method of grouping
the retained and discarded synapses is necessary. We group the
synapses (rows in the weight matrix and columns in the input ma-
trix) together based on whether they will be discarded or retained.
For brevity, we only describe the reordering of the weight matrix,
but an equivalent reordering is applied to the transpose of the in-
put matrix. Since the number of discarded synapse weights, D, is
known before we start reordering synapses, we partition the matrix
at column K �D so that the K �D columns on the left represent the
retained synapse group and the D columns on the right represent
the discarded one.

After de�ning this partition point, some of the synapses that are
to be retained are already contained in the retained synapse parti-
tion. In fact, there is an equal number of synapses to be retained
as discarded that are in the incorrect partition. By using this obser-
vation, we create a pairing between misplaced retained synapses
and misplaced discarded synapses. The matrix is then reordered by
swapping the two columns for each of these pairs. After swapping

790

MICRO-50, October 14–18, 2017, Cambridge, MA, USA P. Hill et al.

Figure 6: Overhead from synapse reordering compared to
copying all retained synapses, showing thatDeftNN substan-
tially reduces the overhead of input transformation by re-
ordering synapses at useful design points (>50% retained).

all of the misplaced columns, the retained and discarded synapses
are strictly separated at column K � D.

To determine the bene�ts of our synapse reordering method
compared to naively copying all retained synapses into a separate
bu�er, we evaluate the overhead of these two methods in Figure 6
as a percentage of end-to-end execution time for AlexNet (the
same trend is present for all of our evaluated applications). In our
experiments, we found thatmore than 50% of synapses are needed to
retain accuracy. Using this discarding rate, we observe that synapse
reordering is at least 1.4⇥ faster than copying retained synapses. We
�nd that it is impractical to design hardware for synapse reordering,
since there is little overhead involved in synapse vector elimination.
Matrix Truncation. Next, we reduce the dimensions of the input
matrices to reduce the required amount of computation. To describe
the matrix truncation step, we supply the formula for computing
the value of a neuron (i.e. a cell of the output matrix) in Equation 1,
whereOut is the output matrix,W is the weight matrix, In is the pre-
vious layer matrix, i is the input index (e.g., the convolution kernel
index or the fully connected input vector index), and j represents
the input neuron index.

Outi,j =
KX

k=1
Wi,k Ink,j (1)

Note that, after reordering the matrices, the output of matrix multi-
plication is the same as it would be without reordering; only the
order of the weighted sum is changed. Thus, the output is equiva-
lently shown in Equation 2, where the K � D retained synapses in
the reordered matrices,W 0 and In0, are summed �rst and then the
D discarded synapses are summed.

Outi,j =
K�DX

k=1
W 0i,k In

0
k,s +

KX

k=K�D+1
W 0i,k In

0
k,j (2)

In order to remove the computation for the discarded synapses, the
summation is stopped at K �D instead of at K . In terms of the DNN
matrix multiplication, we cut the last D columns from the input
neuron matrix and the last D rows from the weight matrix.
Scale Adjustment. To compensate for the discarded synapses
in each summation, we increase the magnitude of the retained
synapses so that the expected value of the original and optimized
results match. If we assume that the synapses are all drawn from a
similar distribution, then the expected value is equal to the expected

value of any single synapse multiplied by the number of synapses,
shown in Equation 3.

E(Outi,j) = E(
KX

k=1
Wi,k Ink,s) = KE(Wi,x Inx,j) (3)

The expected value of this sum, after removing the discarded synapses,
can be represented similarly (Equation 4).

E(Out 0i,j) = E(
K�DX

k=1
W 0i,k In

0
k,s) = (K � D)E(Wi,x Inx,j) (4)

To match the expected value from synapse vector elimination to
the original expected value, the weighted sum is scaled by the
ratio between the unadjusted expected value from synapse vector
elimination and the original expected value. This produces our
�nal expression for the synapse discarded summation, as shown in
Equation 5.

Out 00i,s =
E(Outi,s)
E(Out 0i,s)

K�DX

k=1
W 0i,k In

0
k,s =

K

K � D
K�DX

k=1
W 0i,k In

0
k,s (5)

4.1.2 Synapse Search. Equipped with a method to e�ciently
discard synapses, we now describe how we �nd which synapses
are not contributing to the �nal output. Trying all combinations
of synapses is not tractable, since there are thousands of synapses
and each synapse is a binary variable that can be either retained
or discarded (i.e. there are 2#s�napses possibilities). When reduc-
ing the DNN at a per-synapse granularity, prior works discard
synapses with near-zero weights [21, 22], avoiding the need for a
sophisticated search mechanism. Although this pruning strategy
is e�ective for pruning sporadic synapses, our insight is that GPU-
e�cient optimizations must discard synapses in groups to exploit
wide vector unit hardware. We evaluate the necessity of this insight
by comparing to these prior works that discard sporadic synapses
in §5.8. A synapse vector pruning search mechanism must choose
to retain or discard each architectural group of synapses, referred
to as synapse vectors, rather than single ones. This presents a new
challenge, since no synapse vectors have enough near-zero weights
to be discarded as is done in these prior works.

Instead of discarding synapses with weights nearest to zero, we
aim to retain a subset of the synapse vectors that are representa-
tive of the entire set of synapses. To select contributing synapses,
synapse vector elimination starts by computing the correlation
matrix, �, for the synapse vectors, as shown in Equation 6, where
Sx is the synapse vector for the group of synapses at index x .

�i,j =
co�ariance (Si ,Sj)p

�ar (Si)�ar (Sj)
(6)

For each synapse vector, Si , we �nd the set of synapse vectors
that it can represent. We de�ne Si to be representative of Sj if
the correlation between the two synapse vectors (�i,j) is above the
representative correlation threshold, � . This is shown in Equation 7.

791

De�NN: Addressing Bo�lenecks for DNN Execution on GPUs via
Synapse Vector Elimination and Near-compute Data Fission MICRO-50, October 14–18, 2017, Cambridge, MA, USA

S E M

8 231
S E M

Off-chip
Memory

Register
File

On-chip
Memory

Register
File

Off-chip
Memory

8 231

S E M S E M

RF

RF

RF

8 231 8 231
S E M

8 231
S E M

Memoff

RF

Memon

RF

8 231

Data packing

Data unpackingRF

RF

RF

S E M S E M

RF

RF

RF

8 231 8 231

RF

RF

RF

RF

5 1015 101 81 7 81 7

S E M S E M

RF 8 231 8 231

81 7 81 7

(a)

(b)
(c)

(d) (e)

Original Computation

IEEE Half

Memon

Memon Memon

Deft-16 Deft-16Q
Near-compute
Data Fission

Off-chip
Memory

Compute

Compute

Figure 7: (a) The original design, (b) high level view of a design with near-compute data �ssion, (c) �ssion using the IEEE
754 single precision �oating-point to the half precision variant, (d) �ssion using the Deft-16 �oating-point format, and
(e) �ssion using the optimized Deft-16Q �oating-point conversion format.

Ri =
NX

j=1

(
1 �i,j > �
0 otherwise (7)

The synapse vector that represents the most synapse vectors, Ri , is
selected to be retained in the output DNN from synapse vector elim-
ination, while the non-contributing synapse vectors represented
by the retained one are removed. This process is repeated on the
remaining synapse vectors, until all synapse vectors are either re-
tained or discarded.

4.1.3 Exposing Further Performance Opportunities. In addition
to selecting non-contributing synapse vectors, synapse vector elim-
ination can be parameterized to discard marginally-contributing
ones by adjusting the representative correlation threshold. As the
correlation threshold is lowered, the number of synapse vectors that
can be represented by a single synapse increases. This capability
can be used to enact approximate computing, essentially shedding
small amounts of accuracy to realize improved performance.

The number of such readily available performance-accuracy
trade-o� con�gurations is limited due to large DNN memory foot-
prints, if each con�guration is stored in memory separately. To
greatly increase the �exibility of synapse vector elimination, ap-
plied to marginally-contributing synapses, DeftNN dynamically
builds DNNs using combinations of layers that were trained with
varying correlation thresholds. Each <layer, correlation threshold>
pair is �ne-tuned independently of the others, allowing arbitrary
combinations of these pairs to be composed during runtime without
requiring a new DNN model for each combination.

Given a performance or accuracy constraint, DeftNNmust quickly
select an appropriate set of correlation thresholds for each of the
layers. To do this, DeftNN is con�gured to build a Pareto frontier of
con�gurations during training and to select the con�guration that
is nearest to the user-speci�ed goal during runtime. We evaluate
the idea of using DeftNN for approximation in §5.6.

4.2 Near-compute Data Fission
In this section, we present our near-compute data �ssion technique,
which fuses multiple values into a single value of lesser size in on-
chip memory to improve e�ective bandwidth. Near-compute data
�ssion directly improves performance, since DNN computation is
bottlenecked by on-chip memory bandwidth.

Although on-chip memory bandwidth is the key limitation of
DNN performance, �ssion at this level of the memory hierarchy
requires very frequent data reformatting, causing excessive over-
head, unless the data format is carefully chosen. We start with a
standard CUDA-supported half precision format, but �nd that it is
insu�cient for near-compute data �ssion and devise a new format
that results in far better performance due to reduced reformatting
overheads. To exploit the non-contributing bits further, by reduc-
ing the reformatting overhead, we introduce hardware to allow
conversion to narrower numerical representations.

4.2.1 Technique. Before addressing the challenge of e�cient
near-compute data �ssion, we describe each of the GPU compo-
nents that are relevant to our near-compute data �ssion method.
Figure 7(a) shows a baseline implementation, in a GPU context, with
no �ssion. The data is �rst loaded from o�-chip memory into regis-
ters. To improve performance, the values in registers are stored into
an on-chip memory scratchpad for future reuse. The application
reads from and computes on the data stored in scratchpad memory
many times. Finally, the result is written to o�-chip memory.

Figure 7(b) shows an extension of this baselinewith near-compute
data �ssion added to the system. As before, data is loaded from the
o�-chip memory into the register �le. Instead of writing directly
to the scratchpad memory, multiple values are fused into a single
element. Similarly, each time the application reads from the scratch-
pad memory, �ssion is applied to the value before it is computed on.
This process removes the non-contributing bits from the numerical
representation in the on-chip memory. We do not store fused data

792

MICRO-50, October 14–18, 2017, Cambridge, MA, USA P. Hill et al.

128 -2N-1
S E M

>>
7-N

<<

N

1 per thread group 1 per value in fused format

...
+

S E M

Deft-8H

IEEE-32

+

Figure 8: Fission in the DFU, showing hardware to apply �s-
sion to an 8-bit, variable exponent length (N) �oating-point
value to an IEEE single-precision value.

into the o�-chip memory because, as shown before, the o�-chip
memory utilization is already very low.

4.2.2 Format Optimization. We investigate 3 near-compute data
�ssion formats, as shown in the �gure. The formatting process for
these types are shown in Figure 7(c-e). All 3 of the fused data formats
are reduced precision �oating-point representations with a sign
(S), a mantissa (M) that speci�es the precision, and an exponent
(E) that denotes dynamic range. In Figure 7(c), we start with the
IEEE 754 half precision data format. In our evaluation, we �nd that
this format results in excessive reformatting overhead, resulting in
slowdown, due to the complex conversion taking several cycles.

The next technique shown in Figure 7(d), Deft-16, takes advan-
tage of a special �oating-point format de�ned to be the 16 most
signi�cant bits of the IEEE single precision �oating-point format.
This format is a data type with 8 exponent bits and 7 mantissa bits,
which provides su�cient precision and dynamic range for DNN
workloads. To apply �ssion to this value, only inexpensive shift
and bitwise operations are necessary.

Finally, we observe that we can reduce another instruction from
the �ssion process by allowing the most signi�cant bits of one value
to spill into the least signi�cant bits of the other value. We call this
the Deft-16 quick format (Deft-16Q) and show the set of operations
for �ssion in Figure 7(e). Despite only reducing the �ssion process
by a single logical AND instruction, we �nd substantial performance
di�erence between Deft-16Q and Deft-16.

Nevertheless, while this optimized �ssion process can be applied
to today’s commodity hardware, its design is speci�c to 16-bit data
and introduces a non-trivial amount of overhead. To address both
of these limitations, we next describe a small additional hardware
unit to perform the �ssion operation.

4.2.3 Hardware Acceleration. Since the �ssion operation is on
the critical path when applying near-compute data �ssion, we in-
troduce a lightweight GPU hardware extension called the Data
Fission Unit (DFU) to accelerate �ssion. The DFU is replicated for
each �oating-point unit to maintain high throughput, so our cen-
tral design goal of the DFU is minimizing area overhead. For this
reason, the DFU is specialized for the data representations that
are most likely to be bene�cial. The DFU is speci�cally targeted to
accelerate the �ssion of custom 8-bit �oating-point and Deft-16Q
representations.
ISA Extension. DFU �ssion operations are accessed with a par-
allel thread execution (PTX) [52] ISA extension. We add two new

instructions to PTX, dfu_cvt_16 and dfu_cvt_8, which provide
the ability to invoke the 16-bit and 8-bit DFUs, respectively. The
16-bit DFU operation is parameterized with a source .b32 (a 32-bit
conversion-only data type in PTX) register and two contiguous
.f32 (a 32-bit �oating-point data type in PTX) destination registers.
The 8-bit DFU operation is similar, except it is parameterized by
four destination registers and an immediate �oating-point expo-
nent bitwidth. The �exibility of variable-width exponent allows
low-precision 8-bit values to be more versatile, outweighing the
negligible area cost (provided in §5.5).
Architecture Integration. The dfu_cvt instructions are exe-
cuted by the DFU, which is integrated into the microarchitecture
as an extension of the ALU. This extension adds a DFU to each
�oating-point unit, so the conversion throughput is su�ciently
high to provide enough data for all of the �oating-point units. In
§5.5, we �nd that the area-e�cient design of the DFU requires only
0.22% area overhead when replicated for each �oating-point unit.
In addition to allocating a DFU for each �oating-point unit, we
increase the throughput of the DFU by requiring that the 32-bit
�oating-point destination registers are contiguous. Using contigu-
ous registers allows the DFU to use 64-bit and 128-bit register write
operations when writing two and four 32-bit values, as produced
by 16-bit and 8-bit data �ssion, respectively.
Conversion Details. The hardware design for applying 16-bit
�ssion in the Deft-16Q format is straightforward, as it requires
only a single zero-padded bitwise shift to prepare two values for
computation. The hardware for 8-bit �ssion is illustrated in Figure 8.
The 8-bit �oating-point representation is shown at the top of the
�gure, with the sign bit denoted by "S", the exponent bits denoted
by "E", and the mantissa bits denoted by "M".

The size of the exponent can be adjusted from 7 bits to 1 bit,
denoted by N in the �gure, depending on the exponent length
encoded into the DFU instruction. Floating-point representations
encode the exponent with a �xed o�set, the bias, based on the bit
width of the representation. Since this bias is di�erent between
the 32-bit representation and the 8-bit DeftNN representations, the
DFU �nds the di�erence between the two biases (adder on the left
side of the �gure), and then adds this di�erence to the exponent bits
of the fused values. Because the GPU architecture executes threads
in each thread group in lockstep, we reuse the bias di�erence when
applying �ssion to all of the fused values in a given thread group.

The mantissa bits, also of variable length, of the fused representa-
tion are shifted to the left, so that the most signi�cant bit is aligned
with the most signi�cant bit of the 32-bit value. After alignment,
the value is zero-padded to 23 bits and used as the mantissa of the
32-bit representation. The sign bit is directly transferred from the
8-bit representation to the 32-bit one. Leveraging the DFU, which
provides single-cycle �ssion operations, we can signi�cantly reduce
the cost of performing DeftNN near-compute data �ssion.

5 EVALUATION
We evaluate DeftNN to determine its e�cacy on improving DNN
performance. We examine each of the key components of the sys-
tem: synapse vector elimination, near-compute data �ssion, and
the complete DeftNN runtime system.

793

De�NN: Addressing Bo�lenecks for DNN Execution on GPUs via
Synapse Vector Elimination and Near-compute Data Fission MICRO-50, October 14–18, 2017, Cambridge, MA, USA

Name Neural Network # Classes Dataset
IMC AlexNet [34] 1000 ImageNet [57]
FLS Flickr Style [31] 20 FS-20 [31]
OXF Flower Species [48] 102 Flower-102 [48]
SOS SOS CNN [65] 5 SOSDS [65]
C10 CifarNet [33] 10 CIFAR-10 [33]
DIG LeNet-5 [40] 10 MNIST [41]

Table 1: The set of benchmarks used to evaluate DeftNN.

Figure 9: Speedup achieved by DeftNN when applying
synapse vector discarding, data �ssion, and the combination
of the two, showing the signi�cant bene�ts of each tech-
nique and their e�cacy when applied in concert.

5.1 Methodology
DeftNN is evaluated using a real-system GPU implementation with
robust open source frameworks. Our implementation is built upon
Ca�e [29], a neural network framework developed by the Berkeley
Vision and Learning Center. Ca�e provides the high-level neural
network functionality and o�oads the computational kernels to
BLAS. We use MAGMA [46] as the BLAS implementation, a fast
open source CUDA implementation. We take measurements on a
machine containing a Xeon E5-2630 v3 CPU and an Nvidia Titan
X (Pascal) GPU, a con�guration representative of state-of-the-art
commodity hardware.

Table 1 summarizes the set of applications used in our evaluation.
To gain an accurate representation of real DNN workloads, we use
the trained neural network models deployed in Ca�e and designed
by the machine learning community. For each benchmark, we use
the given machine learning task’s canonical validation and training
datasets. We randomly select 500 inputs from the validation set for
speedup and accuracy measurements and use the entire training
set for �ne tuning.

5.2 Overall DeftNN System
We begin by evaluating the end-to-end real-system GPU perfor-
mance characteristics of DeftNN when applying both synapse vec-
tor elimination and near-compute data �ssion. In these experiments,
we follow the steps outlined in §3 to automatically and transpar-
ently optimize the 6 DNNs covered in the evaluation. Figure 9 shows
the results of these experiments. We �rst observe that applying each
of the two optimization techniques in isolation provides signi�cant
speedup, 1.5⇥ and 1.6⇥ geometric means across the applications
for synapse vector elimination and near-compute data �ssion, re-
spectively. When both techniques are applied, DeftNN provides

Figure 10: Per-layer speedup when applying synapse vec-
tor elimination, showing large performance improvements,
particularly for the large DNNs (IMC, FLS, OXF, and SOS).

an average speedup of 2.1⇥, showing the substantial performance
bene�t of deploying DeftNN.

5.3 Synapse Vector Elimination
We next evaluate synapse vector elimination in isolation to pro-
vide insight into its workings and characteristics, focusing on the
layer-by-layer speedup achieved by synapse vector elimination.
We present the per-layer performance improvements in Figure 10,
showing that synapse vector elimination is capable of optimizing
nearly every individual layer across the DNNs. We note that C10
and DIG observe the smallest performance improvements from
synapse vector elimination. These networks are the smallest of our
evaluated applications in terms of the number of layers as well as
the size of each layer. Small DNN topologies limit the available
parallelism on GPU architectures, causing lower utilization of hard-
ware. As a consequence, substantial reductions in the topology of
the DNNmay result in under-utilization of GPU resources and limit
the speedup that can occur. Nevertheless, synapse vector elimina-
tion is able to improve the performance by at least 1.5⇥ for all but
the smallest layers (the input layers).

5.4 Near-compute Data Fission
To evaluate our near-compute data �ssion technique, we compare
the three �ssion formats described in §4.2.2, the baseline computa-
tion, and the computation with 16-bit compute and storage. The
baseline computation is produced without �ssion, which uses the
IEEE 754 single precision 32-bit �oating-point format for computa-
tion and storage throughout the memory hierarchy. Comparisons of
these near-compute data �ssion strategies are shown in Figure 11.
Speedup. Figure 11(a) presents the speedup achieved during end-
to-end DNN inference for each of the three �ssion formats. First,
we consider the 16-bit computation and storage con�guration, FP16
in the �gure. We observe that 16-bit computation results in a 14⇥
slowdown due to state-of-the-art GPUs having many more 32-bit
ALUs than 16-bit ALUs.

Next, we consider the IEEE half precision format. The IEEE Fis-
sion results represent a CUDA mechanism to convert the fused
IEEE half precision values into single precision values, which lever-
ages specialized bit-convert hardware. Due to the limited amount
of hardware allocated for these conversion instructions, the IEEE
conversion process imposes signi�cant overhead, resulting in slight
slowdown rather than speedup. Our novel �ssion formats, Deft-
16 and Deft-16Q, result in the same change in data size, but both

794

MICRO-50, October 14–18, 2017, Cambridge, MA, USA P. Hill et al.

Figure 11: (a) Speedup from using 16-bit compute (FP16) and
�ssion in three di�erent formats (IEEE Fission, Deft-16, and
Deft-16Q) compared to 32-bit storage and computation (No
Fission) along with (b,c) pertinent pro�ling metrics, show-
ing thatDeft-16Q, achieves thehighest performance because
of improved e�ective on-chip memory bandwidth.

Figure 12: Comparison of no near-compute data �ssion,
software-only �ssion (Deft-16Q), and hardware accelerated
16-bit (Deft-16H) and 8-bit (Deft-8H) �ssion, showing that
(a) performance is improved as (b) e�ective on-chip band-
width is increased with smaller representations, without (c)
restrictive conversion overhead.

achieve over 50% improvement in end-to-end performance showing
that the complexity of data type conversion is critical.
Pro�ling Details. All three of the near-compute data �ssion for-
mats yield half of the storage requirements for on-chip memory,
shown in Figure 11(b), since the values in each format occupy 16
bits instead of 32 bits. The key bene�t of fusing data into on-chip
memory is the increased e�ective on-chip memory bandwidth. In
Figure 11(b), we note that the on-chip memory bandwidth is not
equivalent to speedup, since the increase in register pressure re-
quired for format conversion causes registers to spill to on-chip
memory. Spilling registers increases the total amount of data that
must traverse the on-chip memory bus, so the measured e�ective
bandwidth will exceed the speedup. As expected from the speedup
of the other two �ssion formats, we see substantially increased
on-chip memory e�ective bandwidth.

The ALU utilization, presented in Figure 11(c), shows the uti-
lization of the four relevant functional units. The utilization of
the functional units is normalized to the �oating-point unit uti-
lization of the con�guration without �ssion. The single precision
�oating-point unit (FP32 in the �gure), which is used for the core
computation of the neural network, only serves as a rough proxy
for performance due to �ssion using the �oating-point unit. The
integer and bit conversion functional units provide more insight
into the speedup di�erences, representing overhead of data �ssion.

Figure 13: DeftNN runtime performance achieved by em-
ploying software-only (Deft-16Q) and hardware-accelerated
(Deft-16H/8H) �ssion, showing substantial speedup via
hardware-accelerated DeftNN.

5.5 Hardware-accelerated Data Fission
We now evaluate DeftNN with the addition of the DFU, a light-
weight GPU architectural extension to accelerate near-compute
data �ssion. We implemented and synthesized the DFU for an
Nvidia Titan X (Pascal) using the ARM Artisan IBM SOI 45 nm
library, showing that the DFU has an area overhead of 1.20mm2

(0.25% area overhead), and an active power consumption of 2.48W
(0.99% power overhead).

We evaluate end-to-end performance of DeftNN atop a DFU-
enabled Titan X using an in-house GPU simulation tool. This tool
emulates end-to-end execution by modifying the GPU kernel to
mimic the performance behavior of the modi�ed hardware. Speci�-
cally, the �ssion instructions are automatically replaced by a set of
instructions that have the same register dependencies, but through-
put and latency characteristics matching the DFU (i.e. single cycle
using single-precision �oating-point ALUs).
Bene�ts Over Software Fission. We �rst evaluate the e�cacy
of the DFU by comparing it to software-implemented �ssion in iso-
lation (i.e., no synapse vector elimination is involved). Figure 12(a)
shows the speedup when the DNN computation is subjected to
�ssion. Accelerated 16-bit �ssion (Deft-16H) yields a modest perfor-
mance improvement over software-implemented �ssion (Deft-16Q),
improving speedup from 1.6⇥ to 1.8⇥ by mitigating the overhead
of performing the �ssion operations. The speedup of 8-bit acceler-
ated �ssion (Deft-8H) is 2.3⇥, signi�cantly higher than Deft-16H
because the amount of data moved is dramatically reduced when
using 8-bit values.

These sources of speedup are explored further in Figure 12(b) and
(c). In (b), we observe comparable decreases in the e�ective on-chip
memory bandwidth among the �ssion techniques. Moreover, in
Figure 12(c) we observe that both of the hardware-accelerated con-
�gurations use less than half of the data conversion time compared
to the software-only con�guration. Although the DFU hardware
for 16-bit conversion is far simpler than the hardware for 8-bit
conversion, we note that it results in more total overhead due to
the fact that twice as many conversions are made – only two values
are produced per instruction using 16-bit conversions, rather than
four values per instruction for 8-bit conversions.
End-to-end Performance. We next examine the impact of lever-
aging the DFU for accelerated data �ssion in the end-to-end DeftNN
system. The speedup for all applications of the end-to-end system
for Deft-16Q, Deft-16H and Deft-8H are presented in Figure 13,

795

De�NN: Addressing Bo�lenecks for DNN Execution on GPUs via
Synapse Vector Elimination and Near-compute Data Fission MICRO-50, October 14–18, 2017, Cambridge, MA, USA

Figure 14: DeftNN Pareto frontiers, showing a range of ad-
vantageous operating points as the accuracy target is tuned.

Figure 15: Speedup achieved by DeftNN at particular accu-
racy levels, showing that DeftNN exposes a range of useful
design points for approximate computing.

which shows that the system improving performance substantially
when leveraging the DFU to facilitate e�cient near-compute data
�ssion. We observe that the end-to-end speedup averages 2.1⇥
with Deft-16Q and that it increases to 2.5⇥ with Deft-16Q and 2.6⇥
with Deft-8H. As Deft-16Q and Deft-16H have the same data move-
ment characteristics, the di�erence between the two represents the
removal of (most of) the overhead of performing data �ssion in
software. The additional speedup achieved by Deft-8H is due to the
substantial reduction in the amount of data moved compared to
Deft-16Q and Deft-16H.

5.6 Performance-Accuracy Tradeo�s
In addition to removing only non-contributing synapses that do not
impact accuracy, recall from §4.1.3 that synapse vector elimination
parameterizations for higher performance, but slightly degraded
accuracy, are also possible. The correlation parameter used for
synapse vector elimination can be relaxed to allow the system to
eliminate synapses that contribute in a small way to the output
result. By relaxing the correlation parameter, we can be selective
about the resulting DNN density and thus the amount of speedup
achieved by synapse vector elimination. This section explores using
this feature of synapse vector elimination within a runtime system
that facilitates approximate computing, trading o� small levels of
accuracy for larger performance improvements.

Figure 14 presents the accuracy versus speedup Pareto fron-
tier for each of the evaluated neural networks. As the correlation
parameter is relaxed (going from left to right), the accuracy degra-
dation is initially minimal due to the resilience of the DNN, but as
more contributing synapses are removed the accuracy decreases
more quickly. Beyond the precise con�guration, where no loss in
accuracy is permitted, which is used in the other sections of the

Figure 16: Speedup of cuDNN [7]withDeftNNoptimizations,
showing DeftNN provides similar speedup for cuDNN as it
provides for MAGMA.

evaluation, tuning the correlation parameter allows synapse vector
elimination to achieve further speedups for small accuracy losses.
We observe in Figure 15 that a spectrum of useful design points that
are commonly focused on in approximate computing are available
to the system [17, 37, 44], allowing DeftNN to service a wide range
of use-cases where there is tolerance in end-user accuracy or a
more aggressive performance target.

5.7 cuDNN with DeftNN Optimization
To demonstrate the applicability of DeftNN and its underlying
optimization strategies, we apply DeftNN to cuDNN [49] by imple-
menting the cuDNN convolution algorithm [7]. This algorithm is
similar to the standard matrix multiplication algorithm, except that
the preprocessing step of translating the DNN input and convolu-
tion weights into a matrix (known as im2col) is interleaved with
the matrix multiplication. This optimization reduces o�-chip mem-
ory storage requirements by lazily evaluating the contents of the
input matrix. The only adjustment in synapse vector elimination
to handle cuDNN is that, as the input matrix is being produced in
on-chip memory, the synapse vector elimination takes place.

In Figure 16, we show the speedup achieved when DeftNN is
applied to cuDNN. In applying DeftNN to cuDNN, we observe
a geometric mean speedup of 2.0⇥, a similar speedup to what is
achieved when applying DeftNN to MAGMA. Since DeftNN is
similarly e�ective on both MAGMA and cuDNN algorithms, the
fundamental GPU DNN bottlenecks being addressed by DeftNN
are common to the most popular GPU DNN implementations.

5.8 Comparison to Prior Work
We next compare the novel optimizations introduced in this work
and leveraged by DeftNN to prior work.
Network Pruning. Network pruning is a technique that itera-
tively prunes synapses from the neural network [22]. This tech-
nique reduces the number of synapses in the DNN, but it produces
an irregular sparse matrix because it places no performance-aware
constraints on which synapses are removed. In comparison, our
synapse vector elimination technique maintains a regular dense
matrix by removing entire rows or columns of synapses, allowing
synapse vector elimination to map e�ciently to GPU hardware.

We compare synapse vector elimination to network pruning
for IMC in Figure 17, presenting network density achieved versus
speedup. Network pruning [21] achieves matrix densities between

796

MICRO-50, October 14–18, 2017, Cambridge, MA, USA P. Hill et al.

Figure 17: End-to-end speedup of DeftNN synapse vector
elimination, software executed network pruning [22], and
EIE [20] hardware-accelerated network pruning.

9% and 100% across IMC’s layers, and a weighted average of 28%. Us-
ing the network pruning approach for IMC, we execute the pruned
networks using both dense and sparse kernels via cuBLAS [49] and
cuSPARSE [50]. With the sparse kernel we observe that network
pruning is 60⇥ slower than the dense kernel baseline computa-
tion and 91⇥ slower than synapse vector elimination, while with
the dense kernel we observe that network pruning results in no
speedup over the baseline. We performed a sweep of density levels
on the sparse kernel, �nding that the density must be reduced to
2.5% before the sparse kernel outperforms the dense kernel base-
line. On the other hand, synapse vector elimination achieves 50%
density and a 1.5⇥ speedup on this kernel, illustrating the bene�t
of synapse vector elimination’s architecturally-aware design.

Recent work also proposed EIE, a custom ASIC to execute net-
work pruned DNNs [20]. While this ASIC achieves impressive re-
sults on fully connected layers, those components account for only
a fraction of the end-to-end execution time in many modern DNNs,
including for the IMC network. Figure 17 includes the density and
speedup achieved by EIE for the end-to-end IMC network, which
achieves a 1.1⇥ speedup. Meanwhile, synapse vector elimination’s
speedup of 1.5⇥ is achieved on a real GPU system.
O�-chip Data Packing. O�-chip data packing is similar to near-
compute data �ssion, except data is packed into o�-chip memory
and unpacked into on-chip memory, saving o�-chip memory stor-
age and bandwidth [58]. Certain applications are able to bene�t
substantially from o�-chip data packing, but we found that, for
DNN applications, o�-chip bandwidth is only slightly utilized, while
on-chip bandwidth is saturated. We compare the performance im-
provements of o�-chip and near-compute data �ssion in Figure 18.
As expected, o�-chip data packing yields modest speedups, since
o�-chip memory is already underutilized and the bottleneck lies
elsewhere in DNN execution.

6 RELATEDWORK
The computational requirements and applicability of deep neu-
ral networks [36] and convolutional neural networks [40] have
prompted researchers to design novel DNN hardware [1–3, 13, 20,
32, 43, 54, 60, 62]. Some of these hardware designs speci�cally tar-
get memory bandwidth [4, 5]. Although these works can provide
substantial speedup upon fabrication, our techniques can operate
on current commodity hardware.

Figure 18: Comparison of DeftNN data �ssion to o�-chip
data packing [58].

On the software side, there has been a lot of e�ort to e�ciently
implement DNNs on GPUs [7, 29, 34, 38, 47]. In addition to opti-
mizing for GPUs, some work has looked at optimizing DNNs at
the cluster level [9, 11, 23–25, 55?]. Further software approaches
consider using di�erent types of neural networks to improve per-
formance [16]. Optimized algorithms can be applied in concert with
our optimization techniques.

Many prior works improve performance by exploiting reduced
precision [12, 30, 42, 56, 63]. Reducing precision is possible for both
�oating-point and �xed-point formats [10, 19]. These works all
require substantial hardware modi�cations to operate. ACME [28],
although requiring less modi�cations to hardware by design, still
requires substantial overhead when applied to a high-throughput
accelerator such as a GPU. The DFU in DeftNN requires <0.25%
overhead to continuously provide the functional units with data,
while scaling ACME to the same number of units would require
over 19% overhead.

7 CONCLUSION
This paper describes DeftNN, a system for optimizing GPU-based
DNNs. DeftNN uses two novel optimization techniques – synapse
vector elimination, a technique that drops the non-contributing
synapses in the neural network, as well as near-compute data �s-
sion, a mechanism for scaling down the data movement require-
ments within DNN computations. Our experimental results show
that DeftNN can signi�cantly improve DNN performance, improv-
ing performance by over 2.1⇥ on commodity GPU hardware and
over 2.6⇥ when leveraging a small additional hardware unit that
accelerates �ssion.

ACKNOWLEDGEMENT
We thank our anonymous reviewers for their feedback and sug-
gestions. This work was supported by Google, Facebook, and the
National Science Foundation under grants CCF-XPS-1438996, CCF-
XPS-1628991, and IIS-VEC-1539011.

797

De�NN: Addressing Bo�lenecks for DNN Execution on GPUs via
Synapse Vector Elimination and Near-compute Data Fission MICRO-50, October 14–18, 2017, Cambridge, MA, USA

REFERENCES
[1] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie Enright

Jerger, and Andreas Moshovos. 2016. CNVLUTIN: Ine�ectual-Neuron-Free Deep
Neural Network Computing. In International Symposium on Computer Architec-
ture (ISCA).

[2] Lukas Cavigelli, Michele Magno, and Luca Benini. 2015. Accelerating real-time
embedded scene labeling with convolutional networks. In Design Automation
Conference (DAC).

[3] Srimat Chakradhar, Murugan Sankaradas, Venkata Jakkula, and Srihari Cadambi.
2010. A dynamically con�gurable coprocessor for convolutional neural networks.
In International Symposium on Computer Architecture (ISCA).

[4] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Olivier Temam. 2014. Diannao: A small-footprint high-throughput acceler-
ator for ubiquitous machine-learning. In Architecture Support for Programming
Languages and Operating Systems (ASPLOS).

[5] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li,
Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. 2014. Dadiannao: A
machine-learning supercomputer. In International Symposium on Microarchitec-
ture (MICRO).

[6] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A Spatial Archi-
tecture for Energy-E�cient Data�ow for Convolutional Neural Networks. In
International Symposium on Computer Architecture (ISCA).

[7] Sharan Chetlur, Cli� Woolley, Philippe Vandermersch, Jonathan Cohen, John
Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cuDNN: E�cient primitives
for deep learning. arXiv:1410.0759.

[8] Ronan Collobert, Clement Farabet, Koray Kavukcuoglu, and Soumith Chintala.
2015. torch. (2015). Retrieved August 25, 2017 from http://torch.ch/

[9] Francesco Conti and Luca Benini. 2015. A ultra-low-energy convolution engine
for fast brain-inspired vision in multicore clusters. In Design, Automation & Test
in Europe Conference & Exhibition (DATE).

[10] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2014. Low preci-
sion arithmetic for deep learning. arXiv:1412.7024.

[11] Je�rey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,
Marc extquotesingle aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang,
Quoc V. Le, and Andrew Y. Ng. 2012. Large scale distributed deep networks. In
Neural Information Processing Systems (NIPS).

[12] Zidong Du, Avinash Lingamneni, Yunji Chen, Krishna Palem, Olivier Temam,
and Chengyong Wu. 2014. Leveraging the error resilience of machine-learning
applications for designing highly energy e�cient accelerators. In Asia and South
Paci�c Design Automation Conference (ASP-DAC).

[13] Clément Farabet, Berin Martini, Benoit Corda, Polina Akselrod, Eugenio Cu-
lurciello, and Yann LeCun. 2011. Neu�ow: A runtime recon�gurable data�ow
processor for vision. In Computer Vision and Pattern Recognition Workshops
(CVPRW).

[14] Klint Finley. 2015. Facebook open-sources a trove of AI tools. (2015).
Retrieved August 25, 2017 from https://www.wired.com/2015/01/
facebook-open-sources-trove-ai-tools/

[15] Wilson W. L. Fung, Ivan Sham, George Yuan, and Tor M. Aamodt. 2007. Dynamic
Warp Formation and Scheduling for E�cient GPU Control Flow. In International
Symposium on Microarchitecture (MICRO).

[16] Ross Girshick. 2015. Fast R-CNN. arXiv:1504.08083.
[17] Íñigo Goiri, Ricardo Bianchini, Santosh Nagarakatte, and Thu D Nguyen. 2015.

ApproxHadoop: Bringing Approximations to MapReduce Frameworks. In Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS).

[18] Google. 2015. TensorFlow. (2015). Retrieved August 25, 2017 from http://www.
tensor�ow.org/

[19] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.
2015. Deep Learning with Limited Numerical Precision. arXiv:1502.02551.

[20] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz,
and William J Dally. 2016. EIE: e�cient inference engine on compressed deep
neural network. In International Symposium on Computer Architecture (ISCA).

[21] Song Han, Huizi Mao, andWilliam J Dally. 2015. Deep compression: Compressing
deep neural network with pruning, trained quantization and hu�man coding.
International Conference on Learning Representations (ICLR).

[22] Song Han, Je� Pool, John Tran, and William Dally. 2015. Learning both Weights
and Connections for E�cient Neural Network. Neural Information Processing
Systems (NIPS).

[23] Awni Y. Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich
Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, and
Andrew Y. Ng. 2014. DeepSpeech: Scaling up end-to-end speech recognition.
arXiv:1412.5567 .

[24] Johann Hauswald, Yiping Kang, Michael A Laurenzano, Quan Chen, Cheng Li,
Trevor Mudge, Ronald G Dreslinski, Jason Mars, and Lingjia Tang. 2015. DjiNN
and Tonic: DNN as a service and its implications for future warehouse scale
computers. In International Symposium on Computer Architecture (ISCA).

[25] Johann Hauswald, Michael A. Laurenzano, Yunqi Zhang, Cheng Li, Austin Rovin-
ski, Arjun Khurana, Ronald G. Dreslinski, Trevor Mudge, Vinicius Petrucci,

Lingjia Tang, and Jason Mars. 2015. Sirius: An open end-to-end voice and vision
personal assistant and its implications for future warehouse scale computers. In
Architectural Support for Programming Languages and Operating Systems (ASP-
LOS).

[26] Sunpyo Hong and Hyesoon Kim. 2009. An Analytical Model for a GPU Architec-
ture with Memory-level and Thread-level Parallelism Awareness. In International
Symposium on Computer Architecture (ISCA).

[27] Intel. 2015. neon. (2015). Retrieved August 25, 2017 from https://github.com/
NervanaSystems/neon

[28] Animesh Jain, Parker Hill, Shih-Chieh Lin,Muneeb Khan,Md E. Haque,Michael A.
Laurenzano, Scott Mahlke, Lingjia Tang, and Jason Mars. 2016. Concise Loads
and Stores: The Case for an Asymmetric Compute-Memory Architecture for
Approximation. In International Symposium on Microarchitecture (MICRO).

[29] Yangqing Jia, Evan Shelhamer, Je� Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Ca�e: Convolutional
Architecture for Fast Feature Embedding. arXiv:1408.5093.

[30] Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor Aamodt, Natalie Enright
Jerger, and Andreas Moshovos. 2016. Proteus: Exploiting Numerical Precision
Variability in Deep Neural Networks. In International Conference on Supercom-
puting (ICS).

[31] Sergey Karayev, Matthew Trentacoste, Helen Han, Aseem Agarwala, Trevor
Darrell, Aaron Hertzmann, and Holger Winnemoeller. 2013. Recognizing image
style. arXiv:1311.3715.

[32] Joo-Young Kim, Minsu Kim, Seungjin Lee, Jinwook Oh, Kwanho Kim, and Hoi-Jun
Yoo. 2010. A 201.4 GOPS 496 mW real-time multi-object recognition processor
with bio-inspired neural perception engine. In Journal of Solid-State Circuits
(JSSC).

[33] Alex Krizhevsky and Geo�rey Hinton. 2009. Learning multiple layers of features
from tiny images. Tech report, University of Toronto.

[34] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E Hinton. 2012. Imagenet classi�-
cation with deep convolutional neural networks. In Neural Information Processing
Systems (NIPS).

[35] LISA lab. 2015. theano. (2015). Retrieved August 25, 2017 from http://deeplearning.
net/software/theano/

[36] Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua
Bengio. 2007. An empirical evaluation of deep architectures on problems with
many factors of variation. In International Conference onMachine learning (ICML).

[37] Michael A Laurenzano, Parker Hill, Mehrzad Samadi, Scott Mahlke, Jason Mars,
and Lingjia Tang. 2016. Input responsiveness: using canary inputs to dynami-
cally steer approximation. In Programming Language Design and Implementation
(PLDI).

[38] Andrew Lavin. 2015. maxDNN: An E�cient Convolution Kernel for Deep Learn-
ing with Maxwell GPUs. arXiv:1501.06633.

[39] Yann LeCun, Yoshua Bengio, and Geo�rey Hinton. 2015. Deep learning. Nature.
[40] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Ha�ner. 1998. Gradient-

based learning applied to document recognition. In Proceedings of the IEEE.
[41] Yann LeCun, Corinna Cortes, and Christopher JC Burges. 1998. The MNIST

database of handwritten digits. (1998). Retrieved August 25, 2017 from http:
//yann.lecun.com/exdb/mnist/

[42] Yongsoon Lee, Younhee Choi, Seok-BumKo, andMoonHo Lee. 2009. Performance
analysis of bit-width reduced �oating-point arithmetic units in FPGAs: a case
study of neural network-based face detector. In EURASIP Journal on Embedded
Systems.

[43] Boxun Li, Yuzhi Wang, Yu Wang, Yuanfeng Chen, and Huazhong Yang. 2014.
Training itself: Mixed-signal training acceleration for memristor-based neural
network. In Asia and South Paci�c Design Automation Conference (ASP-DAC).

[44] Divya Mahajan, Amir Yazdanbakhsh, Jongse Park, Bradley Thwaites, and Hadi Es-
maeilzadeh. 2016. Towards statistical guarantees in controlling quality tradeo�s
for approximate acceleration. In International Symposium on Computer Architec-
ture (ISCA).

[45] Veynu Narasiman, Michael Shebanow, Chang Joo Lee, Rustam Miftakhutdinov,
Onur Mutlu, and Yale N. Patt. 2011. Improving GPU Performance via LargeWarps
and Two-level Warp Scheduling. In International Symposium on Microarchitecture
(MICRO).

[46] Rajib Nath, Stanimire Tomov, and Jack Dongarra. 2010. Accelerating GPU kernels
for dense linear algebra. InHigh Performance Computing for Computational Science
(VECPAR).

[47] Jiquan Ngiam, Adam Coates, Ahbik Lahiri, Bobby Prochnow, Quoc V Le, and
Andrew Y Ng. 2011. On optimization methods for deep learning. In International
Conference on Machine Learning (ICML).

[48] M-E. Nilsback and A. Zisserman. 2008. Automated Flower Classi�cation over a
Large Number of Classes. In Indian Conference on Computer Vision, Graphics and
Image Processing (ICVGIP).

[49] Nvidia. 2017. cuBLAS. (2017). Retrieved August 25, 2017 from developer.nvidia.
com/cublas

[50] Nvidia. 2017. cuSPARSE. (2017). Retrieved August 25, 2017 from developer.nvidia.
com/cusparse

798

http://torch.ch/
https://www.wired.com/2015/01/facebook-open-sources-trove-ai-tools/
https://www.wired.com/2015/01/facebook-open-sources-trove-ai-tools/
http://www.tensorflow.org/
http://www.tensorflow.org/
https://github.com/NervanaSystems/neon
https://github.com/NervanaSystems/neon
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
developer.nvidia.com/cublas
developer.nvidia.com/cublas
developer.nvidia.com/cusparse
developer.nvidia.com/cusparse

MICRO-50, October 14–18, 2017, Cambridge, MA, USA P. Hill et al.

[51] Nvidia. 2017. GeForce GTX TITAN X, Speci�cations. (2017). Retrieved August 25,
2017 from http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan-x/
speci�cations

[52] Nvidia. 2017. Parallel Thread Execution ISA Version 5.0. (2017). Retrieved August
25, 2017 from http://docs.nvidia.com/cuda/parallel-thread-execution

[53] Kalin Ovtcharov, Olatunji Ruwase, Joo-Young Kim, Jeremy Fowers, Karin
Strauss, and Eric Chung. 2015. Accelerating Deep Convolutional Neu-
ral Networks Using Specialized Hardware. (2015). Retrieved August
25, 2017 from https://www.microsoft.com/en-us/research/publication/
accelerating-deep-convolutional-neural-networks-using-specialized-hardware

[54] Eustace Painkras, Luis A Plana, Jim Garside, Steve Temple, Simon Davidson,
Je�rey Pepper, David Clark, Cameron Patterson, and Steve Furber. 2012. Spin-
naker: a multi-core system-on-chip for massively-parallel neural net simulation.
In Custom Integrated Circuits Conference (CICC).

[55] Robert Preissl, Theodore M Wong, Pallab Datta, Myron Flickner, Raghavendra
Singh, Steven K Esser, William P Risk, Horst D Simon, and Dharmendra S Modha.
2012. Compass: a scalable simulator for an architecture for cognitive computing.
In International Conference on High Performance Computing, Networking, Storage
and Analysis (SC).

[56] Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama, Hyunkwang Lee,
Sae Kyu Lee, José Miguel Hernández-Lobato, Gu-Yeon Wei, and David Brooks.
2016. Minerva: Enabling low-power, highly-accurate deep neural network accel-
erators. In International Symposium on Computer Architecture (ISCA).

[57] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, SeanMa,
ZhihengHuang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV).

[58] Mehrzad Samadi, Janghaeng Lee, D Anoushe Jamshidi, Amir Hormati, and Scott
Mahlke. 2013. SAGE: Self-tuning approximation for graphics engines. In Interna-
tional Symposium on Microarchitecture (ISCA).

[59] Kaz Sato, Cli� Young, and David Patterson. 2017. An in-depth look
at Google’s �rst Tensor Processing Unit (TPU). (2017). Retrieved
August 25, 2017 from https://cloud.google.com/blog/big-data/2017/05/
an-in-depth-look-at-googles-�rst-tensor-processing-unit-tpu

[60] Johannes Schemmel, Johannes Fieres, and Karlheinz Meier. 2008. Wafer-scale
integration of analog neural networks. In International Joint Conference on Neural
Networks (IJCNN).

[61] Ali Sha�ee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian,
John Paul Strachan, Miao Hu, R Stanley Williams, and Vivek Srikumar. 2016.
ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arith-
metic in Crossbars. In International Symposium on Computer Architecture (ISCA).

[62] Olivier Temam. 2012. A defect-tolerant accelerator for emerging high-
performance applications. In International Symposium on Computer Architecture
(ISCA).

[63] Vincent Vanhoucke, Andrew Senior, and Mark Z Mao. 2011. Improving the speed
of neural networks on CPUs. In Deep Learning and Unsupervised Feature Learning
Workshop.

[64] Jason Yosinski, Je�Clune, Yoshua Bengio, andHod Lipson. 2014. How transferable
are features in deep neural networks?. In Neural Information Processing Systems
(NIPS).

[65] Jianming Zhang, Shuga Ma, Mehrnoosh Sameki, Stan Sclaro�, Margrit Betke,
Zhe Lin, Xiaohui Shen, Brian Price, and Radomír Mĕch. 2015. Salient Object
Subitizing. In Computer Vision and Pattern Recognition (CVPR).

799

http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan-x/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan-x/specifications
http://docs.nvidia.com/cuda/parallel-thread-execution
https://www.microsoft.com/en-us/research/publication/accelerating-deep-convolutional-neural-networks-using-specialized-hardware
https://www.microsoft.com/en-us/research/publication/accelerating-deep-convolutional-neural-networks-using-specialized-hardware
https://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
https://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu

	Abstract (38)
	1 Introduction (37)
	2 Challenges
	2.1 Computation Elimination
	2.2 On-chip Memory Bandwidth

	3 System Overview
	4 Optimization Techniques
	4.1 Synapse Vector Elimination
	4.2 Near-compute Data Fission

	5 Evaluation (7)
	5.1 Methodology
	5.2 Overall DeftNN System
	5.3 Synapse Vector Elimination
	5.4 Near-compute Data Fission
	5.5 Hardware-accelerated Data Fission
	5.6 Performance-Accuracy Tradeoffs
	5.7 cuDNN with DeftNN Optimization
	5.8 0mmComparison to Prior Work

	6 Related Work (7)
	7 Conclusion (7)
	References (39)

