
PowerChief: Intelligent Power Allocation for Multi-Stage
Applications to Improve Responsiveness on Power Constrained CMP

Hailong Yang†1 Quan Chen⋄1 Moeiz Riaz⋆ Zhongzhi Luan† Lingjia Tang⋆ Jason Mars⋆

School of Computer Science and Engineering, Beihang University†

Department of Computer Science and Engineering, Shanghai Jiao Tong University⋄

Department of Computer Science, University of Michigan - Ann Arbor⋆
{hailong.yang,zhongzhi.luan}@buaa.edu.cn,chen-quan@cs.sjtu.edu.cn,{moeizr,lingjia,profmars}@umich.edu

ABSTRACT
Modern user facing applications consist of multiple processing stages
with a number of service instances in each stage. The latency profile
of these multi-stage applications is intrinsically variable, making it
challenging to provide satisfactory responsiveness. Given a limited
power budget, improving the end-to-end latency requires intelligently
boosting the bottleneck service across stages using multiple boosting
techniques. However, prior work fail to acknowledge the multi-stage
nature of user-facing applications and perform poorly in improving
responsiveness on power constrained CMP, as they are unable to ac-
curately identify bottleneck service and apply the boosting techniques
adaptively.

In this paper, we present PowerChief, a runtime framework that
1) provides joint design of service and query to monitor the latency
statistics across service stages and accurately identifies the bottleneck
service during runtime; 2) adaptively chooses the boosting technique
to accelerate the bottleneck service with improved responsiveness; 3)
dynamically reallocates the constrained power budget across service
stages to accommodate the chosen boosting technique. Evaluated
with real world multi-stage applications, PowerChief improves the
average latency by 20.3× and 32.4× (99% tail latency by 13.3×
and 19.4×) for Sirius and Natural Language Processing applications
respectively compared to stage-agnostic power allocation. In addition,
for the given QoS target, PowerChief reduces the power consumption
of Sirius and Web Search applications by 23% and 33% respectively
over prior work.

CCS CONCEPTS
• Computer systems organization → Cloud computing; • Hard-
ware → Power and energy;

KEYWORDS
Multi-Stage Application, Power Constrained CMP, Intelligent Service
Boosting

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISCA ’17, June 24-28, 2017, Toronto, ON, Canada
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4892-8/17/06. . . $15.00
https://doi.org/10.1145/3079856.3080224

ACM Reference format:
Hailong Yang†1 Quan Chen⋄1 Moeiz Riaz⋆ Zhongzhi Luan† Lingjia
Tang⋆ Jason Mars⋆ School of Computer Science and Engineering, Beihang
University† Department of Computer Science and Engineering, Shanghai Jiao
Tong University⋄ Department of Computer Science, University of Michigan -
Ann Arbor⋆ . 2017. PowerChief: Intelligent Power Allocation for Multi-Stage
Applications to Improve Responsiveness on Power Constrained CMP. In
Proceedings of ISCA ’17, Toronto, ON, Canada, June 24-28, 2017, 14 pages.
https://doi.org/10.1145/3079856.3080224

1 INTRODUCTION
Mitigating response latency for cloud services is critical to provide
satisfactory user experience [4, 14]. Several studies show that slightly
increased response latency leads to significant revenue drop for cloud
service providers [8, 13, 49]. Although tremendous research efforts
have been devoted to addressing this problem from various aspects
such as heterogeneity [30, 36, 37] and interference [15, 16, 31, 38, 55,
56, 61, 62], it is still largely an unsolved problem as more impacting
factors are continuing to be discovered.

The power over-provisioning and associated power constraint in
datacenters exacerbate the latency challenges [20, 41, 59]. Contempo-
rary datacenter consumes tens of megawatts of power and thus is not
sustainable with increasing demand from emerging applications [4, 6].
Since most datacenters adopt the commodity CMP servers, it is im-
portant to improve end-to-end latency on power constrained CMP,
which is particularly challenging due to the unpredictable user access
pattern and the complexity to accelerate the slow queries through
managing the limited power budget [39–41].

Recent work [22, 34, 35] have proposed techniques leveraging
fine grained power management [45] to guarantee the service level
objective (SLO) with improved energy efficiency. Based on precisely
pinpointing the opportunity to trade off latency headroom with power
consumption, energy efficiency can be improved without violating the
SLO. However, prior techniques are applied to the applications with
single processing stage, ignoring applications composed of multiple
processing stages. These multi-stage applications pose new chal-
lenges to mitigate response latency within the power constraint due
to their distinct characteristics across stages.

Many cloud applications including traditional Web Search [2] and
emerging intelligent personal assistant (IPA) [21] commonly lever-
age multiple stages to process user facing queries. The definition of
stage naturally fits into the processing pipeline of the application.

1Work was conducted as a postdoc fellow of ClarityLab at the University of Michigan.

133

https://doi.org/10.1145/3079856.3080224
https://doi.org/10.1145/3079856.3080224

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada Hailong Yang, Quan Chen et al.

Speech Recognition Natural Language Processing

ImageMatchingQuestion&Answer

Figure 1: The processing stages of IPA applications.

For instance, as shown in Figure 1 a query to an IPA application
flows through Automatic Speech Recognition (ASR) [23, 46], Nat-
ural Language Processing (NLP) [11], Image Matching (IMM) [7]
and Question-Answering (QA) [50] stages to generate an intelligent
response. To sustain the large amount of user queries, each stage
consists of multiple service instances to alleviate the load. The la-
tency at each stage is intrinsically different depending on its runtime
characteristics as well as the user input [33, 60]. The result of not
taking into consideration of latency variation among multiple stages
with prior work [22, 34, 35] leads to several shortcomings that sig-
nificantly diminish the effectiveness in mitigating response latency
within the power constraint. These shortcomings include:

(1) Unware of inter-stage bottlenecks - Prior work assume
single processing stage within an application and fail to
acknowledge the intrinsic latency variance across multiple
stages, which prevents effectively identifying the bottleneck
service to boost throughout the query processing.

(2) Unable to adapt stage sensitivity to various boosting tech-
niques - Prior work commonly adopt a particular service
boosting technique during the entire execution without con-
sidering the latency sensitivity of each stage to various boost-
ing techniques, and thus miss the opportunity to adaptively
switch to the boosting technique delivering better latency
improvement.

(3) Limited power management - Existing work managing
power allocation of single stage application, fail to consider
the scenario of multi-stage application, and thus are unable
to intelligently manipulate power allocation across stages to
accelerate the bottleneck service without violating the power
constraint.

To illustrate how different boosting decisions and techniques affect
response latency, we show a real world example with Sirius applica-
tion [21] (details in Section 5). By boosting different service instances
across stages with frequency boosting and instance boosting, while
maintaining the same power budget, the response latency of Sirius
application varies significantly as shown in Figure 2. The nonoptimal
boosting decision (e.g., instance boosting the IMM service) results in
significant performance degradation under the same power constraint.
Compared to the optimal boosting decision with the right boosting
technique (e.g., instance boosting the QA service), the latency re-
duction is more than 40%. Therefore it is critical to intelligently

Frequency Boosting Instance Boosting
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

No
rm

ali
ze

d
Re

sp
on

se
 L

ate
nc

y

Boost ASR only Boost IMM only Boost QA only

Figure 2: Normalized response latency of Sirius application
when boosting different service stages.

allocate the power budget and choose the appropriate boosting tech-
nique to improve responsiveness of multi-stage applications on power
constrained CMP.

Based on these observations, we propose PowerChief, a runtime
framework that mitigates the response latency of multi-stage ap-
plications through intelligently managing the power allocation and
boosting technique to accelerate the bottleneck services under the
power constraint. It leverages a joint design of service and query to
precisely monitor the latency statistics of each service during runtime.
Through analyzing the latency statistics, the bottleneck service is
accurately identified based on both historical and realtime informa-
tion. PowerChief proposes a boosting decision engine to adaptively
select the boosting technique that delivers better latency improve-
ment to the bottleneck service. The boosting decision then drives
the power reallocation mechanism to dynamically redistribute the
limited power budget to perform the boosting technique. With the
accurate bottleneck identification, adaptive boosting decision engine
and dynamic power reallocation, we are able to effectively mitigate
the response latency for multi-stage applications without violating
the power constraint.

This paper explores a new design space for efficient runtime frame-
work to mitigate response latency for multi-stage applications on
power constrained CMP. Specifically, this paper makes the following
contributions:

• Comprehensive analysis of the obstacles for effective la-
tency mitigation of multi-stage application - Our investi-
gation shows that the lack of consideration of the latency
behavior of each service instance across processing stages
prevents more intelligent service boosting and power allo-
cation. This observation motivates our runtime framework
design to mitigate response latency for multi-stage applica-
tions under the power constraint.

• Accurate bottleneck identification for service instance
across stages - We propose a service and query joint de-
sign to enable monitoring the latency statistics of service
instances across stages. Based on the latency statistics, we
present a bottleneck identification method utilizing both his-
torical and realtime latency metric to accurately recognize
the bottleneck service during runtime.

• Adaptive boosting decision engine for optimal boosting
technique - We present an adaptive boosting decision en-
gine that estimates the latency improvement of different
boosting techniques and selects the one with better latency
improvement to accelerate the bottleneck services.

134

PowerChief: Intelligent Power Allocation for Multi-Stage Applications ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

• Dynamic power reallocation for accommodating the boost-
ing decision - We design a dynamic power reallocation
mechanism to recycle the power budget from non-bottleneck
services, and provide the corresponding power to accom-
modate the boosting technique applied to accelerate the
bottleneck services.

Our evaluation on a real system deployment of Sirius and NLP
applications demonstrates that PowerChief is able to mitigate the
response latency of Sirius and NLP applications by 20.3× and 32.4×
respectively over stage-agnostic power allocation, and 99% tail la-
tency by 13.3× and 19.4×. In addition, for Sirius and Web Search
applications with a given QoS target, PowerChief saves more power
compared to existing work by 23% and 33% respectively.

2 UNDERSTANDING RESPONSE LATENCY
OF MULTI-STAGE APPLICATION

In contrast to applications with single processing stage, multi-stage ap-
plications exhibit intrinsic latency variance across processing stages.
Thus it is more susceptible to long response latency. For the investi-
gation of the response latency of multi-stage application under the
power constraint, we aim to answer the following questions:

(1) What is unique about multi-stage applications that prevents
prior work to be effective?

(2) Why is it less optimal to statically select a boosting technique
to accelerate the processing stages?

(3) What is the difficulty in acquiring enough power performing
service boosting under the power constraint?

2.1 Multi-Stage Application
Multiple processing stages are commonly used in nowadays user fac-
ing applications, where each stage implements an unique processing
logic to understand the user query and generate desirable responses.
To scale out, varying number of service instances are launched within
a single stage to process queries simultaneously as shown in Figure 3.
Each service instance is running on an individual processor core and
maintains its own queue structure to smooth load burst. In the mean-
while, each service instance can adjust its processing speed through
manipulating the core frequency.

Given a power budget, it is extremely challenging to achieve an op-
timal power allocation to setup the number of service instances within
each stage as well as the processing speed of each service instance to
mitigate response latency. Even if the optimal power allocation can be
found through exhaustive search, the undetermined runtime factors
such as load burst easily generate dynamic bottlenecks at potentially
any service instance, which undermines the effectiveness of the static
power allocation.

2.2 Difficult to identify bottleneck service
Since bottleneck services dominate the processing delay and con-
tributes to the response latency, it is more effective to boost the
bottleneck service using the limited power budget. However, accu-
rately identifying the bottleneck service across multiple stages relies
on considering latency statistics that are constantly changing during
runtime. For example, service instance I1

a as shown in Figure 3 has a
longer queue length than service instance I2

b , which indicates instance

query

query

@1.8GHz @1.8GHz @1.8GHz

@1.8GHz@1.2GHz@1.2GHz

query

@1.2GHz @1.2GHz @2.4GHz

Stage 2Stage 1 Stage N
response

response

response

!"# 	

!"# 	

!"# 	

!"# 	

!"# 	 !"# 	

!"# 	

!"# 	!"# 	

Figure 3: The exemplified setup of a multi-stage application.

I1
a has more chance to become a bottleneck for the future queries.

However, if considering the processing speed, instance I1
a may run at

a higher frequency that processes queries much faster than instance
I2
b . It is possible that instance I1

a finishes the queued up queries earlier
than instance I2

b , which reversely leaves instance I2
b as the future

bottleneck.
Unfortunately, existing work [22, 34, 35] fail to acknowledge ap-

plications with multiple stages through the processing of a query, and
are missing support to monitor the latency statistics of each service
instance across stages during runtime. In addition, prior approach
lack the ability to perform accurate bottleneck identification to reduce
response latency within limited power budget.

2.3 No Single Boosting Technique Always Wins
Although multiple boosting techniques exist to accelerate the bottle-
neck service, they may achieve quite different latency improvement
under the same power budget. For example, frequency boosting which
increases the processing speed of the service instance is more benefi-
cial when the serving delay dominates the latency. Whereas, instance
boosting which launches new instances to share the load of the bot-
tleneck service improves the latency better when there is a burst of
queries.

The varying latency benefit of applying different boosting tech-
niques is illustrated in Figure 4 with Sirius application. During the low
load, frequency boosting improves the average and 99% percentile
latency by 1.46× and 1.41× respectively over baseline, however
instance boosting only achieves 1.20× (average) and 1.04× (99%
percentile). Whereas during the high load, instance boosting improves
the average and 99% percentile latency by 25.11× and 14.77× com-
pared to 1.82× and 1.96× achieved by frequency boosting due to
the dominate queuing delay [28]. Considering the varying load com-
monly seen in user facing applications [4, 14], statically adopting
a particular boosting technique fails to deliver the most latency im-
provement. Especially under the power constraint, it is more desirable
to adaptively switch to the boosting technique that achieves better
latency improvement.

2.4 Non-trivial to acquire boosting power under
constraint

Under a predefined power budget, boosting the bottleneck service
requires recycling power from existing service instances in order to
reallocate enough power to perform the boosting technique. However,
choosing the appropriate service instances to recycle the power could
be non-trivial since all the service instances may affect the response

135

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada Hailong Yang, Quan Chen et al.

Freq-Boosting Inst-Boosting
0X

5X

10X

15X

20X

25X

La
ten

cy
 Im

pr
ov

em
en

t

(a) Low Load

average latency
99th latency

Freq-Boosting Inst-Boosting
0X

5X

10X

15X

20X

25X

(b) High Load

average latency
99th latency

Figure 4: Varying latency improvement using frequency and in-
stance boosting for Sirius application.

latency as query proceeds through the service stages. Recklessly
picking a service instance may cause negative effect to the response
latency and diminish the latency improvement from service boosting.
In the extreme case, the bottleneck could be bouncing between the
service instance being boosted and the service instance whose power
being recycled.

In addition, how to recycle the power also needs a careful consid-
eration. For example, one way to recycle the power is to decrease the
processing frequency of the service instance. The other one is to with-
draw the service instance as long as it is not the only instance within
its service stage. The latter usually recycle more power, however, it
requires meticulous redirection of the query load originally sent to
the service instance withdrew. Otherwise, it may generate unexpected
long queue at the service instance receiving this additional load. It is
critical to design an effective power reallocating mechanism to boost
the bottleneck service within limited power budget.

2.5 Summary
The take-aways from our investigation on mitigating response latency
of multi-stage application under the power constraint are summarized
as follows:

• Bottleneck identification requires awareness of latency
variance of service instances across stages - There is lack-
ing acknowledgement of intrinsic latency variance of service
instances of multi-stage application by prior work, which
prevents accurate bottleneck identification during runtime.

• Latency improvement varies using different boosting tech-
niques - Different boosting techniques have their own sweet
point in accelerating the bottleneck service. Adaptively se-
lecting the boosting technique that delivers better latency re-
duction significantly improves the boosting efficiency within
limited power budget.

• Power reallocation requires careful design to support
service boosting - Reckless power reallocation of limited
power budget diminishes the latency improvement from bot-
tleneck boosting. Choosing the appropriate service instance
as well as the way to reallocate power budget requires a
carefully designed mechanism.

• A runtime framework is required for mitigating response
latency of multi-stage application under the power con-
straint - There are three critical capabilities the runtime
framework needs to possess: 1) the accurate identification
of the bottleneck service during runtime, 2) the adaptive

Users Command Center � Power Reallocator ��Bottleneck Identifier

Query
Dispatcher

Service
Instance

Service
Instance

Service
Instance

Control

Fe
ed

ba
ck

Query
Stage 1 Stage 2 Stage n

QueryQuery Output

PowerChief Runtime System

� Boosting Decision Engine

Launch InstanceDVFS

Figure 5: The Overview of PowerChief Runtime Framework.

selection of boosting techniques to achieve better latency im-
provement, 3) the effective reallocation of the power budget
to accelerate the bottleneck service.

Based on these findings, we propose PowerChief, a runtime frame-
work of intelligent power allocation for multi-stage applications to
improve responsiveness on power constrained CMP, through accu-
rately identifying the bottleneck service and adaptively applying the
boosting techniques during runtime.

3 POWERCHIEF FRAMEWORK
This section describes the design of the PowerChief runtime frame-
work, which takes advantage of accurate bottleneck identification to
pinpoint the service instance that contributes to the long response
latency across stages, and adaptively applies the appropriate boosting
technique that accelerates the bottleneck service with power carefully
recycled during runtime.

PowerChief Overview The overview of the PowerChief runtime
framework is presented in Figure 5, which is composed of a Command
Center and a Service Instance Pool per processing stage. When a
multi-stage application is implemented using PowerChief, it registers
the stage layout with Command Center. Service instances across
stages can run in distributed way and communicate with command
center as well as each other through remote procedure call (RPC).
Each service instance is augmented with the ability to record the
queuing and serving time it spent in processing the queries. These
latency statistics are carried along by the queries as they flow through
the processing stages, and finally reports to the command center.
This joint design of service instance and query enables the command
center to concisely monitor the latency statistics across service stages
during runtime with minimum overhead, which fills in the gap of
missing support to reason about the latency distribution for multi-
stage application from prior work.

With the latency statistics collected from each service instance,
there are three core components within the command center to per-
form the latency mitigation under the power constraint: Bottleneck
Identifier, Boosting Decision Engine and Power Reallocator. Based
on the determined latency metrics, the bottleneck identifier analyzes
the latency statistics from each service instance and recognize the
bottleneck service across stages (Section 4). This bottleneck identifi-
cation is then used to drive the boosting decision engine to select the
appropriate boosting technique that accelerates the bottleneck service

136

PowerChief: Intelligent Power Allocation for Multi-Stage Applications ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

(Section 5). Given the boosting decision, the power reallocator care-
fully recycles the required power from existing service instances to
perform the chosen boosting technique (Section 6). These three core
components working in concert give PowerChief the capability to
effectively mitigate response latency of multi-stage application under
the power constraint.

4 BOTTLENECK SERVICE IDENTIFICATION
METHOD

The purpose of the bottleneck identification is to accurately recog-
nize the service instance that dominates the response latency with
minimum overhead. Latency statistics of each service instance need
to be collected to facilitate the bottleneck identification across stages.
In addition, various latency metrics can be used to measure the delay
of query processing at each service instance. Choosing the appropri-
ate latency metrics significantly affects the accuracy for bottleneck
identification.

4.1 Monitoring Latency Statistics
In order to monitor the latency statistics of each service instance
during runtime, we extend the query data structure to store the latency
statistics as it walks through each service instance. Correspondingly,
each service is augmented with the timing ability to measure the time
each query spent on queuing and processing. This service and query
joint design eliminates the large amount of communications between
service instances and the command center, especially when deployed
in large scale environment. In the meanwhile, all the latency statistics
are calculated on each service locally, there is no requirement for
global clock synchronization or special hardware support. Moreover,
the service instance within a stage can scale out without affecting the
effectiveness of latency monitoring.

As illustrated in Figure 6, when a service instance finishes process-
ing a query, it appends latency statistics, including instance signature
(ID), the queuing and processing time, to the extended query data
structure. The query carries along the latency statistics as it finishes
through all the service stages. After the query completes the last
stage of the processing pipeline, these latency statistics are sent to the
command center. The bottleneck identifier then calculates the latency
metrics such as average and 99% percentile queuing and serving de-
lay of each service instance using the latency statistics, which is then
used to drive the bottleneck identification. Compared to other latency
monitoring techniques that require OS modification [51, 52] and de-
ployment of monitoring software [53], our design is easily adopted
on commodity CMP servers where frameworks [3, 19] are commonly
used to transform existing applications into services. The proposed
joint design can be a small add-on to the frameworks, and thus saves
the burden for OS modification and special software deployment.

4.2 Identifying Bottleneck Service
Several latency metrics can be used to guide the bottleneck identi-
fication. Table 1 lists the commonly used latency metrics that are
available for each service instance. However, a significant drawback
of the listed latency metrics to accurately indicate the bottleneck ser-
vice is that they only present the historical processing ability of the
service instance without considering its current load. For example,

Service
Instance

Service
Instance

Service
Instance

Stage 2Stage 1 Stage n

Instance ID Queuing Time Serving TimeExtended Query Structure

Input InputInput

Bottleneck
Identifier

Data

User User

ResultData Data

Latency Statistics

Figure 6: Service and query joint design to monitor latency sta-
tistics of each service instance across stages.

considering the latency metric of average processing delay, a higher
number of the metric may not always indicate the actual bottleneck.
Because queries may queue up at the service instance due to the burst
of load. In that case, even the service instance with lower average
processing delay is likely to become the bottleneck.

Table 1: Metrics available to identify bottleneck service

Metric Calculation
Average queuing time qi
Average serving time si

Average processing delay qi+si
99th queuing time tqi
99th serving time tsi

99th processing delay tqi+tsi

In PowerChief, we combine both the historical latency statistics
and the realtime load status to derive a latency metric that accurately
indicates the bottleneck service. As shown in Equation 1, except
for the average processing delay, PowerChief takes into account the
real time queue length of the service instance when it performs the
bottleneck identification. We use qi, si and Li to denote the average
queuing time and serving time as well as realtime queue length of
service instance Ii respectively.

LatencyMetric = Li ×qi + si (1)

The latency metric as shown in Equation 1 can be considered as
the processing delay that the incoming queries would expect since the
service instance has to process the queries already in the queue before
it gets back to the incoming ones. Equation 1 estimates the expected
delay considering historical queuing and serving latency of of the
service instance as well as the current queue length. PowerChief
leverages a moving time window to calculate this latency metric for
each service instance, and the one with the largest latency metric is
identified as the bottleneck instance.

5 BOOSTING DECISION ENGINE
To adaptively select the boosting technique that has higher impact
on reducing response latency, the boosting decision engine needs to
quantitatively estimate the latency improvement of different boosting
techniques without actually applying them. Moreover, different boost-
ing techniques alleviate the bottleneck service from various aspects
such as mitigating queuing and serving delay, which needs to be con-
sidered during evaluating the boosting decision. In this section, we

137

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada Hailong Yang, Quan Chen et al.

Clone Instance

(a) Instance boosting (b) Frequency boosting

Increase Frequency

Query queue Query queue

(Frequency fa)
Instance Ij

Instance Inew
(Frequency fa)

(Frequency fa)
Instance Ij

(Frequency fb)
Instance Ij

Tail Tail

Figure 7: Mechanism of instance and frequency boosting.

first describe the estimation of latency improvement with two com-
monly used boosting techniques: instance-boosting and frequency
boosting. We use the term expected delay to present the processing
delay of the service instance after applying the boosting techniques.
Then, we present the policy within the boosting decision engine to
adaptively select the boosting technique during runtime (adaptive
boosting).

5.1 Instance boosting
Instance boosting launches a new instance when a bottleneck service
is identified. The latency improvement is achieved through alleviat-
ing the load of the bottleneck service in the current (through work
stealing) and future form (through load balance). In essence, instance
boosting accelerates the bottleneck service by reducing its queuing
time.

In PowerChief, the new instance clones the frequency setting of
the bottleneck instance as well as shares half of its load. As shown in
Figure 7 (a), after a new instance Inew is cloned to boost the bottleneck
instance I j, half of the queries queued at the bottleneck instance I j
is offloaded to Inew. The estimation of the latency improvement with
instance boosting can be formalized as follows.

Let q j and s j denote the average queuing and serving time of
queries at the bottleneck instance I j, and L j denotes the realtime
queue length of I j . The delay of future queries at instance I j is the time
when the last query in the queue of I j is processed. If I j is not boosted,
its processing delay can be calculated as

(
L j −1

)
×
(
q j + s j

)
+ s j,

where
(
L j −1

)
×
(
q j + s j

)
is the queuing time of the last query at

I j. When applying the instance boosting policy, half of the queued
up queries are offloaded from I j to Inew, the queuing delay of I j is
reduced to by half. Equation 2 calculates the expected delay after
launching a new instance of bottleneck instance I j. In this equation,
the serving time does not change because instance boosting does not
affect the processing speed of I j.

Tinst =

(
L j −1

)
×
(
q j + s j

)
2

+ s j (2)

5.2 Frequency boosting
Different from instance boosting, frequency boosting increases the
core frequency to speedup the processing of the bottleneck service
as shown in Figure 7 (b). Apparently the reduction of serving time

depends on the characteristics of the bottleneck service. In the mean-
while, the queuing time decreases correspondingly due to the speedup
of serving.

In PowerChief, we leverage the fine grained adjustable CPU fre-
quency on Intel Haswell architecture, providing a wide range of
frequencies to boost the bottleneck service. We use offline profil-
ing to acquire the latency reduction of the each service at different
frequencies, which is then used during runtime to estimate the la-
tency improvement with frequency boosting. The Haswell architec-
ture adopts on-chip voltage regulators that generate sub-µs delays
when adjusting the frequency [9, 28]. PowerChief takes advantage of
this fast frequency transition to support queries whose QoS even at
millisecond granularity.

To compare the latency improvement with instance boosting under
the same power budget, PowerChief estimates the latency improve-
ment of frequency boosting with the frequency level equivalent to the
power consumption of instance boosting. The expected delay is cal-
culated in a similar way to instance boosting. Suppose the bottleneck
instance I j and its frequency is increased from fl to fh, the ratio of
latency reduction is αlh from the offline profiling. Equation 3 calcu-
lates the expected delay of I j if applying frequency boosting. Note
that different from instance boosting, both the queuing and serving
time reduce as the processing speed increases with higher frequency.

Tf req = αlh ×
((

L j −1
)
×
(
q j +S j

)
+ s j

)
(3)

5.3 Adaptive Boosting
Based on the estimation of the expected delay with instance and fre-
quency boosting, PowerChief adaptively chooses the boosting tech-
nique that reduces the expected delay of the bottleneck service most.
Algorithm 1 gives the details for selecting the most beneficial boosting
technique during runtime. PowerChief invokes SELECTBOOSTING(bn)
to reach a decision on which boosting technique to apply to the bot-
tleneck instance bn.

In Algorithm 1, the variable avail denotes the available power
budget during runtime, whereas p denotes the power consumption of
launching a new instance. It first tries to recycle power from running
instances in order to acquire the power to launch a new instance
exceeding the available power budget (line 7-10). After then, if the
available power budget is still not enough to launch a new instance,
the algorithm resorts to frequency boosting (line 11-12). To make
a fair comparison, PowerChief first evaluates the power required
to launch a new instance of the bottleneck service bn. Then (line
15-24), it compares the expected delay of instance and frequency
boosting, and chooses the one that results in the shortest expected
delay. In addition, as shown in line 14 of Algorithm 1, if the realtime
queue length of the bottleneck instance bn is smaller than two, then
launching a new instance hardly alleviates the load. In that case,
PowerChief prefers frequency boosting to accelerate the bottleneck
service instance. Note that the variables of r1 and r2 are execution
times normalized to the service running at the slowest frequency.
Since the frequency of r2 is higher than r1, the ratio of speedup
regarding the boosted frequency Tf should be r2/r1.

138

PowerChief: Intelligent Power Allocation for Multi-Stage Applications ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

Algorithm 1 Algorithm of adaptive boosting

1: Input: avail ▷ Current available power budget

2: function SELECTBOOSTING(bn)
3: p = bn.getPower() ▷ Current power of bn

4: qt =bn.getQueuing() ▷ Average queuing time of bn

5: st =bn.getServing() ▷ Average serving time of bn

6: ql =bn.getQueueLength() ▷ Queuing length of bn

7: if avail < p then
8: rec = RECYCLE(p−avail) ▷ Algorithm 2

9: avail += rec
10: end if
11: if avail < p then ▷ Cannot launch instance

12: frequency boosting with avail power
13: else
14: if ql> 2 then ▷ Queue length larger than two

15: Ti = (ql-1)*(qt+st)/2 + st ▷ With inst. boosting

16: r1 = bn.getSpeedup(bn.getFreq())
17: freq = bn.calNewFreq(p)
18: r2 = bn.getSpeedup(freq)
19: Tf = r2/r1*((ql-1)*(qt+st)+st) ▷ With freq. boosting

20: if Ti < Tf then ▷ Expected delay

21: instance boosting
22: else
23: frequency boosting
24: end if
25: else
26: frequency boosting
27: end if
28: end if
29: Update avail
30: end function

6 POWER REALLOCATION MECHANISM
To perform the boosting technique selected by the boosting decision
engine, power reallocation across service instances is inevitable if
the current power consumption already reaches the budget ceiling.
However, to avoid generating new bottleneck services after power
reallocation, it requires a careful design to find the right service
instance to recycle the power as well as withdraw the service instance
underutilized. In this section, we describe the power reallocation
mechanism in PowerChief to address the above issue.

6.1 Power Recycling
Leveraging the results from the bottleneck identification process, it is
straight forward to acquire a sorted service instance list based on the
latency metric used to identify the bottleneck. Power recycling starts
from the fastest service instance within the list that has less chance to
generate a new bottleneck than the others. By taking advantage of the
bottleneck identification process, it is easy to find the potential service
instances to perform power recycling, without additional searching
overhead. Note that the bottleneck identification process takes into
account of queuing and serving delay as well as the runtime queue
length, which implicitly reflects the stage dependency through the
queuing behavior of each service instance.

Let I0, ..., Ik−1 represent the sorted service instances, where Ik−1
is the service instance that has the largest latency metric (bottleneck
service) and I0 is the instance that has the smallest latency metric. If
there is not enough power budget to perform the boosting technique
to Ik−1, PowerChief recycles power allocation from I0 first. If the
available power budget is still not enough for the selected boosting
technique even after the power budget allocated to I0 is recycled to
the minimum (frequency of I0 is reduced to the lowest), PowerChief
then recycles power allocation from the next fast instance (e.g., I1).
This procedure repeats until the available power budget is enough for
boosting Ik−1 with the selected boosting technique.

Algorithm 2 presents the persudo-code of recycling power al-
location. If PowerChief decides to recycle power allocation of P
(determined by boosting decision engine in Section 5.3), it invokes
RECYCLE(P). PowerChief employs greedy policy to recycle the
needed power from the fastest service instances if possible. Other
power recycling policies such as memory-bound instance first or max-
imum power saving per performance change can be easily plugged
into PowerChief and replace current implementation. In general, we
find the greedy policy performs well in practice.

Algorithm 2 Algorithm of power recycling

1: Input: I[k] ▷ All the k instances (fast to slow)

2: Input: fl[k] ▷ current frequency level of each instance

3: Input: p[b] ▷ power at frequency level b (low to high)

4: function RECYCLEFROMINST(inst, power)
5: cp = p[fl[inst]] ▷ Current power of inst

6: recycled = 0 ▷ Power recycled from inst

7: for (int i = fl[inst]; i>=0; −−i) do
8: recycled = p[fl[inst]] - p[fl[i]]
9: if recycled >= power then

10: break
11: end if
12: end for
13: Scaling down frequency level of I[inst] to level i
14: fl[inst]=i
15: return recycled
16: end function
17: function RECYCLE(power)
18: rec = 0 ▷ Already recycled power

19: for (int i = 0; i < k; ++i) do
20: rec+= RECYCLEFROMINST(i, power−rec)
21: if rec >= power then
22: break
23: end if
24: end for
25: return rec
26: end function

6.2 Instance Withdraw
In addition to recycle power budget from an instance until it reaches
the slowest frequency, PowerChief can also withdraw all the power
budget allocated to a service instance by withdrawing it. Instance
withdraw happens when PowerChief detects a service instance is
underutilized. As mentioned in Section 4.1, PowerChief monitors

139

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada Hailong Yang, Quan Chen et al.

Speech Recognition Image Matching

Question&Answer

1 1

2

34

How old is Stonehenge? 4,614 years

How old are those stones?

Figure 8: The service stages of Sirius application.

POS PSG SRL

John hit the ball
[John, hit, the, ball]

NNP VBD DT NN

John (S1(S(NP*)
hit (VP*
the (NP*
ball *))))

John – S-A0
hit hit S-V
the – B-A1
ball – E-A1

1 2 3

Figure 9: The service stages of NLP application.

the latency statistics of each service instance during runtime, it then
calculates how much time each instance actually spends on processing
queries during the withdraw interval. If the processing time is less
than 20% of the withdraw interval, the service instance is considered
underutilized and being withdrew to recycle the power budget.

To handle the load to the underutilized service instance before with-
drawing it, PowerChief sorts the service instances within the same
stage based on the latency metric used by bottleneck identification.
The additional load is then redirected to the fastest service instance
that has the least possibility to be overwhelmed. After assuring there
is no query waiting or running on the underutilized service instance,
PowerChief withdraws the service instance and recycles the power
budget.

In order to avoid aggressive instance withdraw, at most one un-
derutilized instance can be withdraw at each stage during one power
reallocation interval. Also, an underutilized instance can be withdrew
only if there are more than one instance within the same stage in case
of breaking the application processing pipeline. Note that when a
service instance is withdrew, its load migrates to existing instances. In
such case, it generates negligible impact on existing instances since
its load is already low (e.g., utilization is less than 20%).

7 REAL SYSTEM PROTOTYPE
7.1 Implementation Details
We implement a real system prototype of PowerChief to showcase
its ability of intelligent power allocation for multi-Stage applications
to improve responsiveness on power constrained CMP. For ease of
adoption, we leverage the widely used RPC framework from Apache
Thrift [3] to enable service stages interacting with each other seam-
lessly. In addition, services implemented in various programming
languages can be easily hooked in the PowerChief through standard-
ized APIs.

To demonstrate the advantage of PowerChief, we transform the
Sirius and NLP (Senna [12]) into multi-stage applications by modu-
larizing the processing pipelines into services. Both Sirius and NLP

have three stages in their processing pipelines as shown in Figure 8
and 9. The Sirius application supports the user to submit queries
with audio and image input, all the service stages process the queries
in sequence to generate intelligent responses. The NLP application
represents the semantic parsing of the text in natural language [18],
which serves the automatic summarization commonly adopted in
search engines.

We implement conventional boosting techniques such as frequency
and instance boosting on top of the PowerChief runtime framework
so that they can dynamically reallocate the power budget and boost
the bottleneck service under the power constraint. The two boosting
techniques are performed as follows: 1) frequency boosting consis-
tently increases the frequency of the service instance that is identified
as bottleneck service; 2) instance boosting always launches a new
instance to accelerate the bottleneck service by sharing its load. The
new instance takes the same frequency as the bottleneck service.

7.2 Overhead Analysis
The potential overhead that PowerChief may introduce can be in-
spected from three aspects, including latency monitoring, service
startup/teardown and boosting decision. Latency monitoring times-
tamps the query when it is processed by a service instance (enter the
queue, start processing and finish processing) to record the queuing
and serving delay, which is negligible. To provide better user expe-
rience, modern service providers usually initialize sufficient service
instances into a pool in advance [25]. Service startup/teardown actu-
ally means picking up a service instance from the pool (or returning
back to the pool), which introduces negligible overhead. We adopt the
similar idea to launch and withdraw service instance. The boosting
decision may become a bottleneck when the number of services scales
beyond a certain point. In that case, we can duplicate the services
into multiple shardings [5] across CMP servers and use PowerChief
to manage them separately with acceptable overhead.

8 EVALUATION
8.1 Experimental Setup
We evaluate PowerChief runtime framework on Intel Xeon E5-2630v3
server with two processors. Each processor has eight physical cores
with SMT disabled. The processors use Haswell architecture, which
supports DVFS on individual cores. The frequency can be adjusted
from 1.2GHz to 2.4GHz with step of 0.1GHz. The operating system
is Ubuntu 14.04 x86_64 with kernel 3.13.0-32. Since it is infeasible
to measure power consumption at core level on current platform,
we use the power model proposed in [22] to determine the power
consumption of a core running at different frequencies. We treat the
power consumption of the service instance as the power consumption
of the core it is running on.

It is usually difficult to identify the optimal power allocation across
stages due to the system dynamics (e.g., burst of load), which requires
setting up the right number of service instances for each stage as well
as right frequency for each service instance without violating the
power budget. Thus we use stage-agnostic power allocation that
divides the power budget equally across stages as our baseline. The
power budget is chosen to accommodate one service instance running
at the middle range of the frequency scale (1.8GHz) for each stage,

140

PowerChief: Intelligent Power Allocation for Multi-Stage Applications ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

so that PowerChief can exercise all its techniques throughout the
experiments.

To evaluate the effectiveness of PowerChief under different load,
we design a load generator that submits user queries following Pois-
son distribution that is widely used to mimic cloud workload [39, 41].
Three representative load levels (high, medium and low) are chosen
throughout the experiments based on the extent how the service stages
are saturated. To avoid the oscillation of power reallocation between
the fastest and slowest services, we use a control variable balance
threshold. When the difference of the latency metric between the
fastest and slowest services is less than balance threshold, we skip
the adjustment during current interval. The experiment configurations
are summarized in Table 2. For the configurations of the applications,
we use their default settings throughout our experiments. Note that
although in this study we define stages based on application process-
ing pipeline, our approach is also applicable to other stage definitions
such as on the basis of algorithmic characteristics.

In Section 8.2 - 8.3, we evaluate the scenario where PowerChief is
used to reduce the response latency while guarding the power budget.
Whereas in Section 8.4, PowerChief is evaluated to reduce the power
consumption while guarding the QoS. We compare the effectiveness
of PowerChief and Pegasus in the latter scenario.

Table 2: Experiment setup of PowerChief in mitigating response
latency under the power constraint. All services are running at
medial frequency (1.8GHz)

Settings Sirius & NLP
Load Distribution Poisson
Load Level High, Medium, Low
Stage Setup 1 ASR service, 1 IMM service and 1

QA service (Sirius); 1 POS service,
1 PSG service and 1 SRL service
(NLP)

Power Budget 13.56watts
Adjust Interval 25 sec
Balance Threshold 1 sec
Withdraw Interval 150 sec

8.2 Intelligent Personal Assistant Application
In this section, we evaluate the effectiveness of PowerChief in mitigat-
ing response latency under the power constraint for Sirius application
under different load.

Latency Improvement - Figure 10 shows the latency improve-
ment for Sirius using PowerChief and other boosting techniques
under different load. Compared to other boosting techniques, it is
clear that PowerChief achieves the most latency reduction under all
loads, with 20.3× (average latency) and 13.3× (99% tail latency) on
average over the baseline. Especially under high load as shown in
Figure 10(c), PowerChief significantly reduces the average and tail
latency by 32.8× and 19.5× respectively over the baseline, which jus-
tifies the necessity for dynamically power reallocation and adaptive
boosting.

We also notice that under medium and high load (Figure 10(b) and
(c)), instance boosting performs better than frequency boosting, with

average latency reduction by 24.46×(8.51×) and 25.11×(1.82×),
whereas 99th percentile latency reduction by 14.46×(9.89×) and
14.77×(1.96×). However, as the load decreases the latency gap be-
comes smaller. At low load in Figure 10(a), frequency boosting re-
duces the average and tail latency more than instance boosting with
1.24× and 1.19× respectively.

This tendency is due to the fact that under medium and high load,
the queuing time dominates the processing latency of the bottleneck
service so that launching more instances alleviates the load and ef-
fectively reduces the queuing time. This observation is in accordance
with previous work [28, 29]. Whereas under low load, the serving
time takes a larger portion of the processing latency, therefore higher
frequency is more beneficial in mitigating the bottleneck service.

The changing dominate factor for the processing latency at bot-
tleneck service not only results from the load fluctuation, it is also
affected by other runtime dynamics such as performance interfer-
ence from collocated applications. The advantage of PowerChief in
handling varying causes for bottleneck service with dynamic power
reallocation and adaptive boosting maximizes the latency improve-
ment under constrained power budget, thus is more promising in
mitigating response latency for multi-stage application.

Effective Power Reallocation and Service Boosting - To illus-
trate the effect of dynamic power reallocation and adaptive service
boosting, Figure 11 presents the runtime behaviors of the Sirius
application under high load using frequency boosting, instance boost-
ing and PowerChief. The same bottleneck identification method and
power reallocation mechanism (without instance withdraw) from
PowerChief is applied to frequency and instance boosting, except
that PowerChief uses boosting decision engine to adaptively choose
between the boosting techniques. Similar runtime behaviors are ob-
served under medium and low load, and thus we omit them for brevity.

For frequency boosting in Figure 11(a), it first identifies the QA
service instance as the bottleneck. Then it increases the frequency of
QA service instance to 2.3GHz with power recycled from the IMM
(frequency deceases to 1.2GHz) and ASR (frequency deceases to
1.6GHz) service instances during the first round of service boost-
ing (at 25s). During the second service boosting interval (at 50s),
the frequency boosting policy increases the frequency of ASR ser-
vice instance to 2.1GHz by recycling the power from QA service
instance (frequency decreases to 1.9GHz). When the load becomes
low (between 175s and 275s), the serving time of QA service instance
dominates the response latency, the frequency of QA service instance
is boosted to its maximum(2.4GHz). In the rest of the query execution,
power is assigned between QA and ARS service instances depending
on which one is identified as the bottleneck service.

Different from frequency boosting, instance boosting launches
a new instance when existing service instance is identified as bot-
tleneck service. As shown in Figure 11(b), two more ASR service
instances and three more QA service instances are launched with
the power recycled through decreasing the frequency of existing ser-
vice instances. It is seen that after 125s except one ASR instance
(1.3GHz), the rest of the service instances all end up with the lowest
frequency (1.2GHz). This is due to the fact that not enough power
can be recycled to accommodate a new service instance even with
the lowest frequency, which prevents instance boosting to perform
further adjustment in response to varying bottleneck services.

141

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada Hailong Yang, Quan Chen et al.

Freq-Boosting Inst-Boosting PowerChief
0X
5X

10X
15X
20X
25X
30X
35X

La
ten

cy
 Im

pr
ov

em
en

t

(a) Low Load

average latency
99th latency

Freq-Boosting Inst-Boosting PowerChief
0X
5X

10X
15X
20X
25X
30X
35X

(b) Medium Load

average latency
99th latency

Freq-Boosting Inst-Boosting PowerChief
0X
5X

10X
15X
20X
25X
30X
35X

(c) High Load

average latency
99th latency

Figure 10: Latency improvement for Sirius application using PowerChief compared to other boosting techniques under different
load. PowerChief achieves higher latency improvement under the same power budget.

0 125 250 375 500 625 750 875
Time (s)

1.0

1.5

2.0

2.5

Fr
eq

ue
nc

y
(G

H
z)

(a) Freq-Boosting

IMM_1 ASR_1 QA_1

0 125 250 375 500 625 750 875
Time (s)

1.0

1.5

2.0

2.5

(b) Inst-Boosting

QA_2
IMM_1

QA_4
QA_3

QA_1
ASR_2

ASR_1
ASR_3

0 125 250 375 500 625 750 875
Time(s)

1.0

1.5

2.0

2.5

(c) PowerChief

QA_2
IMM_1

QA_4
QA_3

QA_1
QA_5

ASR_2
ASR_1

0 125 250 375 500 625 750 875
0

2

4

6

N
um

be
r o

f I
ns

ta
nc

es IMM ASR QA

0 125 250 375 500 625 750 875
0

2

4

6
IMM ASR QA

0 125 250 375 500 625 750 875
0

2

4

6
IMM ASR QA

Figure 11: Runtime behavior of Sirius application such as the number and frequency of service instances across stages under
different boosting techniques. Boost the bottleneck stage with (a) increased frequency, (b) more instances and (c) PowerChief.

To overcome the limitation of instance boosting that no power can
be recycled if all instances are running at lowest frequency, Power-
Chief leverages the advantage of instance withdraw. This explains
the number of QA instances drops from five to four after 300s in
Figure 11(c), the power of which is utilized to boost the frequency of
the bottleneck QA instance (QA_3, frequency increases to 1.6GHz).
The boosting decision engine prefers instance boosting more over
frequency boosting for QA service as the load increases (before 125s),
since instance boosting absorbs the burst of load effectively to reduce
the queuing delay.

The varying bottleneck services in Figure 11(c) is primarily due
to the changing load during runtime. At the beginning QA service is
identifies as the bottleneck. However, as more load arrives, the queu-
ing delay becomes dominate at ASR service therefore it becomes
the new bottleneck service. After boosting ASR, more load enters
into the QA service, which becomes the bottleneck again. In addition,
background activities (e.g., GC) as well as interference from collo-
cated applications could also change the bottleneck service during
runtime. These runtime uncertainties can be effectively handled by
our approach.

8.3 Natural Language Processing Application
To demonstrate the ability of PowerChief in mitigating response
latency under the power constraint within other application domains,
we evaluate with the NLP application for semantic parsing of natural
language.

Latency Improvement - Figure 12 presents the comparison be-
tween PowerChief and other boosting techniques in mitigating the
average and 99% percentile latency for the NLP application under
different load. Similar to the Sirius application, PowerChief achieves
the most average and 99% latency reduction in all cases with 32.4×
(average latency) and 19.4× (99% tail latency) on average over the
baseline. Under high load as shown in Figure 12(c), PowerChief ex-
hibits clear advantage in reducing average and tail latency by 52.2×
and 28.4× respectively. At medium load in Figure 12(b), Power-
Chief shows similar average and tail latency improvement as instance
boosting by 41.6× and 27.7×. Whereas at low load in Figure 12(c),
PowerChief maintains similar average and tail latency improvement
as frequency boosting by 3.4× and 2.3×. As the load decreases,
the boosting decision adaptively prefers frequency boosting more
from instance boosting, which effectively reduces serving time that
dominates the latency at the bottleneck service.

8.4 Reducing power while meeting QoS
In addition to mitigate response latency under the power constraint,
PowerChief is also capable to reduce power consumption of multi-
stage application while meeting the latency QoS. The most related
work in literature is Pegasus [34] that targets reducing power con-
sumption without violating the QoS. In order to compare with Pe-
gasus, we implement the Pegasus power conservation policy within
PowerChief framework. The power conservation is the opposite of
service boosting, which identifies the fastest service instance and
applies frequency reduction and instance withdraw to save power

142

PowerChief: Intelligent Power Allocation for Multi-Stage Applications ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

Freq-Boosting Inst-Boosting PowerChief
0X

10X

20X

30X

40X

50X

La
ten

cy
 Im

pr
ov

em
en

t

(a) Low Load

average latency
99th latency

Freq-Boosting Inst-Boosting PowerChief
0X

10X

20X

30X

40X

50X

(b) Medium Load

average latency
99th latency

Freq-Boosting Inst-Boosting PowerChief
0X

10X

20X

30X

40X

50X

(c) High Load

average latency
99th latency

Figure 12: Latency improvement for NLP application using PowerChief compared to other boosting techniques under different
load. PowerChief achieves higher latency improvement under the same power budget.

without violating the QoS. To make a fair comparison, we setup the
frequency as well as the number of service instances within each stage
so that the resource is over-provisioned regarding the QoS target. This
is in accordance with the assumption of Pegasus. To demonstrate the
ability in handling different stage organizations, we evaluate Power-
Chief with both Sirius and Web Search [2] applications. The detailed
experiment setup is shown in Table 3. The results are normalized to
the baseline where resource is over-provisioned and no power control
is applied during runtime.

Table 3: Experiment setup to compare PowerChief and Pegasus
in reducing power consumption while meeting the latency QoS.
All services are running at maximum frequency (2.4GHz)

Settings Web Search Sirius
Adjust Interval 2s 10s
Stage Setup 1 aggregation ser-

vice and 10 leaf ser-
vices

4 ASR services, 2
IM services and 5
QA services

Power Conser-
vation Policy

Frequency deboosting & Instance with-
draw (PowerChief); Frequency deboost-
ing (Pegasus)

Latency QoS 250ms 2s

As shown in Figure 13 and 14, PowerChief conserves more power
than Pegasus for both Sirius and Web Search applications while
meeting the QoS target. For Sirius and Web Search, PowerChief saves
25% and 43% power over the baseline respectively, whereas Pegasus
saves 2% and 10%. The fundamental advantage of PowerChief in
conserving more power can be attributed to the acknowledgement of
latency variation across service stages. During runtime, it identifies
the fastest service instance across stages and adaptively applies power
conserving policy without violating the QoS. Whereas, Pegasus treats
service instances indifferently and thus cannot leverage the latency
variations to trade QoS slacks for less power consumption.

8.5 Discussion
PowerChief manages dynamic power allocation at per application
basis where each application has its own power budget and stage
organization. It implicitly assumes each service instance is running
on individual core where power management is applied. However,
it is easy to extend the current approach to allow single service in-
stance utilizing multiple cores. In the case of application collocation,

0 200 400 600 800
Time Line (s)

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 Q

oS
 T

ar
ge

t

Latency

powerchief pegasus baseline

0 200 400 600 800
Time Line (s)

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 P

ea
k

Po
we

r

Power

powerchief pegasus baseline

Figure 13: Power saving achieved by PowerChief and Pegasus
with Sirius application while meeting the QoS target. Lines are
average values across timeline.

0 50 100 150 200
Time Line (s)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 Q

oS
 T

ar
ge

t

Latency

powerchief pegasus baseline

0 50 100 150 200
Time Line (s)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 P

ea
k

Po
we

r

Power

powerchief pegasus baseline

Figure 14: Power saving achieved by PowerChief and Pegasus
with Web Search application while meeting the QoS target. Lines
are average values across timeline.

as long as each service instance is running on physical cores exclu-
sively, PowerChief is still capable to identify bottleneck service and
perform power reallocation and service boosting. We do not con-
sider to collocate multiple service instances on the same core since it
could generate severe performance interference on shared resources
and thus degrade the responsiveness. However, we admit even on
separate cores, application collocation has the potential to generate
performance interference and affect the effectiveness of our approach,
which requires further investigation. Although in our current eval-
uation all application stages are running on a CMP server, there is

143

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada Hailong Yang, Quan Chen et al.

Table 4: Comparison between PowerChief and existing work from multiple aspects

Pegasus [34] Timetrader [58] Kwiken [24] Adrenaline [22] Bubble-Flux [61] Quasar [16] PowerChief
Multi-Stage Awareness ✓ ✓ ✓
Power Constraint ✓
Commodity Hardware ✓ ✓ ✓ ✓ ✓
Runtime System ✓ ✓ ✓ ✓ ✓
Power Management ✓ ✓ ✓ ✓

no constraint to run the stages in a distributed manner. Since all the
components within PowerChief including the CommandCenter and
Stage are implemented as services using Apache Thrift, they can com-
municate with the CommandCenter to enforce the power reallocation
and service boosting decisions throughout the network. Note that the
network delays are not considered in our study, however the joint de-
sign of service and query in our approach is extensible to include the
network delays as measuring methods become available [1, 17, 42].

9 RELATED WORK
9.1 Guaranteeing the Response Latency
To address the response latency variation and provide guaranteed
Quality-of-Service (QoS) [14, 33], research efforts are made from
various aspects. Bubble-Up [38] quantitatively identifies resource
interference under application collocation, and Bubble-Flux [61]
dynamically manages the resource contention, to provide guaran-
teed QoS with increased utilization. SMiTe bounds the performance
degradation on simultaneous multithreading (SMT) processors by
carefully collocating "safe" applications through precise QoS pre-
diction. Quasar [16] and Paragon [15] manages datacenter resources
from multiple dimensions and use collaborative filtering to allocate
the right type and amount of resources satisfying the QoS target. Com-
pilation techniques [31, 55, 56] are proposed to guarantee the latency
target by transforming code segments that cause severe performance
interference. However, all techniques in this research category cannot
be directly applied in power constrained scenario where our research
proposal resides.

9.2 Improving Energy Efficiency
As the real hardware in datacenters is far from being energy pro-
portional [6], research [27, 32, 39, 44, 48] is motivated to reduce
power/energy consumption while guaranteeing the QoS target of
user facing applications. Pegasus [34] insightfully identifies the la-
tency slacks inside modern datacenters where resources are over-
provisioned for peak load. Pegasus trades off the mean latency slacks
for improved energy efficiency by slowing down the processing speed
of the leaf nodes without violating the QoS target. Instead of average
latency, Adrenaline [22] targets the tail of the latency distribution and
only accelerates the queries that contribute to the latency tail through
fine grained DVFS. TimeTrader [58] further extends the idea of trad-
ing off latency slacks for improved energy efficiency by exploiting
the opportunity to slow down all leaf nodes that are not on the critical
path to guarantee the latency target. However, these work implicitly
assume that applications containing a single processing stage, and fail
to acknowledge the intrinsic latency variance across multiple stages.
This leads to diminished effectiveness in mitigating response latency
for multi-stage applications under the power constraint.

9.3 Managing Latency of Multi-Stage Applications
Recent work [26, 57] confirms the benefits of application architec-
ture that is composed of mulit-stage services for its flexibility and
easiness of testability and deployment. Mitigating response latency
across multiple processing stages is important for optimizing future
cloud applications. However, research work in this direction are al-
most exclusive from giant companies such as Facebook [10] and
Microsoft [24, 47] due to the lack of realistic multi-stage applica-
tions accessible to the academia. Contributed by the research effort
from Sirius project [21], an open source multi-stage service based
application is public accessible, which represents the emerging in-
telligent applications using the state-of-the-art implementation. This
provides us a realistic application to study PowerChief on real system
for mitigating response latency under the power constraint. There
are some work [43, 54] propose adaptive parallelism to improve the
performance as well as energy efficiency of pipelined application,
however none of them deals with the QoS of user facing application
under constrained power budget.

To sum up, Table 4 provides a comparison between PowerChief
and existing work in terms of multi-stage awareness, power constraint,
commodity hardware, runtime system and power management, which
establishes the uniqueness of our work.

10 CONCLUSION
In this paper, we present PowerChief runtime framework that accu-
rately identifies the bottleneck service and adaptively applies boost-
ing techniques to mitigate the latency of multi-stage applications on
power constrained CMP. Through evaluating our approach with Sirius
and NLP applications, PowerChief improves the average latency by
20.3× and 32.4× respectively over the baseline, and 99% tail latency
by 13.3× and 19.4×, while guarding the limited power budget. In
addition, our QoS study demonstrates that PowerChief can also be
applied to reduce power consumption while meeting the QoS of multi-
stage applications. For both Sirius and Web Search applications, our
approach saves 23% and 33% more power respectively than existing
work regarding the same QoS target. For the future work, we are in-
terested to apply our approach in production datacenter environment
at large scale as well as analyze the tail latency behavior under the
power constraint in more depth.

ACKNOWLEDGMENTS
We thank our anonymous reviewers for their feedback and sugges-
tions. This work was partially sponsored by the National Key Re-
search and Development Program of China (2016YFB1000503), the
National Basic Research 973 Program of China under (2015CB352403),
the National Natural Science Foundation of China (NSFC) (61502019,
61602301), the National Science Foundation (NSF) (IIS:1539011),
NSF CAREER (SHF-1553485), IBM and Facebook.

144

PowerChief: Intelligent Power Allocation for Multi-Stage Applications ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

REFERENCES
[1] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin Vahdat,

and Masato Yasuda. 2012. Less is More: Trading a Little Bandwidth for Ultra-low
Latency in the Data Center. In Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation (NSDI’12). USENIX Association,
Berkeley, CA, USA, 19–19. http://dl.acm.org/citation.cfm?id=2228298.2228324

[2] Apache. 2010. Apache Nutch. (2010). http://nutch.apache.org/.
[3] Apache. 2010. Apache Thrift. (2010). https://thrift.apache.org/.
[4] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. 2013. The datacenter as a

computer: An introduction to the design of warehouse-scale machines. Synthesis
lectures on computer architecture 8, 3 (2013), 1–154.

[5] Luiz André Barroso, Jeffrey Dean, and Urs Holzle. 2003. Web search for a planet:
The Google cluster architecture. IEEE micro 23, 2 (2003), 22–28.

[6] Luiz André Barroso and Urs Hölzle. 2007. The case for energy-proportional
computing. Computer 12 (2007), 33–37.

[7] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. 2006. Surf: Speeded up robust
features. In Computer Vision–ECCV 2006. Springer, 404–417.

[8] J. Brutlag. 2009. Speed matters for Google web search. (2009). http:
//googleresearch.blogspot.com/2009/06/speed-matters.html.

[9] Edward A Burton, Gerhard Schrom, Fabrice Paillet, Jonathan Douglas, William J
Lambert, Kaladhar Radhakrishnan, and Michael J Hill. 2014. FIVRâĂŤFully
integrated voltage regulators on 4th generation Intel® CoreâĎć SoCs. In 2014
IEEE Applied Power Electronics Conference and Exposition-APEC 2014. IEEE,
432–439.

[10] MIchael Chow, David Meisner, Jason Flinn, Daniel Peek, and Thomas F. Wenisch.
2014. The Mystery Machine: End-to-end Performance Analysis of Large-scale
Internet Services. In 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14). USENIX Association, Broomfield, CO, 217–231.
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chow

[11] Ronan Collobert and Jason Weston. 2008. A unified architecture for natural
language processing: Deep neural networks with multitask learning. In Proceedings
of the 25th international conference on Machine learning. ACM, 160–167.

[12] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu,
and Pavel Kuksa. 2011. Natural Language Processing (Almost) from Scratch. J.
Mach. Learn. Res. 12 (Nov. 2011), 2493–2537. http://dl.acm.org/citation.cfm?id=
1953048.2078186

[13] J. R. Dabrowski and E. V. Munson. 2001. Is 100 Milliseconds Too Fast? (2001).
In CHI.

[14] Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Commun. ACM 56,
2 (2013), 74–80.

[15] Christina Delimitrou and Christos Kozyrakis. 2013. Paragon: QoS-aware schedul-
ing for heterogeneous datacenters. ACM SIGARCH Computer Architecture News
41, 1 (2013), 77–88.

[16] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: resource-efficient
and QoS-aware cluster management. In International Conference on Architectural
Support for Programming Languages and Operating Systems. 127–144.

[17] Mario Flajslik and Mendel Rosenblum. 2013. Network Interface Design for Low
Latency Request-response Protocols. In Proceedings of the 2013 USENIX Confer-
ence on Annual Technical Conference (USENIX ATC’13). USENIX Association,
Berkeley, CA, USA, 333–346. http://dl.acm.org/citation.cfm?id=2535461.2535502

[18] Daniel Gildea and Daniel Jurafsky. 2002. Automatic labeling of semantic roles.
Computational linguistics 28, 3 (2002), 245–288.

[19] Google. 2015. Google RPC. (2015). http://www.grpc.io/.
[20] Sriram Govindan, Jeonghwan Choi, Bhuvan Urgaonkar, Anand Sivasubramaniam,

and Andrea Baldini. 2009. Statistical Profiling-based Techniques for Effective
Power Provisioning in Data Centers. In Proceedings of the 4th ACM European
Conference on Computer Systems (EuroSys ’09). ACM, New York, NY, USA,
317–330. https://doi.org/10.1145/1519065.1519099

[21] Johann Hauswald, Michael A. Laurenzano, Yunqi Zhang, Cheng Li, Austin Rovin-
ski, Arjun Khurana, Ron Dreslinski, Trevor Mudge, Vinicius Petrucci, Lingjia
Tang, and Jason Mars. 2015. Sirius: An Open End-to-End Voice and Vision Per-
sonal Assistant and Its Implications for Future Warehouse Scale Computers. In
Proceedings of the Twentieth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS). ACM, New York,
NY, USA, 13.

[22] Chang-Hong Hsu, Yunqi Zhang, Michael A. Laurenzano, David Meisner, Thomas
Wenisch, Lingjia Tang, Jason Mars, and Ron Dreslinski. 2015. Adrenaline: Pin-
pointing and Reining in Tail Queries with Quick Voltage Boosting. In Proceedings
of the 2015 IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA) (HPCA ’15). IEEE Computer Society, Washington, DC, USA,
10.

[23] David Huggins-Daines, Mohit Kumar, Arthur Chan, Alan W Black, Mosur Ravis-
hankar, and Alex I Rudnicky. 2006. Pocketsphinx: A free, real-time continuous
speech recognition system for hand-held devices. In Acoustics, Speech and Signal
Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference
on, Vol. 1. IEEE, I–I.

[24] Virajith Jalaparti, Peter Bodik, Srikanth Kandula, Ishai Menache, Mikhail Rybalkin,
and Chenyu Yan. 2013. Speeding up distributed request-response workflows. In
ACM SIGCOMM Computer Communication Review, Vol. 43. ACM, 219–230.

[25] Amin Jula, Elankovan Sundararajan, and Zalinda Othman. 2014. Cloud com-
puting service composition: A systematic literature review. Expert Systems with
Applications 41, 8 (2014), 3809–3824.

[26] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan,
Tipp Moseley, Gu-Yeon Wei, David Brooks, and others. Profiling a warehouse-scale
computer.

[27] Svilen Kanev, Kim Hazelwood, Gu-Yeon Wei, and David Brooks. 2014. Tradeoffs
between power management and tail latency in warehouse-scale applications. In
Workload Characterization (IISWC), 2014 IEEE International Symposium on.
IEEE, 31–40.

[28] Harshad Kasture, Davide B. Bartolini, Nathan Beckmann, and Daniel Sanchez.
2015. Rubik: Fast Analytical Power Management for Latency-Critical Systems. In
Proceedings of the 48th annual IEEE/ACM international symposium on Microar-
chitecture (MICRO-48).

[29] Harshad Kasture and Daniel Sanchez. 2014. Ubik: Efficient Cache Sharing with
Strict QoS for Latency-Critical Workloads. In Proceedings of the 19th international
conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-XIX).

[30] Christos Kozyrakis, Aman Kansal, Sriram Sankar, and Kushagra Vaid. 2010. Server
engineering insights for large-scale online services. IEEE micro 4 (2010), 8–19.

[31] Michael A. Laurenzano, Yunqi Zhang, Lingjia Tang, and Jason Mars. 2014. Protean
Code: Achieving Near-Free Online Code Transformations for Warehouse Scale
Computers. In Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO) (MICRO-47). ACM, New York, NY, USA.

[32] Jacob Leverich, Matteo Monchiero, Vanish Talwar, Partha Ranganathan, and Chris-
tos Kozyrakis. 2009. Power management of datacenter workloads using per-core
power gating. Computer Architecture Letters 8, 2 (2009), 48–51.

[33] Jialin Li, Naveen Kr Sharma, Dan RK Ports, and Steven D Gribble. 2014. Tales of
the tail: Hardware, os, and application-level sources of tail latency. In Proceedings
of the ACM Symposium on Cloud Computing. ACM, 1–14.

[34] David Lo, Liqun Cheng, Rama Govindaraju, Luiz André Barroso, and Christos
Kozyrakis. 2014. Towards energy proportionality for large-scale latency-critical
workloads. In Proceeding of the 41st annual international symposium on Computer
architecuture. IEEE Press, 301–312.

[35] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and
Christos Kozyrakis. 2015. Heracles: improving resource efficiency at scale. In Pro-
ceedings of the 42nd Annual International Symposium on Computer Architecture.
ACM, 450–462.

[36] Jason Mars and Lingjia Tang. 2013. Whare-map: Heterogeneity in "Homogeneous"
Warehouse-scale Computers. In Proceedings of the 40th Annual International
Symposium on Computer Architecture (ISCA ’13). ACM, New York, NY, USA,
619–630. https://doi.org/10.1145/2485922.2485975

[37] Jason Mars, Lingjia Tang, and Robert Hundt. 2011. Heterogeneity in homogeneous
warehouse-scale computers: A performance opportunity. Computer Architecture
Letters 10, 2 (2011), 29–32.

[38] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou Soffa. 2011.
Bubble-Up: Increasing Utilization in Modern Warehouse Scale Computers via
Sensible Co-locations. In Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO) (MICRO-44). ACM, New York, NY,
USA, 248–259. https://doi.org/10.1145/2155620.2155650

[39] David Meisner, Brian T Gold, and Thomas F Wenisch. 2009. PowerNap: eliminat-
ing server idle power. In ACM Sigplan Notices, Vol. 44. ACM, 205–216.

[40] David Meisner, Christopher M Sadler, Luiz André Barroso, Wolf-Dietrich Weber,
and Thomas F Wenisch. 2011. Power management of online data-intensive services.
In Computer Architecture (ISCA), 2011 38th Annual International Symposium on.
IEEE, 319–330.

[41] David Meisner and Thomas F. Wenisch. 2012. DreamWeaver: Architectural Sup-
port for Deep Sleep. In Proceedings of the Seventeenth International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS XVII). ACM, New York, NY, USA, 313–324. https://doi.org/10.1145/
2150976.2151009

[42] Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Falsafi, and
Boris Grot. 2014. Scale-out NUMA. In Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’14). ACM, New York, NY, USA, 3–18. https://doi.org/10.1145/
2541940.2541965

[43] Jinsu Park and Woongki Baek. 2016. HAP: A Heterogeneity-Conscious Runtime
System for Adaptive Pipeline Parallelism. In European Conference on Parallel
Processing. Springer, 518–530.

[44] Steven Pelley, David Meisner, Pooya Zandevakili, Thomas F. Wenisch, and Jack
Underwood. 2010. Power Routing: Dynamic Power Provisioning in the Data Center.
In Proceedings of the Fifteenth Edition of ASPLOS on Architectural Support for
Programming Languages and Operating Systems (ASPLOS XV). ACM, New York,
NY, USA, 231–242. https://doi.org/10.1145/1736020.1736047

145

http://dl.acm.org/citation.cfm?id=2228298.2228324
http://nutch.apache.org/
https://thrift.apache.org/
http://googleresearch.blogspot.com/2009/06/speed-matters.html
http://googleresearch.blogspot.com/2009/06/speed-matters.html
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chow
http://dl.acm.org/citation.cfm?id=1953048.2078186
http://dl.acm.org/citation.cfm?id=1953048.2078186
http://dl.acm.org/citation.cfm?id=2535461.2535502
http://www.grpc.io/
https://doi.org/10.1145/1519065.1519099
https://doi.org/10.1145/2485922.2485975
https://doi.org/10.1145/2155620.2155650
https://doi.org/10.1145/2150976.2151009
https://doi.org/10.1145/2150976.2151009
https://doi.org/10.1145/2541940.2541965
https://doi.org/10.1145/2541940.2541965
https://doi.org/10.1145/1736020.1736047

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada Hailong Yang, Quan Chen et al.

[45] Nathaniel Pinckney, Matthew Fojtik, Bharan Giridhar, Dennis Sylvester, and David
Blaauw. 2013. Shortstop: An on-chip fast supply boosting technique. In VLSI
Circuits (VLSIC), 2013 Symposium on. IEEE, C290–C291.

[46] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej Glembek,
Nagendra Goel, Mirko Hannemann, Petr Motlicek, Yanmin Qian, Petr Schwarz,
Jan Silovsky, Georg Stemmer, and Karel Vesely. 2011. The Kaldi Speech Recog-
nition Toolkit. In IEEE 2011 Workshop on Automatic Speech Recognition and
Understanding. IEEE Signal Processing Society.

[47] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Con-
stantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth
Gopal, Jan Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir Hormati,
Joo-Young Kim, Sitaram Lanka, James Larus, Eric Peterson, Simon Pope, Aaron
Smith, Jason Thong, Phillip Yi Xiao, and Doug Burger. 2014. A Reconfigurable
Fabric for Accelerating Large-scale Datacenter Services. In Proceeding of the 41st
Annual International Symposium on Computer Architecuture (ISCA ’14). IEEE
Press, Piscataway, NJ, USA, 13–24. http://dl.acm.org/citation.cfm?id=2665671.
2665678

[48] Ramya Raghavendra, Parthasarathy Ranganathan, Vanish Talwar, Zhikui Wang,
and Xiaoyun Zhu. 2008. No "Power" Struggles: Coordinated Multi-level Power
Management for the Data Center. In Proceedings of the 13th International Con-
ference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS XIII). ACM, New York, NY, USA, 48–59. https://doi.org/10.
1145/1346281.1346289

[49] E. Schurman and J. Brutlag. 2009. The User and Business Impact of Server
Delays, Additional Bytes, and Http Chunking in Web Search. (2009). http:
//velocityconf.com/velocity2009/public/schedule/detail/8523.

[50] Frank Seide, Gang Li, and Dong Yu. 2011. Conversational Speech Transcription
Using Context-Dependent Deep Neural Networks. In Interspeech. 437–440. http:
//msr-waypoint.com/pubs/153169/CD-DNN-HMM-SWB-Interspeech2011-Pub.
pdf

[51] Kai Shen, Arrvindh Shriraman, Sandhya Dwarkadas, Xiao Zhang, and Zhuan Chen.
2013. Power Containers: An OS Facility for Fine-grained Power and Energy
Management on Multicore Servers. In Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’13). ACM, New York, NY, USA, 65–76. https://doi.org/10.
1145/2451116.2451124

[52] Kai Shen, Ming Zhong, Sandhya Dwarkadas, Chuanpeng Li, Christopher Stewart,
and Xiao Zhang. 2008. Hardware Counter Driven On-the-fly Request Signatures.
In Proceedings of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS XIII). ACM, New York,
NY, USA, 189–200. https://doi.org/10.1145/1346281.1346306

[53] Benjamin H Sigelman, Luiz Andre Barroso, Mike Burrows, Pat Stephenson, Manoj
Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag. 2010. Dapper, a
large-scale distributed systems tracing infrastructure. Google research (2010).

[54] M. Aater Suleman, Moinuddin K. Qureshi, Khubaib, and Yale N. Patt. 2010.
Feedback-directed Pipeline Parallelism. In Proceedings of the 19th International
Conference on Parallel Architectures and Compilation Techniques (PACT ’10).
ACM, New York, NY, USA, 147–156. https://doi.org/10.1145/1854273.1854296

[55] Lingjia Tang, Jason Mars, and Mary Lou Soffa. 2012. Compiling for Niceness:
Mitigating Contention for QoS in Warehouse Scale Computers. In Proceedings of
the Tenth International Symposium on Code Generation and Optimization (CGO)
(CGO ’12). ACM, New York, NY, USA, 1–12. https://doi.org/10.1145/2259016.
2259018

[56] Lingjia Tang, Jason Mars, Wei Wang, Tanima Dey, and Mary Lou Soffa. 2013.
ReQoS: Reactive Static/Dynamic Compilation for QoS in Warehouse Scale Com-
puters. In Proceedings of the Eighteenth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS) (ASP-
LOS ’13). ACM, New York, NY, USA, 89–100. https://doi.org/10.1145/2451116.
2451126

[57] Takanori Ueda, Takuya Nakaike, and Moriyoshi Ohara. 2016. Workload charac-
terization for microservices. In Workload Characterization (IISWC), 2016 IEEE
International Symposium on. IEEE, 1–10.

[58] Balajee Vamanan, Hamza Bin Sohail, Jahangir Hasan, and T. N. Vijaykumar. 2015.
TimeTrader: Exploiting Latency Tail to Save Datacenter Energy for On-line Search
(MICRO). ACM, Waikiki, Hawaii. http://arxiv.org/abs/1503.05338

[59] Arunchandar Vasan, Anand Sivasubramaniam, Vikrant Shimpi, T Sivabalan, and
Rajesh Subbiah. 2010. Worth their watts?-an empirical study of datacenter servers.
In High Performance Computer Architecture (HPCA), 2010 IEEE 16th Interna-
tional Symposium on. IEEE, 1–10.

[60] Qingyang Wang, Yasuhiko Kanemasa, Jack Li, Chien-An Lai, Chien-An Cho, Yuji
Nomura, and Calton Pu. 2014. Lightning in the Cloud: A Study of Very Short
Bottlenecks on n-Tier Web Application Performance. In Proceedings of USENIX
Conference on Timely Results in Operating Systems.

[61] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang. 2013. Bubble-flux:
Precise Online QoS Management for Increased Utilization in Warehouse Scale
Computers. In Proceedings of the 40th Annual International Symposium on Com-
puter Architecture (ISCA) (ISCA ’13). ACM, New York, NY, USA, 607–618.

https://doi.org/10.1145/2485922.2485974
[62] Yunqi Zhang, Michael Laurenzano, Jason Mars, and Lingjia Tang. 2014. SMiTe:

Precise QoS Prediction on Real System SMT Processors to Improve Utilization
in Warehouse Scale Computers. In Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO) (MICRO-47). ACM, New
York, NY, USA.

146

http://dl.acm.org/citation.cfm?id=2665671.2665678
http://dl.acm.org/citation.cfm?id=2665671.2665678
https://doi.org/10.1145/1346281.1346289
https://doi.org/10.1145/1346281.1346289
http://velocityconf.com/velocity2009/ public/schedule/detail/8523
http://velocityconf.com/velocity2009/ public/schedule/detail/8523
http://msr-waypoint.com/pubs/153169/CD-DNN-HMM-SWB-Interspeech2011-Pub.pdf
http://msr-waypoint.com/pubs/153169/CD-DNN-HMM-SWB-Interspeech2011-Pub.pdf
http://msr-waypoint.com/pubs/153169/CD-DNN-HMM-SWB-Interspeech2011-Pub.pdf
https://doi.org/10.1145/2451116.2451124
https://doi.org/10.1145/2451116.2451124
https://doi.org/10.1145/1346281.1346306
https://doi.org/10.1145/1854273.1854296
https://doi.org/10.1145/2259016.2259018
https://doi.org/10.1145/2259016.2259018
https://doi.org/10.1145/2451116.2451126
https://doi.org/10.1145/2451116.2451126
http://arxiv.org/abs/1503.05338
https://doi.org/10.1145/2485922.2485974

	Abstract
	1 Introduction
	2 Understanding Response Latency of Multi-Stage Application
	2.1 Multi-Stage Application
	2.2 Difficult to identify bottleneck service
	2.3 No Single Boosting Technique Always Wins
	2.4 Non-trivial to acquire boosting power under constraint
	2.5 Summary

	3 PowerChief Framework
	4 Bottleneck Service Identification Method
	4.1 Monitoring Latency Statistics
	4.2 Identifying Bottleneck Service

	5 Boosting Decision Engine
	5.1 Instance boosting
	5.2 Frequency boosting
	5.3 Adaptive Boosting

	6 Power Reallocation Mechanism
	6.1 Power Recycling
	6.2 Instance Withdraw

	7 Real System Prototype
	7.1 Implementation Details
	7.2 Overhead Analysis

	8 Evaluation
	8.1 Experimental Setup
	8.2 Intelligent Personal Assistant Application
	8.3 Natural Language Processing Application
	8.4 Reducing power while meeting QoS
	8.5 Discussion

	9 Related Work
	9.1 Guaranteeing the Response Latency
	9.2 Improving Energy Efficiency
	9.3 Managing Latency of Multi-Stage Applications

	10 Conclusion
	References

