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Reducing the long tail of the query latency distribution in modern warehouse scale computers is critical
for improving performance and quality of service (QoS) of workloads such as Web Search and Memcached.
Traditional turbo boost increases a processor’s voltage and frequency during a coarse-grained sliding win-
dow, boosting all queries that are processed during that window. However, the inability of such a technique
to pinpoint tail queries for boosting limits its tail reduction benefit. In this work, we propose Adrenaline,
an approach to leverage finer-granularity (tens of nanoseconds) voltage boosting to effectively rein in the
tail latency with query-level precision. Two key insights underlie this work. First, emerging finer granu-
larity voltage/frequency boosting is an enabling mechanism for intelligent allocation of the power budget to
precisely boost only the queries that contribute to the tail latency; second, per-query characteristics can be
used to design indicators for proactively pinpointing these queries, triggering boosting accordingly. Based
on these insights, Adrenaline effectively pinpoints and boosts queries that are likely to increase the tail
distribution and can reap more benefit from the voltage/frequency boost. By evaluating under various work-
load configurations, we demonstrate the effectiveness of our methodology. We achieve up to a 2.50× tail
latency improvement for Memcached and up to a 3.03× for Web Search over coarse-grained dynamic voltage
and frequency scaling (DVFS) given a fixed boosting power budget. When optimizing for energy reduction,
Adrenaline achieves up to a 1.81× improvement for Memcached and up to a 1.99× for Web Search over
coarse-grained DVFS. By using the carefully chosen boost thresholds, Adrenaline further improves the tail
latency reduction to 4.82× over coarse-grained DVFS.
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1. INTRODUCTION

Managing high-percentile tail latency is one of the chief performance concerns for web
services in modern Warehouse Scale Computers [Dean and Barroso 2013]. These online
data intensive (OLDI) services traverse multi-terabyte datasets for user-facing latency-
sensitive queries by dividing (“sharding”) their datasets over thousands of servers (“leaf
nodes”) acting in concert [Barroso et al. 2003]. A complete query response is formed by
aggregating the responses from the individual leaf nodes. However, at 100- to 1,000-
node scale, the overall latency distribution to respond to the user is often dominated
by a single straggling leaf node. For example, if an individual leaf node has only a
1-in-100 chance of exceeding a 1s response time, when aggregating parallel requests
to 100 nodes, 63% of queries will take longer than 1s [Dean and Barroso 2013]. Due
to this service-level sensitivity to leaf-node tail latency, optimizations to reduce the
long tail are paramount. Indeed, sacrificing mean latency for improved tail latency is
encouraged [Dean and Barroso 2013].

Voltage and frequency boosting techniques, such as Intel’s Turbo Boost, enable the
processor to run above its base operating frequency and can be used to reduce compu-
tation time and thus shorten the long tail in the latency distribution. However, existing
hardware-managed control policies are application oblivious; they adjust frequency and
voltage based on the number of active cores [Emurian et al. 2014] and are unable to
distinguish between low-latency queries and those responsible for the long tail. During
a boosting period, all queries are processed at a higher voltage/frequency (V/f) irrespec-
tive of their latency profile or whether they benefit from boosting. Recently proposed
workload- and latency-aware mechanisms, such as PEGASUS [Lo et al. 2014], adjust
voltage/frequency to the large diurnal variations in service load to conserve energy
while respecting a tail latency constraint. Such approaches similarly fail to distinguish
between typical and tail queries instead modulating performance of the entire query
latency distribution to meet the tail latency constraint. Coarse-grained uniform boost-
ing leads to energy-inefficient tail reduction; energy is wasted accelerating queries that
are not in the tail.

Considering that the query latency for many OLDI services is in the range of millisec-
onds and microseconds [Lim et al. 2013; Barroso et al. 2003], the emerging class of fine-
grained (tens of nanoseconds) voltage boosting (i.e., quick boosting) techniques [Kim
et al. 2008, 2011; Pinckney et al. 2013; Miller et al. 2012; Godycki et al. 2014] has the
potential to enable precise query-level boosting approaches. Given an energy budget,
an intelligent quick boosting strategy could precisely pinpoint and boost queries that
contribute to the tail as well as those whose latency is more likely to benefit from
frequency/voltage boosting. Figure 1 illustrates the limitation of prior work and our
insight. The top graph illustrates a typical heavy-tailed latency distribution of a leaf
node. Coarse-grained boosting techniques such as those mentioned above accelerate all
queries, compressing the entire latency distribution until the 99% latency meets the
target, unnecessarily accelerating the bulk of requests near the mean. Instead, by ap-
plying fine-grained boosting to queries that are both sensitive to frequency and lie in the
tail, our approach skews the distribution, significantly reducing the tail latency. How-
ever, several open questions remain to realize this approach, including the following:

(1) Investigating whether tail queries are amenable to frequency/voltage boosting. If tail
queries in representative OLDI workloads are not bottlenecked on computation,
then V/f boosting will not be effective in reducing their time to completion and thus
would not be able to pull in the tail.

(2) Determining whether tail queries are predictable. If the queries that push out the
long tail share common characteristics, then we can use these characteristics to
develop per-query indicators to pinpoint these queries for boosting.
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Fig. 1. Query latency distributions without boosting (top), with conventional DVFS boosting (center), and
with Adrenaline (bottom).

(3) Identifying an effective system design to pinpoint tail queries and precisely boost
them. To realize quick pinpointed boosting of tail queries, a mechanism must be in
place to enable the identification and boosting of likely tail queries.

In this article, we investigate the potential of query-level quick boosting and design
Adrenaline, a technique to address the limitations of traditional dynamic voltage and
frequency scaling (DVFS) and achieve tail-sensitive query-level voltage boosting to sig-
nificantly reduce the tail latency with high energy efficiency. Adrenaline leverages the
recently proposed Shortstop [Pinckney et al. 2013], a circuit design for fine granularity
voltage/frequency scaling to design the Adrenaline Runtime Engine, a software system
approach for query-level quick boosting. The Adrenaline runtime engine effectively
identifies queries that are likely to increase the tail distribution and can reap more
benefit from the V/f boost. The runtime engine then adjusts the V/f at a query level
accordingly. The various indicators Adrenaline relies on include query types (e.g., SET,

ACM Transactions on Computer Systems, Vol. 35, No. 1, Article 2, Publication date: March 2017.



2:4 C.-H. Hsu et al.

GET, and DEL for Memcached) and query characteristics (e.g., number of extttWeb Search
keywords).

In addition to reducing the tail latency when needed, Adrenaline’s fine-grained query-
level V/f boosting can significantly improve energy efficiency by scaling down voltage
and frequency when tail latency is lower than the latency target. Adrenaline achieves
energy efficiency improvements over coarse-grained V/f boosting by only lowering V/f
for queries that are less likely to increase the tail or less affected by the V/f scaling.

This article makes the following contributions:

—Identify Per-Query Indicators - We characterize the query latency distributions
for latency-sensitive datacenter applications, including Nutch Web Search and Mem-
cached, on real systems and how the distributions are impacted by the core frequency
scaling. We then identify application specific query-level indicators for pinpointing
queries to apply appropriate V/f settings.

—Adrenaline: Query-Level Voltage/Frequency Scaling - We present the
Adrenaline framework to achieve query-level fine-grained V/f scaling (tens of
nanoseconds) and design heuristics based on the query-level indicators to scale the
V/f based on per-query characteristics.

—Rein in the Tail Latency - Using Adrenaline, we demonstrate the effectiveness
of applying query-level quick boosting for tail latency reduction. We achieve up to a
2.50× tail latency improvement for Memcached and up to a 3.03× for Web Search
over coarse-grained DVFS given a fixed boosting power budget. With a carefully
chosen boost threshold, Adrenaline can even achieve maximally 4.82× tail latency
improvement for Memcached over coarse-grained DVFS.

—Improving Energy Efficiency - In addition to reining in tail latency, we demon-
strate the effectiveness of applying Adrenaline to improve energy efficiency. We
achieve up to a 1.81× improvement for Memcached and up to a 1.99× improvement
for Web Search over DVFS.

2. MOTIVATION AND OPPORTUNITIES

We begin by examining the query latency distributions of two representative web
services and exploring how frequency impacts query latency. A key insight underlying
Adrenaline is that only a subset of queries need boosting to pull in the tail latency. Two
key factors determine the subset that should be prioritized: (1) queries that fall in the
tail distribution; (2) queries that can benefit more from the boosting. To understand
how we might identify queries that exhibit these factors, we characterize the query
distributions of Web Search and Memcached workloads on a state-of-the-art Intel Xeon
server (described in Section 5).

Figure 2 presents the cumulative distributions of request latency for the three most
common request types for Memcached (SET, GET, and DEL), collected at seven CPU fre-
quency steps ranging from 1.2GHz to 2.4GHz on the Intel Xeon server. As shown in the
figure, although all three query types have long tails, the latency distributions of these
three types and how they are affected by frequency scaling vary. SETs’ request latency
is in general around 2× greater than GETs or DELs, indicating that the SET requests may
contribute more to the tail latency, especially at low to medium load levels. In addition,
higher frequency can significantly improve SETs’ latency. Increasing the frequency from
1.2GHz to 2.4GHz improves SETs’ 90th percentile latency from 13μs to 7μs. This indi-
cates that to maximize the benefit of tail reduction using voltage/frequency boosting
under a power budget, boosting SET requests should be prioritized.

In contrast to Memcached, Web Search (Nutch [Ferdman et al. 2012]) does not have
multiple query types that can be directly used to classify queries. After investigating
multiple query characteristics and the effectiveness of using those characteristics to
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Fig. 2. The cumulative distributions of query latency in Memcached for GET, SET, and DEL requests.

predict the query latency distribution and the impact of frequency of scaling, we have
identified that the query length (the number of search key words in a Web Search
query) is a fairly effective indicator. Figure 3 presents the cumulative distributions
of query latency for three different query lengths at seven frequencies, focusing on
the tail part of the latency (beyond 85th percentile). As shown in the figure, short
queries (queries with fewer, for example, 1-5, search key words) in general experience
longer latency than long queries (queries with more search terms). Whereas it may
seem counter-intuitive that adding terms reduces query latency, Nutch returns only
documents that contain all search terms. Hence, additional terms reduce the number of
documents that must be considered in scoring. In addition, the latency of short queries
is much more improved when we increase the frequency compared to the medium and
long queries. For example, the 95th percentile latency of queries with 1–5 keywords
(short) is around 1100ms at 1.2GHz and lower than 700ms at 2.2GHz. On the other
hand, the queries with 11–18 search keywords (long) are not affected by the frequency
as much. This indicates that queries with fewer terms (short) should be prioritized for
boosting to pull in the tail.
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Fig. 3. The cumulative distributions of query latency in Web Search for queries with different numbers of
search keywords.

In summary, Figures 2 and 3 demonstrate that per-query indicators (e.g., query
types and query properties) can help pinpoint a subset of queries that contribute more
to the tail and/or more impacted by the frequency and thus need to be prioritized to
effectively pull in the tail. Based on this, we propose query-level boosting. Figure 4
illustrates the difference of our system, Adrenaline, compared with no boosting and
traditional coarse-grained DVFS boosting. As illustrated in the figure, coarse-grained
approaches apply V/f boosting to a sliding window, boosting all queries within a window.
Adrenaline takes advantage of fast boosting (sub 20ns) and uses per-query indicators
to pinpoint individual queries that should be boosted (for example, SETs as illustrated)
to conduct query-level boosting only for these queries to achieve effective tail reduction
with high energy efficiency.

3. QUICK V/F BOOSTING: AN ENABLING TECHNOLOGY

There are existing technologies that enable fast voltage transitions. Per-Core DVFS was
a technique explored by Kim et al. [2008, 2011]. Per-Core DVFS integrates a voltage
regulator on-die for each core in the system, allowing individual control and nanosecond

ACM Transactions on Computer Systems, Vol. 35, No. 1, Article 2, Publication date: March 2017.



Reining in Long Tails in Warehouse-Scale Computers with Quick Voltage Boosting 2:7

Fig. 4. Adrenaline’s query-level V/f scaling vs. coarse-grained sliding window-based V/f scaling.

scale voltage transition times. The Per-Core DVFS technique comes at the expense of
on-chip inductors and reduced regulator efficiency. Intel’s TurboBoost [Corporation
2008] enables microsecond scale voltage transitions to allow, for example, the system
to exceed thermal budgets for short periods of time. TurboBoost also includes an in-
tegrated Power Control Unit (PCU) that makes boosting decisions in hardware based
on sensors and other hardware performance counters, eliminating the long latencies
associated with operating system (OS) management. Recently, Godycki et al. have intro-
duced Reconfigurable Power Distribution Networks [Godycki et al. 2014] as a method
to improve voltage transition times with the use of a configurable on-chip switch-cap
based voltage regulator. Finally, Shortstop [Pinckney et al. 2013] and Booster [Miller et
al. 2012] use dual-rail voltage systems to enable fine-grained boosting. They use off-chip
voltage regulation for better efficiency and to remove the need for on-die inductors.

For this work, we evaluate Shortstop as the voltage regulation methodology due to
its short transition latency, lack of on-die inductive elements, and better regulator effi-
ciency. However, the other approaches could be adapted as well to support Adrenaline.
For example, the PCU of Turbo Boost could be augmented to accept query indicators
to support the Adrenaline decision engine at the expense of a longer voltage transition
latency.

3.1. Shortstop

Shortstop [Pinckney et al. 2013] is a dual-Vdd system with two distribution networks for
Vdd supplied by two independent external voltage sources, VddHigh and VddLow, as shown
in Figure 5. In addition, there is an internal Vboost supply to aid in the transition of a core
from the low to the high supply. Each core in the system is connected via multiple power
gating transistors (shown as a single transistor in the diagram) to the VddHigh, VddLow,
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Fig. 5. Shortstop’s Dual-Vdd chip configurations. Panel (a) shows normal operation, where all cores are
connected to the low-voltage network and the cap networks are in parallel. Panel (b) shows the cores in
boost transition where the core boosting is connected to the output of the serially connected cap network.
Panel (c) shows the system once the transition stabilizes where the cap network returns to parallel, and the
boosted core runs off the external high voltage. Panel (d) shows the die photo of the 28nm Shortstop test
chip [Pinckney et al. 2013].

or Vboost voltage rails. Decoupling capacitors (decaps) are placed between the high
supply network and the ground node to reduce ripples on the node during transitions.
In addition, the Vboost supply has a set of reconfigurable decoupling capacitors to aid
in transitioning the core quickly. This system keeps the voltage regulators off-chip,
removing the TDP overheads required for on-chip conversion.

Using Shortstop has several advantages. First, since the boosting decaps are on chip,
they can act quickly and, through charge re-distribution, provide for a rapid transi-
tion. Second, since the boosting decaps are shared by all the processors, their area
overhead is amortized over all the cores. In addition, while the boosting network does
require the distribution of a third supply rail (Vboost), this rail does not need to have a
high level of signal integrity, meaning it can be more sparse. The overall overhead of
adding a boosting rail with reconfigurable decaps is 11%. When considering advanced
technologies, such as deep trench capacitors [Wang et al. 2009], this overhead can be
reduced to less than 5%. Third, since the boosting network brings the voltage of the
transitioning core to nearly VddHigh, the voltage droop on VddHigh is not nearly as large
as when no boosting network is used. Extra decaps on the high supply further suppress
the droop to a level that is acceptable. The area overhead of the VddHigh rail is just 5%.
So the overall area overhead of Shortstop is ∼10–16%. Finally, Shortstop can be used to
perform both fine- and coarse-grained voltage control. Through boosting, Shortstop pro-
vides nanosecond-scale voltage transitions to adjust to fine-grained changes in behavior
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Fig. 6. Measured chip results [Pinckney et al. 2013] of Shortstop compared to a standard dual-rail baseline.

Fig. 7. The Adrenaline framework. Adrenaline makes fine-grained boost decisions based on the charac-
teristics of each incoming query and controls the Shortstop circuit to switch between the high/low voltage
rails (VRs) quickly. Meanwhile, Adrenaline also monitors long-term loading information and makes proper
adjustments to the voltage on the high/low VRs periodically.

(query level) and can adapt the off-chip voltage regulators over longer periods of time
to adjust to coarse-grained changes in workload behavior (request rate level).

Shortstop was fabricated and tested in a 28nm technology by Pinckney et al. [2013],
proving the feasibility of the approach. Figure 6 provides a summary of the measured
data on transition times of that chip. The baseline for comparison was a standard dual-
rail approach. Shortstop provides nanosecond-scale transitions that are 1.7× faster
with a 3.5–6× smaller voltage droop. The original article also provides results showing
the scalability of the approach across different core sizes/capacitances.

4. ADRENALINE FRAMEWORK

This section describes the design of the Adrenaline runtime system, which takes ad-
vantage of the fast V/f switching capability of the Shortstop circuit to rein in tail latency
by boosting precisely those queries that contribute to the tail.

Adrenaline Overview. An overview of the Adrenaline runtime system is presented
in Figure 7. Adrenaline is composed of two components, a decision engine and a load
monitor. First, the decision engine chooses from between the low or high V/f settings at
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the individual query level to boost the speed of precisely those queries that contribute
to tail latency, based on the query characteristics analyzed by the equipped query
identifier, reducing the latency of those queries to shorten the tail of the query latency
distribution. This is in contrast to conventional V/f scaling techniques that monitor the
query load and distribution over long timescales (usually several seconds) and adjust
the V/f settings for large clusters of queries.

Second, Adrenaline’s load monitor performs lightweight accounting on incoming
queries to measure the load to the system (e.g., to measure queries per second), which
in turn is used to drive a coarse-grained tuning policy that changes the supply voltage
parameters to the off-chip voltage regulators. This gives Adrenaline the capacity to
adapt the Shortstop circuit to address longer-term (milliseconds or longer) changes in
the characteristics of the query profile, such as fluctuations in user demand (queries
per second) or the type and composition of queries.

4.1. Decision Engine

The purpose of the decision engine is to rapidly identify the queries that should be
boosted to have the largest impact on reducing tail latency. First, queries that are
amenable to boosting, because they are compute bound but are not in the tail, can have
a significant impact on tail latency via the indirect mechanism of reducing queuing
delay for queries that are in the tail of the latency distribution. Second, queries that
are themselves in the tail of the distribution have a direct impact on tail latency. We
therefore design the decision engine to use the following two guiding principles to
determine which queries to boost:

(1) Boostability – Only those queries that are amenable to boosting should be boosted.
Power spent boosting queries that do not speed up is wasted. Furthermore, queries
that are more amenable to boosting confer a larger benefit to subsequent queries
that may be headed for the tail of the distribution.

(2) Long-running Queries – As long as they are boostable, queries that are destined
to be in the tail of the latency distribution have the most direct impact on tail
latency and therefore should be boosted.

These characteristics may be difficult to directly reason about, particularly at the
short timescale necessary to boost a query quickly after arriving at the host server.
Fortunately, the presence of one or both of these characteristics are often indicated
by other easily identifiable proximate characteristics. Such characteristics include the
following:

—Query Type – Different query types, which are easily identifiable as part of the
query metadata, often have very different latency profiles. For example, Figure 2
shows that Memcached GET queries have around one-third of the latency of SET
queries.

—Query Composition – The same type of query may have other easily identifiable
characteristics that correlate well with query latency. For example, Figure 3 shows
that Web Search has very different latency profiles for queries with different numbers
of words.

4.2. Defining the Boost Policy

Query type and query composition are used to develop policies that determine when
the Shortstop circuit changes rails, lowering and raising the supply voltage at the
query level to bring down the latency of critical queries. These policies are developed
offline using a short, targeted profiling phase on the application to characterize the
relationship between query latency and the high-level characteristics of the query.
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Adrenaline’s boost policies are guided by how different types of requests can affect
the tail the most under different V/f settings. For each application, we first analyze the
behavior of requests across varying characteristics, load levels, and chip V/f settings.
The characteristics chosen for the analysis are particular to the application under study
and are chosen such that they are characteristics that can be rapidly identified (e.g.,
by checking a few bits in the header or the size of the application query packet). For
Memcached, we characterize requests across the different query types: GET, SET, and
DEL. For Web Search, we characterize across a series of lengths, which correlates well to
the size of the query packet and the latency of the query. For Memcached, we find that
SET queries are highly amenable to boosting the bulk of the high-latency queries. For
Web Search, we find that queries with fewer than six keywords are similarly amenable
to boosting and have high latency.

Adrenaline also watches the condition in which a query tends to fall in the tail of the
latency distribution, even if that query does not belong to the types mentioned above.
Adrenaline’s policy is to keep track of the time a query has spent in the system and
check if it exceeds a predefined boost threshold. When the threshold is reached, the
query is considered long running and has a high probability to end up falling in the tail;
hence, Adrenaline will make boost decisions for this query. We found by experiment
that setting the threshold to 0.5× of the quality of service (QoS) target of the benchmark
gives us good results.

4.3. Rapidly Identifying Query Characteristics

Adrenaline is implemented as a runtime engine in the first layer of software that pro-
cesses incoming request packets to take advantage of features of advanced network
interface controllers and low-latency networking stacks, such as OS-bypass, zero-copy,
and direct cache access. These features facilitate extremely low-latency packet delivery
to the Adrenaline runtime engine, which can then rapidly examine packet headers to
make a per-query boost decision; prototype systems have demonstrated packet delivery
latencies below 1.5μs, and commercial offerings from vendors like Mellanox have sim-
ilar performance characteristics [Gordon et al. 2012]. In addition, by fixing the header
lengths of the link, network, and transport layers, even shorter times can be achieved.
In the case of Memcached, the request type field can be attained by inspecting the
corresponding bits in the application layer of a binary encoded Memcached packet.
For the Web Search workloads, a table of sequence numbers and corresponding packet
sizes can be used to determine the total request length, which is used as a proxy for
the size of the search.

4.4. Boosting and Unboosting the Core

Once a query type is identified, the Adrenaline runtime decision engine makes a boost-
ing decision based on the profile characteristics obtained from the analysis of the
request behavior. If a decision to boost a core not already boosted is made, then the run-
time signals the Shortstop hardware to insert the core into a boosting queue. Because
Shortstop only allows one core to transition at a time, the queue is serviced in a first-
in, first-out fashion. Note the worst-case time spent in the queue will be short, as the
transition times for Shortstop are on the order of tens of nanoseconds and the number
of cores on a chip is relatively small. If a decision to boost a core is made while the core
is already boosted, then the Adrenaline runtime tracks the additional request. Once
all the requests finish, the Adrenaline runtime signals Shortstop to unboost the core.

4.5. Clock Distribution

Clock distribution is another key consideration in this design. Our proposed solution is
to distribute a chipwide clock at the high frequency but at low voltage. At each node, the
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clock is divided down to the required frequency before entering each core. In a typical
system, the majority of the clock power is consumed at the bottom of the tree (i.e., flip
flops), meaning that running the clock globally at high frequency has minimal impact
on the total power. In boost mode, the local clock tree remains at low voltage and is
level converted to VddHigh only in the last driving stage. With this approach, clock tree
synchronizing mechanisms such as delay-locked loops would not need to re-lock during
boosting transitions, since the voltage and latency of the clock tree does not change.

4.6. Adrenaline for Energy Efficiency

In addition to reducing the tail latency, when needed, Adrenaline can be configured to
scale down the voltage and frequency at the query level when the tail latency is much
lower than the latency target specified in the service level agreement (SLA). Similarly
to improving the tail latency, this mechanism works by leveraging query characteristics
to identify those queries that are unlikely to have a large impact on tail latency and
throttle the voltage during such queries. Adrenaline is flexible enough to adjust policies
dynamically based on high-level characteristics of user load, such as using different
latency targets or optimization targets for different levels of load or mixes of query
types. Along with the tail reduction approach, we evaluate using Adrenaline to target
energy efficiency in Section 5.

4.7. Responding to Load Changes

The Shortstop circuit can be configured to use different supply voltages on its two
voltage rails with a penalty on the order of tens of microseconds. To take advantage
of this feature, we employ a load monitor in Adrenaline to monitor the query traffic
over time and use this to switch between supply voltage configurations every few
seconds to provide maximum benefit to the current query traffic pattern. Note that
the fundamental activity of the decision engine is not affected by this tuning, as it
continues to make decisions about which queries should be boosted. Since this tuning
is done in a much coarser granularity, although it imposes a short pause for changing
the voltage on the two voltage rails, it has little impact on the overall distribution of
query latency.

5. EVALUATION

In this section, we evaluate the effectiveness of Adrenaline in both reining the tail
latency as well as saving energy. We conduct our evaluations at single-server level, as
well as cluster level for a cluster composed of thousands of servers.

5.1. Evaluation Methodology

To accurately evaluate Adrenaline, we use the BigHouse simulator [Meisner et al.
2012], which is a datacenter simulation infrastructure that takes workload character-
istics to synthesize an event trace to drive a discrete event simulation. We implement
Adrenaline and a conventional DVFS baseline in BigHouse. We evaluate both using
various configurations.

5.1.1. Real System Performance Characterization. In the BigHouse simulator, two distri-
butions are used to represent a workload: the service distribution and the inter-arrival
distribution. We collect these distributions from real system measurements. We use
Memcached and Web Search from Cloudsuite [Ferdman et al. 2012] as our workloads.

The service time distribution describes how fast the server can process each individ-
ual request without counting the queueing latency. To obtain this distribution, we first
instrument the Web Search and Memcached server-side software to record the time at
the beginning and the end of processing to measure the service time distribution. Then
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Table I. Request Type Composition of Memcached

Composition GET% SET% DEL%
APP 83.8 4.7 11.5
ETC 68.6 2.7 28.7
VAR 18.3 81.7 0.0

Table II. Request Type Composition of Web Search

Composition SHORT% MEDIUM% LONG%
SHR 53.1 28.7 18.2
LNG 12.7 34.4 52.9
ORG 92.0 5.5 2.5
UNI 34.0 33.0 33.0

we send requests to the instrumented server one at a time so no queueing will occur
within the server and collect the latency statistics as the service time distribution.

The machine we use for our service-time distribution measurement features an Intel
Xeon CPU E5-2407 v2 @ 2.40GHz CPU, which has two sockets with four cores per
sockets. The size of the main memory is 136GB. The kernel of the underlying operating
system is Linux 3.11.0-15-generic. We carefully deploy the server side of the bench-
marks and the client-side counterpart in a controlled environment to minimize noise
due to resource racing and the varying communication over the network, and so on.
We collect the service-time distribution at each of the frequency steps of the core.

Many workloads have multiple request types rather than a single type. As prior
work suggests [Atikoglu et al. 2012], there is a big variability in terms of request
type composition in production systems and it has a significant impact on the over-
all performance. Thus we capture this by using the same request type composition
as reported in prior work [Atikoglu et al. 2012] for Memcached and classifying the
requests according to length for Web Search due to the lack of published characteriza-
tion. Specifically, APP, ETC, and VAR refer to the same compositions as described in prior
work [Atikoglu et al. 2012] for Memcached. For Web Search, ORG refers to the compo-
sition hard-coded in the Web Search client loader, and SHR, LNG, and UNI refers to syn-
thetic compositions of requests that are short-query-heavy, long-query-heavy, and uni-
form, respectively. The detailed breakdown of each composition is listed in Table I and
Table II.

We collect the service time distribution for each type of request separately and
evaluate our system under various composition configurations.

Differing from service time distribution, inter-arrival distribution heavily depends
on the specific configuration and workload. Thus we use the characteristics published
by large companies that run these services in production. For Web Search, we follow the
guideline from prior work [Meisner et al. 2011], which suggests to use an exponential
distribution as an approximation according to the empirical measurement from the
production Google Web Search server node. We use a Generalized Pareto distribution
for Memcached as suggested in prior work [Atikoglu et al. 2012], which characterizes
the production Memcached traffic at Facebook.

5.1.2. Power Modeling. The power equation (Equation (1)) we are using is adapted
based on previous work [Meisner et al. 2009]. We change the exponent term in the
equation from 3.0 to 2.7 to consider the effect of imperfect components such as the
overhead of the global clock distribution network discussed in Section 4.5. The CPU
power consumption is described in the following formula:
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P0 = Psta,0 + Pdyn,0
Psta,0 = 0.2 × Pdyn,0
Pdyn = Pdyn,0 × ( f/ f0)2.7

Psta = Psta,0 × ( f/ f0),

(1)

where P0 is the CPU power consumption measured on a real machine, Psta,0 is the
static part of P0 and Pdyn,0 is the dynamic counterpart, and f0 is the lowest frequency
step at which the machine can run. P and f are the power and the frequency at which
the CPU is currently operating.

We instrumented BigHouse to simulate the Adrenaline framework by leveraging
multiple service-time distributions in BigHouse on the fly. In addition, we model the
boosting and decision latencies as well as the requirement to only transition one core
from low to high voltage at a time. On starting to service a request, our instrumented
BigHouse picks the corresponding service-time distribution based on the type of request
and the voltage level (always the low-voltage mode at the beginning of a request) and
sets the instantaneous power number to be the number that is corresponding to that
voltage level. When BigHouse reaches the point of boosting a request, our instrumented
BigHouse will calculate the remaining amount of work of a request plus the switching
overhead and use the boosted version of the service-time distribution file to determine
the processing time for the rest of the work; the energy consumption of the elapsed
period of time will be summed up, and the instantaneous power will be updated to
the new (boosted) version at the same time. For example, if BigHouse decides to boost
from 1.2GHz to 1.8GHz at 50% of a request, it calculates the energy used for the first
half of the request at the 1.2GHz power number and uses the 1.8GHz service time
to process the second half of the request; on the request completion, it calculates the
energy consumption of the second half of the request using the 1.8GHz power number
and switches back to using the 1.2GHz service-time distribution for the next incoming
request.

5.2. Reining in the Tail

In this section, we evaluate the effectiveness of Adrenaline and the conventional coarse-
grained sliding window-based DVFS in optimizing the tail latency. Starting from the
low frequency as the baseline (e.g., core configuration at bottom right as illustrated in
Figure 8), which consumes the lowest energy while generating the highest latency, we
gradually increase our energy budget and measure the tail latency reduction at both
95% and 99%.

Memcached - Figure 9 shows the tail latency reduction for Memcached achieved by
both coarse-grained DVFS and Adrenaline. In this figure, each row corresponds to a load
level (low, medium, and high load), and each column corresponds to an energy budget
for boosting (low, medium, and high budget). The low, medium, and high energy budgets
are 10%, 20%, and 30% of energy increase from the baseline energy, respectively. In
each sub-figure, we present the tail reductions achieved by both coarse-grained DVFS
(the left cluster of bars) and Adrenaline (the right cluster of bars). Each bar in a
cluster represents three real-world workload compositions described in Table I and the
latency reductions for each composition at two percentiles, 95% and 99%. As shown
in the first column, given a low energy budget (e.g., 10% energy increase), the coarse-
grained DVFS fails to reduce the tail latency, while Adrenaline is able to improve the
95% latency by up to 2.20× and the 99% latency by up to 2.25×. This is due to the
fact that the 10% energy budget is too small for the coarse-grained DVFS to boost to
the next frequency step, while Adrenaline can take advantage of the fine-granularity
nature and boost a small percent of the requests at the tail without consuming much
energy. As we increase the energy budgets to 20% and 30%, coarse-grained DVFS starts
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Fig. 8. Selection of Tight/Medium/Loose power budget and Tight/Medium/Loose latency target for our
evaluation.

to show limited improvement on the tail latency. It slightly outperforms Adrenaline
for workload VAR, because GET and DEL requests are usually surrounded by groups of
SET requests in VAR. Adrenaline still tries to react to these short-term changes by first
switching the core to a lower frequency when the core starts to process these GET and
DEL requests. However, since GET and DEL requests now have high probabilities to queue
behind one or more SET requests, they experience long waiting time, and thus become
highly likely to be at the tail. Therefore, while Adrenaline does not rein in these GETs
and DELs promptly, coarse-grained DVFS luckily benefits from its inertia of switching
by running at the higher frequency for the entire epoch of requests. However, its
improvement on the tail latency is rather limited for the other workload compositions.
In general, Figure 9 shows that, across various request compositions, load levels, and
energy budgets, Adrenaline almost always improves the tail latency by a larger amount
than the coarse-grained DVFS.

Web Search - Similarly, Figure 10 presents the tail latency reduction for Web Search
at various load levels and across four request composition configurations (specified in
Table II). As demonstrated in the sub-figures, Adrenaline shows an edge over coarse-
grained DVFS across almost all different workload compositions and energy budgets,
especially when the system is at medium and high load levels (the last two rows) where
tail reduction is critical. The advantage becomes even more significant when the system
is given a higher energy budget. Adrenaline achieves up to a 3.03× tail reduction when
given a 20% budget. Given a 30% energy budget, while coarse-grained DVFS starts to
take advantage of the large energy head room and show comparable tail latency reduc-
tion for ORG, Adrenaline still achieves better reduction for the same composition and
consistently outperforms coarse-grained DVFS across all other workload compositions.

Latency Distribution - To better understand the impact of coarse-grained DVFS
and Adrenaline on the overall latency distribution, Figure 11 compares the distribu-
tions achieved by both approaches under the same power budget for boosting. In this
figure, the request type composition is APP (Table I), composed of 4.7% SET, 11.5% DEL,
and 83.8% GET requests. This figure presents two probability density functions (PDFs) of
the measured request latency of all requests: one measured when using coarse-grained
DVFS (red) and the other one using Adrenaline (blue). The dotted lines indicate the
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Fig. 9. Tail latency reduction for Memcached using coarse-grained DVFS vs. Adrenaline. The row presents
three load levels, and the column represents three energy budgets for boosting. Adrenaline achieves much
higher tail latency reduction at various load levels, across workload compositions and energy budgets. (Rows
1 to 3: low, medium, and high load. Columns 1 to 3: 10%, 20%, and 30% energy budget.)

95% and 99% latency of each distribution. For the distributions, both coarse-grained
DVFS and Adrenaline show that GET and DEL requests are tightly clustered on the left,
whereas SET requests have a much higher latency and compose the long tail.

Compared to the no-boosting scenario, the coarse-grained DVFS shifts the entire
distribution to the left, reducing both the mean and 99% latency by a small amount.
However, Adrenaline spends the limited power budget for boosting in a more effective
way. Instead of boosting all requests, including both the fast requests and the tail
requests, it only boosts the requests that have high probability to be in the tail. The
mean latency Adrenaline achieves is slightly slower than that achieved by the coarse-
grained DVFS, but it is still faster than the no-boosting scenario. More importantly,
Adrenaline achieves a much more significant reduction on the tail latency than the
coarse-grained DVFS.

Figure 12 shows a Pareto-optimal curve for the power versus 99% latency tradeoff
of different V/f configurations for both DVFS and Adrenaline. At extremely tight SLA
targets, the DVFS approach is necessary, but as soon as the latency target is loosened,
the Adrenaline approach offers either significant reductions in tail latency (further to
the left at a given power budget) or a gain in power efficiency (lower in the graph for a
given target latency).
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Fig. 10. Tail latency reduction for Web Search by relaxing energy budget at various load levels using
Adrenaline and DVFS. (Rows 1 to 3: low, medium, and high load. Columns 1 to 3: 10%, 20%, and 30% energy
budget.)

5.3. Energy Saving

In addition to reining the tail latency by fine-grained boosting, Adrenaline can also be
used to take advantage of the latency slack, especially at low load, to improve energy
efficiency. As illustrated in Figure 8, we start at the highest CPU frequency, which
generates the lowest possible latency, and evaluate the effectiveness of coarse-grained
DVFS and Adrenaline in improving the energy efficiency as we gradually relax the tail
latency target. Specifically, we choose 10% latency lack as the strict target, 20% as the
moderate target, and 30% as the relaxed target in our experiments.

Figure 13 presents the energy savings for Memcached achieved by coarse-grained
DVFS and Adrenaline, respectively. As demonstrated in the figure, given the same
latency target, Adrenaline can significantly reduce the energy consumption, especially
at low load. It achieves up to a 2.12× energy savings over the no-DVFS baseline,
whereas DVFS can only save 1.56× in the best scenario. At high load, both Adrenaline
and coarse-grained DVFS cannot achieve much energy savings. This is to be expected,
because at the high load, there is not much latency slack due to the queuing delay. It is
very hard to achieve energy savings unless we are willing to sacrifice a great amount of
tail latency slack. Similarly, Figure 14 shows that Adrenaline can achieve significant
energy savings across all three different load levels, especially at low and medium
load levels, for Web Search. In addition, Adrenaline often achieves greater energy
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Fig. 11. Latency probability density function of Memcached when applying coarse-grained DVFS and
Adrenaline, respectively, to the same stream of queries.

Fig. 12. The scatter plot of Memcached, in which each data point represents the normalized power/latency
performance of a single CPU V/f configuration with load composition APP and low traffic.

savings compared to coarse-grained DVFS. This is because Adrenaline leverages the
observation demonstrated in Figures 2 and 3 and prioritizes the boosting of those
requests which give the most benefits, which effectively prevents Adrenaline from
wasting energy on those requests with low boostability.

5.4. Overall Comparison

Figures 15 and 16 present Adrenaline’s improvement of tail latency and energy sav-
ings over DVFS, averaged across all workload compositions. Overall, Adrenaline out-
performs coarse-grained DVFS in almost all the situations. When optimizing for tail
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Fig. 13. Energy saving for Memcached by relaxing the tail latency target at various load levels using
Adrenaline and coarse-grained DVFS. (Rows 1 to 3: low, medium, and high load. Columns 1 to 3: 10%, 20%,
and 30% latency budget.)

latency, Adrenaline achieves up to 22.7% improvement over DVFS by dynamically
scaling the frequency at a finer granularity to target only the most important requests.

5.5. The Impact of Boost Threshold

We analyzed the time non-candidate queries spent in the system and use a boost
threshold to predict long-running queries that should be boosted. This boost threshold
is the product of the QoS target and a coefficient, as shown in Equation (2) as follows:

Tthreshold = ct × TQoS. (2)

For example, for the previous studies in Section 5.2 and Section 5.3, our choice of boost
threshold was 0.5× of the QoS target. This choice translates into a threshold coefficient
ct of 0.5.

While our results shown in the previous sections show that we achieve significant
improvement in both tail latency reduction and energy saving with a straightforward
selection of ct = 0.5, we observe that the choice of ct can have significant impacts on
performance and efficiency of Adrenaline for benchmarks with different characteristics.
To understand the effects, we evaluate Adrenaline under a range of threshold coefficient
settings and study their impact on the reduction of the 95th percentile latency given
certain energy consumption constraints. Note that the coefficient ct determines only
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Fig. 14. Energy saving for Web Search by relaxing the tail latency target at various load levels using
Adrenaline and DVFS. (Rows 1 to 3: low, medium, and high load. Columns 1 to 3: 10%, 20%, and 30% latency
budget.)

Fig. 15. Improvement of Adrenaline over coarse-grained DVFS for Memcached.
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Fig. 16. Improvement of Adrenaline over coarse-grained DVFS for Web Search.

the boost threshold for non-candidate types of queries (i.e., GET and DEL for Memcached
and MEDIUM and LONG for Web Search), whereas the candidate types of queries (i.e., SET
for Memcached and SHORT for Web Search) will always be boosted at the onset of core
processing.

5.5.1. A General Principle. The goal of Adrenaline is to rein in the tail queries to meet
the QoS target. To accomplish this, it is desirable for the boost threshold to be smaller
than the QoS target. This allows tail queries to be identified before they miss the target.
But one challenge here is that rather than ignoring those queries that are fast enough,
when the threshold is too small, Adrenaline boosts most of the queries. This failure to
consider query characteristics leads to energy waste.

5.5.2. Memcached vs. Threshold Coefficient. To study the impact of boost threshold on
the performance of Memcached, we sweep ct within the range of 0.0001 to 0.5, which
translates to a range from 1μs to 5ms for the boost threshold Tthreshold. Figure 17 shows
the effect of choosing different ct on tail latency reduction for Memcached, given certain
energy budgets. We prefetch and conclude our major findings as follows:

—Finding 1: Adrenaline’s performance is sensitive to the choice of ct. The performance
variation, with the same workload, in tail latency reduction and energy saving can
be as large as 5× and 1.78×, respectively.

—Finding 2: Adrenaline configured with optimal ct can extract up to 4.82× improve-
ment over coarse-grained DVFS in the reduction of the 95th-percentile latency, even
under the tightest energy budget.

—Finding 3: The optimal choice of ct is within the range of 0.0005 and 0.001. This opti-
mal choice range remains almost constant across different loads and energy/latency
budgets.

Choosing an optimal ct that minimizes the tail latency while remaining within the
energy budget can be challenging. Too low a threshold wastes considerable amounts
of energy to boost queries that are natively fast enough. Too high a threshold fails to
effectively reduce query latency due to the limited percentage of the execution that is
boosted.

To explain the importance of a proper threshold, we refer to both Figures 17 and 18.
Figure 17 shows Adrenaline’s impact on tail latency reduction with different choices
of ct across different load levels and energy budgets. Figure 18 gives the percentage
of boosted non-candidate queries. When ct is large, Adrenaline boosts very few or no
non-candidate queries, generating little positive effect on tail latency. As we decrease
ct, Adrenaline boosts an increasing amount of non-candidate queries and therefore
yields better performance. When ct = 0.0005 and ct = 0.001, Adrenaline achieves the
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Fig. 17. Sensitivity analysis of the effect of different boost thresholds on tail latency reduction of Memcached.
Rows 1 to 3 are the results of sensitivity analysis with low, medium, and high load, respectively. Columns 1
to 3 are the results with 10%, 20%, and 30% energy budget, respectively.

optimal improvement across different load levels and energy budgets. As can be seen
in Figure 18, Adrenaline properly boosts a large portion, but not all, of the queries.
This indicates that the small threshold coefficients allow Adrenaline to boost queries
early enough and therefore reduce the probability of forming a long queue, resulting
in shorter queueing delays for queries in the queue.

This outcome is highly correlated to the characteristics of different request types
of Memcached shown in Figure 2. While the service times of all types of Memcached
queries are generally short and the coefficients of variation are small, there is a clear
distinction between the latency distribution of the candidate type (SET) and the distri-
butions of the two non-candidate types (GET and DEL). If we set ct to 0.0005 or 0.001,
then Adrenaline can save energy by using the lower voltage to serve the queries when
the queue is short and is composed of mostly non-candidate queries; when the queueing
delay becomes critical, Adrenaline can agilely enter the boost mode. If we further lower
ct to 0.0001, then the benefit on tail latency reduction disappears. We can conclude
from Figure 18 that Adrenaline with ct = 0.0001 boosts almost 100% of the queries.
Under this condition, the energy overhead incurred by running the majority queries
with high-performance configuration is simply too high for the energy budget to af-
ford. The choices of supply voltage on the two voltage rails in Shortstop are, therefore,
restricted to the lower ones, which limits the speedup Adrenaline can achieve.

Figure 18 reveals some cases where the result of ct = 0.0001 is missing. For example,
the results of ct = 0.0001 of all the three query compositions with 10% energy budget
at low load, of APP and ETC with 10% energy budget at medium load, and of ETC with
20% budget at medium load are absent. The absence of these results indicates that the
low threshold makes Adrenaline boost queries too early, largely increasing the overall
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Fig. 18. Percentage of non-candidate Memcached queries (GETs and DELs) boosted when optimizing for tail
latency. (Rows 1 to 3: low, medium, and high load. Columns 1 to 3: 10%, 20%, and 30% energy budget.)

energy consumption, making Adrenaline violate the given energy budget no matter
which CPU V/f configuration is used.

Figures 19 and 20 show boost threshold’s impact on energy saving. We see from these
two figures that when the system is under medium and high load, there is a trend sim-
ilar to what we have seen in the previous experiments. However, one counter-intuitive
finding for workload ETC at low load is that, as we decrease ct from 0.001 to 0.0005 and
Adrenaline is given a 20% latency target, the energy saving becomes more significant
even though the percentage of boosted non-candidate queries increases. This is due to
the fact that Adrenaline is using a different of supply voltages for the Shortstop voltage
rails. When ct = 0.001, because the threshold is high and the workload ETC contains
only a very small percentage of SET queries, only a few queries get boosted; under this
condition, Adrenaline is not able to meet the 20% tail latency budget without using the
highest V/f setting for its boost mode. But once we decrease ct to 0.0005, Adrenaline en-
ters boost mode much earlier, which mitigates the queueing effect; a V/f configuration
with a lower boost-mode frequency (i.e., the frequency used when Shortstop is supplied
by its high-voltage rail) is now sufficient for Adrenaline to meet the tail latency target.

We also see from the two figures that larger energy budgets sometimes lead to
fewer boostings compared to smaller energy budgets at the same load. This is because
the larger energy budget gives Adrenaline the flexibility to use a more aggressive
V/f configuration, which enables a higher normal-mode frequency (i.e., the frequency
used when Shortstop is supplied by its low-voltage rail). This higher normal-mode
frequency benefits all of the queries in the incoming query stream and shortens their
latency, leading to fewer needs for boostings.

5.5.3. Web Search vs. Threshold Coefficient. We conduct a similar sensitivity analysis for
Web Search. For Web Search, we sweep the threshold coefficient ct from 0.001 to 0.5,
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Fig. 19. Sensitivity analysis of the effect of different boost thresholds on energy reduction of Memcached.
(Rows 1 to 3: low, medium, and high load. Columns 1 to 3: 10%, 20%, and 30% latency budget.)

which translates to a range from 50μs to 250ms for the boost threshold Tthreshold. We
again prefetch our findings and present them as follows:

—Finding 1: For Web Search, Adrenaline’s impact on latency reduction and energy
saving is also sensitive to the choice of ct. For a same workload, the performance
variation across different choices of ct can be up to 3.17× in tail latency reduction
and up to 1.62× in energy saving.

—Finding 2: The optimal choice of ct for Web Search is within the range of 0.1 to 0.5,
which is much larger than that for Memcached. This distinction results from the
different characteristics the Web Search queries have. However, the optimal choice
still remains almost constant across different loads and different energy/latency
budgets.

As can be seen in Figure 21, Adrenaline, again, provides significant improvement
over coarse-grained DVFS for Web Search at medium load and high load. When we
study Adrenaline’s effectiveness in tail latency reduction across the different choices of
ct, however, we find that the system behavior drastically differs from what we have seen
in the Memcached experiments. As shown in Figure 21, the larger ct ’s such as 0.1 and
0.5 now have a better chance to provide significant tail latency reduction over coarse-
grained DVFS. The optimal ct for Web Search is higher compared to Memcached, be-
cause Web Search service queries usually need a much longer time to process, as shown
in Figure 3. The non-candidate Web Search queries, and especially the LONG queries,
are very insensitive to the change of the frequency boosting. This means that when
Adrenaline enters the boost mode too early when processing non-candidate queries, it
wastes significant amounts of energy but only yields a small latency reduction. So ct
should be set to a higher value so the cores stay at the normal mode and boost only
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Fig. 20. Percentage of non-candidate Memcached queries (GETs and DELs) boosted when optimizing for energy
saving. (Rows 1 to 3: low, medium, and high load. Columns 1 to 3: 10%, 20%, and 30% latency budget.)

when urgent conditions occur. Similar findings are made when we use Adrenaline to
optimize for energy saving. Figures 23 and 24 show that, under the same load level
and the same tail latency target, Adrenaline achieves more significant energy saving
when using larger ct ’s.

Seeing this significant improvement, one might find it surprising, in Figure 22, that
the boost percentages of higher ct ’s are low. The reason why such low boost percent-
ages can lead to significant tail latency reduction is that Adrenaline is using higher
voltage values for Shortstop’s high-voltage rail. With these higher boost-mode volt-
ages, Adrenaline is able to use higher boost-mode frequencies to effectively shorten
the latency of candidate queries and some of the long-running non-candidate queries,
which compensates for the low boost percentages. Due to the low boost percentage, even
though Adrenaline uses a higher boost-mode voltages, the energy budget constraints
are not easily violated.

5.5.4. Strategy for Choosing the Right Boost Thresholds and V/f Configurations. In this section,
we discuss the strategy for choosing the right boost thresholds and voltage configura-
tions at runtime when deploying Adrenaline for an application.

During runtime, Adrenaline makes two types of decisions for different purposes.
The first type of decision is the per-query boost decision. This type of decision, as we
discussed in the previous sections of the article, aims to determine whether to boost
processor performance for each query. Since user-facing applications have strict latency
requirement and have an enormous amount of user queries hitting the servers every
second, the fine-grained decision engine needs to be low overhead. Any significant extra
latency added by this engine builds up non-negligible delays and slows down all the
queries drastically in a loaded system. Adrenaline achieves low overhead by looking
for simple query-level indicators to make fast decisions that switch the underlying
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Fig. 21. Sensitivity analysis of the effect of different boost thresholds on tail latency reduction of Web
Search. (Rows 1 to 3: low, medium, and high load. Columns 1 to 3: 10%, 20%, and 30% energy budget.)

Shortstop circuit between its high/low voltage rails, incurring only nano-second-level
delays.

The second type of decisions reacts to the change of traffic level and query composi-
tion, determining the voltage configuration of the underlying Shortstop circuit and the
boost threshold used for accelerating non-candidate queries. The decision engine needs
to collect enough information over a sliding window before it can explore a suitable next
configuration to adapt to. In addition, changing the voltage configuration incurs signif-
icant overhead; instead of switching quickly between the high- and low-voltage rails,
executing this type of decision involves adapting the voltages on the two voltage rails
via an off-chip regulator. The delay of such an operation is within the range of tens of
microseconds [Eyerman and Eeckhout 2011], easily comparable or even exceeding the
average service time of shorter queries, such as GET, SET, and DEL queries in Memcached.
This type of decisions, therefore, should only be triggered at a coarser time granularity.

However, it is challenging to develop a generalized decision-making runtime algo-
rithm suitable for multiple applications. As shown in Section 5.5, the optimal boost
threshold and the optimal V/f configuration of Adrenaline vary significantly under dif-
ferent situations. Since the decision highly depends on the characteristics of queries
of the target application, as well as the current traffic level and query composition,
the construction of such a generalized algorithm might involve designing complicated
control-theoretic mechanisms, which is out of the scope of this article.

In this work, we advice to construct such a decision engine on top of profiling results of
the target application, which can be done as discussed in Section 5.5.2 and Section 5.5.3.
We provide some guideline as follows.

Strategy for choosing boost threshold. From the results shown in the previous
section, we observe that boost threshold is highly related to the target application’s
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Fig. 22. Percentage of non-candidate Web Search queries (MEDIUMs and LONGs) boosted when optimizing for
tail latency. (Rows 1 to 3: low, medium, and high load. Columns 1 to 3: 10%, 20%, and 30% energy budget.)

typical service time, typical query arrival rate (in terms of query-per-second, QPS),
and non-candidate queries’ responsiveness to core frequency. Boost threshold is rather
insensitive to the change in query composition and traffic level. As shown in Figures 17
and 23, the optimal threshold coefficients for an application is almost always the same
under different combinations of query compositions and traffic levels. For Memcached,
ct = 0.0005 or ct = 0.001 is always the choice for threshold coefficient. For Web Search,
ct = 0.5 or ct = 0.1 is almost always superior than other ct ’s; in the cases where nei-
ther of them is the best, their performance still comes close to the optimal ones. Such
a characteristic greatly simplifies the strategy for choosing a suitable boost thresh-
old at runtime. For example, for applications similar to Memcached, which feature
short query service time, high QPS, and non-candidate queries that are highly core-
frequency-responsive, boost decisions should be made early enough to prevent long
queues from building up. In this situation, smaller ct ’s should therefore be prioritized
over larger ct ’s. On the other hand, applications similar to Web Search have long query
service time, much lower QPS, and unresponsive non-candidate queries. Adrenaline
takes advantage of this characteristic and uses a larger threshold that boosts non-
candidate queries later, gaining significant energy saving without building up a long
queue.

Strategy for choosing V/f configuration. After we conduct an off-line profiling on
the target application, for each combination of traffic level and query composition, we
identify the most beneficial V/f configuration and record this information in a lookup
table. During runtime, we use a sliding window to monitor the most recent history
of workload. According to the workload observed in the window, the decision engine
chooses the next configuration by searching for the V/f configuration associated with
the closest combination of traffic level and query composition in the lookup table.
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Fig. 23. Sensitivity analysis of the effect of different boost thresholds on energy saving of Web Search.
(Rows 1 to 3 : low, medium, and high load. Columns 1 to 3: 10%, 20%, and 30% latency budget.)

Fig. 24. Percentage of non-candidate Web Search queries (MEDIUMs and LONGs) boosted when optimizing for
energy saving. (Rows 1 to 3: low, medium, and high load. Columns 1 to 3: 10%, 20%, and 30% latency budget.)
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Fig. 25. Effectiveness of Adrenaline in reducing the tail latency at service level comparing to DVFS.

For user-facing applications, their traffic usually follows a diurnal pattern [Meisner
et al. 2011] and is rather stable within a short period of time, meaning that the choice
for the next decision is more predictable and reliable if given the recent history of
traffic. For these applications, datacenter operators can quantize traffic and query
compositions into many levels and create a fine-grained lookup table, which provides
more precise V/f decisions. On the other hand, if the target application features a
varying and unpredictable traffic pattern, datacenter operators can use a coarser-
grained lookup table to prevent the decision engine from overfitting to sudden bursts
of traffic.

5.6. Tail at Scale

Many large-scale web services, including Memcached and Web Search, use one or even
many clusters of machines to serve user queries. As presented in prior work [Barroso
et al. 2003; Nishtala et al. 2013], such web services tend to have a large amount of
inter-communications and high fan-out. For example, a single user HTTP request can
result in hundreds of Memcached data fetches and many round trips within a cluster
at Facebook. As the number of servers involved in serving a user request increases,
the probability of violating the QoS target (e.g., request latency target) grows signifi-
cantly [Dean and Barroso 2013].

In this section, we evaluate the effectiveness of Adrenaline in reducing the service-
level tail latency violations by reducing the tail latency at each leaf node. We use the
99% tail latency measured when the coarse-grained DVFS is enabled as the service-
level latency target and compare the probabilities of one request in a fan-out cluster vio-
lating the service-level QoS target when using coarse-grained DVFS versus Adrenaline.
Figure 25 presents the probability that at least one leaf node misses its QoS target as
a function of the number of leaf nodes for a service that must wait for all leaves to
respond. As shown, the probability of a request violating the service level QoS target
increases drastically as the number of servers in the fan-out cluster increases. With 100
servers, the probability of one request violating the service-level target has increased to
63% for the coarse-grained DVFS. By enabling Adrenaline to reduce the tail latency at
leaf nodes, we are able to reduce the probability with 100 servers significantly, by 19%
for Memcached and by 11% for Web Search. With 200 servers, Adrenaline achieves an
18% improvement over DVFS for Memcached and a 13% improvement for Web Search.
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6. RELATED WORK

6.1. DVFS and Power Management

DVFS has been widely studied to improve the energy efficiency of various scales of
computational units over the past several decades [Choi et al. 2005; Wu et al. 2005; Isci
et al. 2006; Kaxiras and Martonosi 2008; Lee and Kim 2009; Kolpe et al. 2011; Lo and
Kozyrakis 2014; Lo et al. 2014]. However, most of the prior works only look at voltage
and frequency scaling decisions at coarse granularity. In Choi et al. [2005], Wu et al.
[2005], and Isci et al. [2006], a decision engine, which leverages measured runtime in-
formation, is implemented as regression models or dynamic compilation mechanisms to
find the best voltage and frequency levels to optimize for energy efficiency. Researchers
have also put effort into coarse-grained DVFS decisions on modern multi-core proces-
sors [Isci et al. 2006; Lee and Kim 2009; Kolpe et al. 2011; Lo and Kozyrakis 2014],
in order to achieve better system throughput and energy efficiency. Similarly to DVFS
on processors, some prior works also explore the opportunities of deploying DVFS on
memory systems [Deng et al. 2011, 2012a, 2012b; David et al. 2011]. Related works on
quick voltage boosting techniques are discussed in Section 3.

Recently, there has been increasing research interest on power management in dat-
acenters [Raghavendra et al. 2008; Leverich et al. 2009; Lo and Kozyrakis 2014; Lo
et al. 2014; Meisner et al. 2009] from different perspectives. Among them, PEGASUS
[Lo et al. 2014] constantly monitors the workload and the performance statistics of
the recent requests within a sliding window and leverages a feedback controller to
minimize the power consumption without violating the QoS requirement. This work
differs from theirs by identifying and selectively targeting only the requests that most
likely will fall in the tail of the distribution.

6.2. Tail Latency

As reported in prior work [Dean and Barroso 2013], tail latency has become a major
concern of modern datacenter applications, which has gained much research attention.
Since many datacenter workloads have critical tail latency requirements, many works
[Laurenzano et al. 2014; Zhang et al. 2014; Yang et al. 2013; Tang et al. 2013; Mars
et al. 2011; Tang et al. 2012; Mars and Tang 2013; Delimitrou and Kozyrakis 2013] try
to improve the performance predictability of such workloads to optimize datacenter
utilization. This requires precise performance interference prediction and careful
control of resource sharing, in order to make better scheduling decisions. Another
class of optimization tries to reduce the tail latency. DeTail [Zats et al. 2012] proposes
to exchange package information across multiple network layers to optimize the
scheduling of package processing and distribute the network load evenly. Zellweger
et al. [2014] and Belay et al. [2014] move the network stack from kernel space to
user space to avoid overhead, so they can achieve lower query latency, as well as
higher system throughput. Adrenaline differs from these works due to the fact that
it specifically accelerates the queries that tend to appear in the tail, which makes the
optimization more efficient than simply boosting the entire latency distribution.

7. CONCLUSION

In this article, we present the Adrenaline methodology that adjusts the voltage/
frequency at query-level granularity to rein in the tail latency as well as to save en-
ergy. By evaluating our methodology under various realistic workload configurations,
we demonstrate the effectiveness of our methodology. With a naive boost threshold for
non-candidate queries, we achieve up to a 2.50× tail latency improvement for Mem-
cached and up to a 3.03× for Web Search over coarse-grained DVFS given a fixed
boosting power budget. When optimizing for energy reduction, Adrenaline achieves
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up to a 1.81× improvement for Memcached and up to a 1.99× improvement for Web
Search over DVFS. By using the carefully chosen boost thresholds, Adrenaline further
improves the tail latency reduction to 4.82× over coarse-grained DVFS.
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