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Abstract

This paper introduces Input Responsive Approximation

(IRA), an approach that uses a canary input — a small

program input carefully constructed to capture the intrinsic

properties of the original input — to automatically control

how program approximation is applied on an input-by-input

basis. Motivating this approach is the observation that many

of the prior techniques focusing on choosing how to ap-

proximate arrive at conservative decisions by discounting

substantial differences between inputs when applying ap-

proximation. The main challenges in overcoming this limi-

tation lie in making the choice of how to approximate both

effectively (e.g., the fastest approximation that meets a par-

ticular accuracy target) and rapidly for every input. With

IRA, each time the approximate program is run, a canary

input is constructed and used dynamically to quickly test

a spectrum of approximation alternatives. Based on these

runtime tests, the approximation that best fits the desired ac-

curacy constraints is selected and applied to the full input

to produce an approximate result. We use IRA to select and

parameterize mixes of four approximation techniques from

the literature for a range of 13 image processing, machine

learning, and data mining applications. Our results demon-

strate that IRA significantly outperforms prior approaches,

delivering an average of 10.2× speedup over exact execution

while minimizing accuracy losses in program outputs.

Categories and Subject Descriptors D.3.4 [Programming

Languages]: Processors – Runtime environments; D.3.3

[Programming Languages]: Language Constructs and Fea-

tures – Input/output; C.0 [General]: Hardware/software in-

terfaces

General Terms Performance, Experimentation, Design

Keywords Performance, Runtime Systems, Compilers,

Approximate Computing

1. Introduction

Emerging applications in the domains of image and sound

processing, computer vision, machine learning, and data

mining are significantly increasing the processing demands

on compute infrastructure as the adoption of smart tech-

nologies like intelligent virtual assistants [4, 21, 36] and

wearable devices [20, 35] rises. These emerging applica-

tions rely heavily on regularly-structured computations on

inputs that include images, video, and sound, and have loose

constraints on the quality of output. The need for significant

improvements in processing throughput for these classes of

applications along with loose quality constraints make them

ideal candidates for approximate computing, where small

amounts of output accuracy can be traded for large improve-

ments in performance or energy.

The general purpose approximate computing techniques

typically applied to regularly-structured computations, such

as loop perforation [27, 45], algorithm selection [3, 15],

and numerical approximation [25], have been important and

successful vehicles for realizing approximation in practice.

These approaches can be realized on commodity hardware,

apply to a variety of problem types, and are straightforward

for programmers to implement. A central question in ap-

proximate computing is how to approximate, i.e., how to

configure and parameterize an approximate program to yield

the right tradeoff between performance and accuracy. Prior

work focusing on the problem of choosing how to approxi-

mate has shown modest performance improvements of 1.1×
to 4× [6, 27, 28, 47, 49, 50, 56], often relying on calibration

or profiling to choose how to approximate.
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Calibration computes both exact and approximate results,

then compares them to measure the accuracy of the approxi-

mate approach on some (set of) program inputs. Calibration

has been used to drive offline approaches [27], runtime sys-

tems [49], and within systems that use a combination of the

two [6]. Because it is expensive to compute the exact solu-

tion and the accuracy of the approximate solution(s) on ev-

ery input, calibration must be used sparingly, encumbering

the flexibility of approximation and ultimately the perfor-

mance gains that can be realized. Profile guided approaches

make approximation decisions based on average- or worst-

case input behavior [18, 28, 56]. These techniques rely on

training with inputs that are representative of real-world in-

puts, which may be difficult to achieve in practice.

The motivation for this work is that, common to both

classes of approaches, one approximation is used to cover

multiple inputs. Focusing on worst case accuracy can result

in overly conservative approximation for many inputs, while

focusing on average case accuracy may be overly aggressive

and fail to deliver sufficient accuracy in the worst case. As

we show in this work, designing approximation systems that

discount the differences between inputs hinders both the

performance and accuracy of software-based approximation.

This paper presents an approach to addressing this limi-

tation that is guided by two observations. Firstly, the accu-

racy of approximate programs can depend heavily on pro-

gram input. Consider the example presented in Figure 1,

which shows two images that have been processed by an

identical approximate gamma correction with results that

are of wildly different quality. Typical approaches to deal-

ing with this difference in quality would dial down the ag-

gressiveness of the approximation for both images, sacrific-

ing performance for the first to produce satisfactory accu-

racy for the second. Secondly, regularly-structured computa-

tions have (1) data-centric computation, where the amount

of computation depends on the size of the input data, such

as is the case in many iterative and recursive algorithms in

data mining, image processing, and machine learning and

(2) summarizable inputs, where there may be redundancy or

patterns in the input data such that the input’s characteristics

can be concisely represented. While these characteristics are

not universal across all programs (for example, a compiler’s

input or a database schema have deep structure that can be

easily broken), they appear often in the classes of programs

that are candidates for approximation. On such programs,

our insight is that a small input can be used to quickly learn

the accuracy and performance characteristics of approxima-

tions without relying on calibration or profiling.

This paper introduces Input Responsive Approximation

(IRA), a runtime approximation system designed to lever-

age this insight in order to dynamically and automatically

configure the approximation options for each program input,

including selecting which code regions to approximate and

how to tune the approximations within those regions. IRA

Approx. gamma correctionExact gamma correctionSource image

96%

77%

Figure 1. One approximation approach (16×8 tiling [50])

produces outputs of very different quality across inputs

achieves this by creating a canary input — a much smaller

representation of the full input — at the outset of the pro-

gram. The canary input is used to dynamically predict the

accuracy and speedup characteristics of the full input for a

number of approximation options, then to choose the fastest

option that achieves the desired level of accuracy. The spe-

cific contributions of this work are:

• Canary Inputs – we describe a methodology for reduc-

ing the inputs to many regularly-structured computations

to canaries – smaller representations of the full inputs –

that can used to predict program performance and accu-

racy when subjected to various approximations. Canary

creation is guided by statistical hypothesis testing, yield-

ing canaries that are statistically guaranteed to share key

properties with the full input (§4.1).

• Canary-driven Approximation Runtime System – we

describe the design and implementation of IRA, a runtime

system that uses canary inputs to automatically configure

approximation for every input supplied to a program (§4).

IRA determines where to approximate, automatically se-

lecting which code regions are most amenable to approxi-

mation for each input, as well as configuring the approxi-

mation within those regions to the fastest configuration that

meets a specified accuracy bound (§4.2 and §4.3).

• Effective, Automatic Approximation – we evaluate IRA

on real server hardware, demonstrating that it produces

effective input responsive approximations. The evalua-

tion incorporates four well-known classes of approximate

techniques from the literature: loop perforation [27, 45],

tiling [50], algorithm choice [3, 15] and numerical approx-

imation [25] within 13 image processing, machine learning

data mining and computer vision applications (§5).

The overhead of using IRA to create and use canaries to

dynamically search for approximations averages 3.2% of

exact execution time. Even with this overhead included, IRA
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Figure 2. Histograms of the accuracy of three tiling approximations applied to the same 800 images; some mix of missed

opportunities and unacceptably low accuracy are present in each approximation
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Figure 3. A dynamic oracle approximation system using the most effective tiling approximation method (fastest without

violating TOQ) achieves an average speedup of 61× and uses 42 different approximation options

results in an average speedup of 10.2× across our 13 test

applications with small accuracy losses in program outputs.

IRA outperforms oracle versions of two classes of prior

work while delivering the same level of accuracy, achieving

more than 4× the speedup of oracle calibration techniques

and 2× the speedup of oracle static profiling.

2. The Case for Input Driven Dynamism

The ability of approximate computation to produce high-

quality results is one of the keys to making approximation

broadly deployable in real systems. Many techniques for

preserving result accuracy when choosing how to approx-

imate focus on the worst case, resulting in overly conser-

vative approximation for other cases. Here we discuss the

opportunity available in the presence of a technique that dy-

namically controls approximation for individual inputs.

2.1 Input Matters for Output Quality

Input is an important part of the accuracy of an approximate

computation. To illustrate this, we detail the output quality

produced by three different tiling approximations [50] of an

image processing application called gamma correction [42]

applied to 800 input images. Tiling is based on the assump-

tion that, in many application domains such as image and

video processing, elements nearby one another (e.g., pix-

els in an image) are likely to have similar values. Instead

of computing each element of the output, a tiling approxi-

mation computes a single output element and projects that

output onto the surrounding elements to form a tile. Tiling

can be tuned to trade off lower accuracy for better perfor-

mance by increasing the size of the tile.

Figure 2 presents histograms of the output quality for 800

different images across three tile sizes. For the purposes of

illustration, we assume that the target output quality1 (TOQ)

of the approximation is 90%. As shown in the figure, for

all three tile sizes, different inputs can result in very differ-

ent output qualities. For example, across these inputs 8×8

tiling (Figure 2(b)) results in output qualities ranging from

78%-99% because the assumption made by the approxima-

tion technique (that nearby pixels are similar to one another)

holds true to a different extent depending on the compo-

sition of the input. Furthermore, we have observed that a

wide range in output quality across inputs is not unique

to tiling approximation and gamma correction, occurring

across many applications and approximation techniques.

2.2 Limitations of Conventional Approaches

A common approach used to choose how to approximate is

to select a single approximation option for some program

and apply that approximation to multiple inputs. This ap-

proach to approximation suffers from a form of the prob-

lem of aggregation, in which aggregate behavior (average or

1 Target output quality (TOQ) is the minimum acceptable result accu-

racy [49], supplied by the user of the application.
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worst) is not necessarily representative of individual behav-

ior. In the presence of multiple differing inputs, an approxi-

mation system that uses a single approximation across inputs

either leaves performance opportunities on the table, violates

output quality restrictions, or both.

To illustrate this, we refer again to Figure 2, where (a),

(b) and (c), are histograms of result accuracy for three in-

creasingly aggressive approximate gamma corrections ap-

plied to 800 input images. We assume a TOQ of 90%, and

characterize the outputs as falling into 3 classes: TOQ vio-

lating approximations (< 90% output quality), fast + high

quality approximations (90-95% output quality) and missed

opportunities (95-100% output quality). The 4×2 tiling ap-

proximation, shown in 2(a), produces minimal TOQ viola-

tions, but the speedup is limited to 5.9×. The bulk of these

output qualities can be classified as missed opportunities. A

more moderate approach, 8×8 tiling, is shown in 2(b). In this

case, 5% of the results violate the TOQ with a speedup of

22×. Finally, the results of an aggressive approximation are

shown in 2(c). This approach uses 16×16 tiling and yields

83× speedup with 30% of the outputs violating the TOQ.

2.3 The Opportunity for Dynamism

Ideally, approximation would have the best of both worlds –

no missed opportunities and no TOQ violations. This could

be achieved by dynamically choosing the most effective ap-

proximation for each input – the fastest approximation that

does not violate the TOQ. Figure 3(a) presents a histogram

of output quality over the 800 inputs when using a dynamic

oracle to choose the most effective option from a wide range

of tiling approximations. Unlike the previous example, the

most effective approximation is always fast and high quality,

never leaving performance on the table and never violating

the target output quality.

Moreover, Figure 3(b) shows a histogram of the speedups

achieved on the set of 800 inputs. The speedups vary signif-

icantly, ranging from 3.5× to 410× (average 61×) due to

the fact that a wide range of approximations are chosen. As

shown in Figure 3(c), across 800 inputs, 42 unique approx-

imation methods are chosen, with no single approximation

being used on more than 17% of the inputs. That is, a wide

range of approximation methods are used to obtain the maxi-

mally effective approximation across the set of inputs and no

single approximation is dominant. The key to taking advan-

tage of this opportunity is to customize the approximation

for each input on an individual basis, and to develop that

customized approximation quickly.

3. Overview of Approach

Given a program, a menu of possible approximation options,

and an input to the program, the goal of Input Responsive

Approximation (IRA) is to rapidly choose an effective ap-

proximation for that input. Our approach to achieving this

goal is shown in Figure 4 and does the following:

Exact Method

Full Input

Exact Solution

(a) Computing the 

exact solution

Full Input

Approximate Solution

TOQ

Canary 
Error Bounds 

(b) Computing an approximate 

solution with IRA

Canary Creator

Approx. 
Candidates

Canary  
Input

Customized Approx. Method

Search for  
Approx. Method

Figure 4. Exact computation and approximation with IRA

1. Canary Input – first, IRA dynamically produces a ca-

nary input, a smaller representation of the input (§4.1).

The creation of the canary is guided by hypothesis test-

ing, a statistical framework used to ensure that the result-

ing canary is large enough to be representative of the full

input, sharing key properties with the full input, while be-

ing no larger than necessary to minimize the overhead of

leveraging the canary.

2. Customize the Approximation – next, an exact solu-

tion and multiple approximate solutions are computed us-

ing the canary to select the most effective from among

the available approximations, including selecting the code

regions to approximate and how to approximate within

those regions (§4.2). Because the canary input is much

smaller than the full input, IRA is able to rapidly forecast

how numerous approximations fare on a particular input

by running the canary input with each of those approx-

imations. Unlike prior work, IRA predicts the accuracy

and performance of approximations on each input on de-

mand and ex ante, allowing it to choose a customized,

effective approximation for every input.

3. Compute Approximate Solution – finally, the cus-

tomized approximation deemed effective for the canary

is applied to the full input to produce an approximate so-

lution that is of acceptable accuracy (§4.3). As we show

later, this approach is extremely effective, leading to large

performance improvements with small accuracy losses.

4. IRA Design and Implementation

This section provides a detailed description of how IRA

chooses and leverages an approximation that is customized

and effective for each program input.

4.1 Reasoning About Canary Inputs

A canary is a small program input, crafted out of the full

program input to reflect the full input’s properties. A plausi-
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ble approach for creating canaries could be to simply sample

down every full input at the same rate. Unfortunately, this ap-

proach produces canaries that are either (1) larger than nec-

essary for well-behaved inputs, introducing extra overhead

in the approximation search process or (2) too small to ade-

quately represent the full input, resulting in a search that pro-

vides a misleading model of approximation accuracy charac-

teristics. Instead, we have observed that a dynamic approach

to producing canaries helps avoid these problems, where the

canary can be chosen to be both as small as possible and

large enough to maintain sufficient similarity to the full in-

put. We experimentally explore this issue further in §5.2.

4.1.1 Challenges

Dynamically creating a canary input that exhibits the prop-

erties of the full input has three main challenges. First, in

determining the similarity of the canary and the full input,

we require a definition of similarity that reflects meaningful

input properties. Second, we must be able to choose the ca-

nary in a way that is both computationally inexpensive and

ensures that the definition of similarity is satisfied. Third, we

want to choose a canary that is much smaller than the full

input, as this will be a large determinant of the time spent

employing the canary to test various approximations.

To address the first challenge, this work defines and ex-

plores four different metrics of similarity, designed to span

a range of definitions of what it means for inputs to be sim-

ilar to one another. These metrics range from a very simple

metric designed to ensure that the values in the canary are

close, on average, with the values in the full input to more

sophisticated, complex metrics that ensure the similarity of

local properties within small regions of the input.

To address the second challenge, we ensure low overhead

in the canary creation process by leveraging statistical sam-

pling in the analysis of each potential canary input, allowing

similarity metrics to be computed on just a small subset of

the canary input when analyzing its similarity to the full in-

put. To ensure that the definition of similarity is satisfied in a

chosen canary, we use a carefully designed algorithm based

on robust, automated hypothesis tests that minimize the like-

lihood of making an incorrect decision about each canary. In

particular, we take special care to design our approach to

avoid both false negatives – incorrectly finding dissimilarity

– and false positives – incorrectly finding similarity. These

are also known as Type I and Type II errors, respectively.

The avoidance of false positives ensures that the canary we

select is highly likely to be similar to the full input.

On the other hand, avoiding false negatives so that the

chosen canary is no larger than necessary is key to ensur-

ing that the third challenge is addressed. If we mistakenly

rejected a small canary that was actually similar to the full

input in favor of a larger canary, the canary-driven search

can have unnecessarily high overhead.

Full Input

Canary Input

Canary 

Error Bounds 

Apply Holm-

Bonferroni to 

bound Type I Error

Choose 

Smallest

Canary 
Candidates

Compute  

Canaries’ 

p-values

Acceptable Candidates

n

p1 p2 pk…

…

Compute Sample Size (n) 

to Bound Type II Error

23

1

4
5

α, β

Figure 5. Canary input creation

4.1.2 Canary Candidates

The algorithm for creating a canary is illustrated in Figure 5.

The inputs to the algorithm are the desired bound on the

likelihood of getting a Type II error α, the desired bound

on getting a Type I error β, and the full input to the program.

The output of the algorithm is a small canary input deemed

similar to the full input.

1 Generating Canary Candidates. First, a set of candi-

date canaries C1, C2, . . . , Ck are generated. One of the main

determinants a canary’s quality is its size; a larger canary is

likely to be a better reflection of the full input than a smaller

canary. However, as the purpose of the canary is to use it in

a dynamic search, a larger canary will also tend to result in

a more expensive search. Our approach to generating candi-

dates is to expose this inherent tradeoff, using candidates of

many different sizes then choosing the smallest canary from

among the candidates that is similar enough to the full input

according to one of the metrics described in §4.1.4.

We generate C1, C2, . . . , Ck using regular, strided sub-

sets of the full input. If N is the size of the full input, canary

candidates are chosen that are size N/16, N/32, N/64, N/128
and N/256. We explicitly avoid selecting canaries larger than
N/16, as canaries that are larger may take an unacceptably

long time in the dynamic search, undermining the perfor-

mance gains IRA aims to achieve by approximating the pro-

gram. For one-dimensional inputs such as an array of scalars

or an array of structs, an input of size 1/t is produced by tak-

ing every tth element from the input. For two-dimensional

inputs such as matrices and images, an input of size 1/t
is produced by taking every 1/√tth element along both di-

mensions. This approach can easily be extended to higher-

dimension inputs, however implementing that extension was

not necessary for any of the programs used in this work.
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Mean Variance Local Homogeneity Autocorrelation

Description
Mean µ of input Variance σ2 of Proportion Λ of elements represented by λ Correlation ρ among pairs of

elements input elements in canary /∈ [λ − σz1−α/2, λ + σz1−α/2] input elements (yj , yj+1)

Null Hypothesis (H0) H0 : µi = µ0 H0 : σi
2 = σ2

0 H0 : Λi ≤ 0.1 H0 : ρi = ρ0

Alt. Hypothesis (HA) HA : µi 6= µ0 HA : σi
2 6= σ2

0 HA : Λi > 0.1 HA : ρi 6= ρ0

Test Statistic (ti) ti =
µ0 − µi

σi
√
n

ti =
σi

2

σ2
0

ti =

√
n |Λi − 0.1|

√

0.1(1 − 0.1)
ti =

ln

(

(1+ρ0)(1−ρi)
(1−ρ0)(1+ρi)

)

2
√

n−3

p-value (pi) pi = 2P (Z > ti) pi = 2P (Fn−1,n−1 > ti) pi = 2P (Z > ti) pi = 2P (Z > ti)

Sample Size (n)
n = 2(z1−α/2k Formula yields no simple form; g(x) =

√

x(1 − x)
n =

4(z1−α/2k+z1−β/k)2

ln((1+ρ0)/(1−ρ0))2+z1−β/k)
2 see Cohen [14] for details. n = 0.1−2(g(0.1)z1−α/2k + g(Λi)z1−β/k)

2

Acceptability Test
Holm-Bonferroni method: sort p-values p1, p2, . . . pk to obtain sorted p-values p(1), p(2), . . . p(k). Find the minimum index m such that

p(m) > α
k+1−m , then reject all canaries C(i) where i ≥ m.

α: the desired bound on the probability of committing any Type I errors (false negative), β: the desired bound on Type II errors (false positive)
Definitions k: the number of canary candidates, Ci: the ith canary candidate, xi: the sample statistic x for canary Ci, x0: the sample statistic x for the full input

Z: the standard normal distribution, zy : the quantile function at y of Z, Fb,c: the F-distribution with degrees of freedom b and c

Table 1. Similarity metrics used to assess canary similarity to full input, along with the relevant statistical formulas

4.1.3 Canary Selection

The remainder of the steps in this algorithm are focused on

choosing the smallest canary from among these candidates

that is similar to the full input.

2 Sample Size. We next calculate the number of samples to

take from each canary when evaluating their similarity. This

calculation is designed to bound the likelihood of getting a

Type II error when comparing those properties to the full

input, discussed in further detail in §4.1.5. This sample size

is denoted n.

3 Canary Statistics. We calculate the statistics needed to

perform hypothesis tests on the canaries, taking a random

sample of size n from each canary Ci, then use the samples

to compute a test statistic for the canary ti and a p-value pi
associated with that test statistic. We discuss tests statistics

and p-values in more detail in §4.1.5, however the intuition

is that ti is simply a statistical measurement of the similarity

between the canary and full input, while pi is the statistical

significance of that measurement.

4 Canary Acceptability. On the resulting p-values p1, p2,
. . . , pk, we use the Holm-Bonferroni method, a technique

designed specifically to bound the likelihood of getting a

Type I error when performing multiple hypothesis tests [29],

to partition the candidate canaries into two groups – those

that are suitable representations of the full input because they

are statistically similar enough to it, and those that are not.

5 Select Canary. Finally, the smallest of the suitable ca-

naries is returned and used by IRA to perform a dynamic

search for the most effective approximation. If no such ca-

nary is available, IRA immediately ceases approximation

and begins to execute the exact version of the program.

4.1.4 Input Similarity Metrics

The purpose of the canary is to drive a dynamic search

to determine how the program and its full input should be

approximated. As such, it is of critical importance that the

canary be similar to the full input. However, similarity can

be measured in many ways. In this work, we consider four

distinct definitions of similarity.

Mean. IRA supports using the arithmetic mean of the val-

ues in the canary and full inputs as the similarity metric.

We define the mean of an input Y composed of values

y1, y2, . . . , yN as µY . For convenience, the formal definition

of µY is supplied in Equation 1. A canary found to be ac-

ceptable according to this metric has an average value close

to the average value of the full input.

µY =
1

N

N
∑

j=1

yj (1)

Variance. IRA also supports using the variance of values in

the input as the similarity metric. The variance of Y is σ2
Y ,

the definition of which is supplied in Equation 2. A canary

that meets this standard of closeness will contain values that

are dispersed to a degree similar to the dispersion found in

the full input.

σ2
Y =

1

N

N
∑

j=1

(yj − µY )
2 (2)

Local Homogeneity. The canary is produced using a subset

of the values in the full input. Thus, in essence, a single value

in the canary embodies a (potentially large) number of val-

ues from the full input. To ensure the values in the canary are

not highly dissimilar to the values in the full input they are

supposed to embody, IRA leverages a measure of this dis-

similarity. We denote this metric ΛY , defined by comparing

each value yj in the full input to λj , its representative value

in the canary, and calculating the proportion of those values

that are at least z1−α/2 standard deviations (see Table 1 for

the definition of z) away from λ. The formal definition of

ΛY is shown in Equation 3.

166



ΛY =
1

N

N
∑

j=1

{

0 if |yj − λj | ≤ σY z1−α/2

1 otherwise
(3)

Autocorrelation. Last, IRA support measuring similarity

between a canary and the full input by testing that their au-

tocorrelations are similar. Autocorrelation is a special case

of correlation, and is a measure of how similar each value in

the input is to its neighbor. High coefficients of autocorrela-

tion (those close to 1) indicate that neighboring values share

a linear relationship across the input, while low coefficients

(those close to zero) indicate no such relationship. Thus, au-

tocorrelation detects small-scale patterns in the input. For an

input Y , the coefficient of autocorrelation is ρY . We provide

a formal definition of autocorrelation in Equations 4 and 5.

Y ′ = {y1, y2, . . . , yN−1}, Y ′′ = {y2, y3, . . . , yN} (4)

ρY =
1

σY ′σY ′′

N−1
∑

j=1

(yj − µY ′)(yj+1 − µY ′′) (5)

4.1.5 Statistical Underpinnings

At its core, canary selection in IRA is built on the statistical

foundations of hypothesis testing, in which the evidential ba-

sis for hypotheses can be weighed statistically, allowing re-

jection of hypotheses that are not supported by the available

evidence. For our purposes, the hypotheses considered are

statements such as canary Ci has the same autocorrelation

as the full input. Such a hypothesis can be rejected if a com-

parison between the full and canary inputs does not provide

sufficient evidence to support the hypothesis. Thus, by re-

jecting the hypothesis equating the canary to the full input

we reject the canary. Alternatively, when the hypothesis test

fails to reject the null hypothesis, the canary is deemed to be

acceptably similar to the full input.

It is important to note that IRA may need to consider

many such hypotheses when constructing a canary, and thus

is subject to the multiple testing problem [37]. The multi-

ple testing problem describes a problem wherein evaluating

the validity of multiple hypotheses can considerably increase

the likelihood of incorrectly evaluating at least one of the hy-

potheses. Consider a hypothesis concerning the fairness of a

coin, where we wish to assess the validity of the hypothe-

sis by flipping the coin 10 times and calling it biased if we

flip at least 9 heads or tails. Applying this test to 1 unbiased

coin, it is unlikely that it will appear unfair, a probability of

2.1%. However, if we apply this test to 100 coins, there is

a very strong likelihood (88.6%) that at least one coin will

be judged to be unfair, an incorrect determination. Similarly,

the multiple testing problem applies to our hypotheses about

canaries. Therefore, when evaluating canaries we adjust our

statistical methods by incorporating the Bonferroni correc-

tion for Type I errors and the Holm-Bonferroni method for

Type II errors to ensure that we avoid the multiple testing

problem. These adjustments are detailed shortly.

Hypothesis Testing. In a hypothesis test, we propose two

hypotheses relating to the similarity of a canary to the full in-

put. These hypotheses are called the null hypothesis H0 and

the alternative hypothesis HA. For each canary Ci, we con-

struct null and alternative hypotheses and determine whether

to accept or reject Ci based on the evidence found in favor of

the null hypothesis. Our discussion will focus on hypothesis

testing for the arithmetic mean of the input, however IRA

supports several other metrics that have been discussed pre-

viously and are summarized in Table 1. These other metrics

can be used by substituting their equations in place of the

equations described for the mean.

A hypothesis test for the mean takes the form shown in

Equation 6, where µi is the sample mean of canary Ci and

µ0 is the sample mean of the full input.

H0 : µi = µ0

HA : µi 6= µ0
(6)

Next, the truth of H0 is evaluated by calculating and eval-

uating a test statistic. The test statistic is used to produce a

p-value for the test, the probability of attaining a test statis-

tic at least as extreme as the observed test statistic given that

the null hypothesis is true. Thus, the smaller the p-value, the

lower the probability of the observed test statistic appearing

if the null hypothesis is true. Some significance level α is

chosen as a cutoff point for the hypothesis test, where p ≤ α
causes the null hypothesis to be rejected. In particular, to

compute the t-statistic and p-value for the mean, we use the

standard formulas shown in Equations 7 and 8.

ti =
µ0 − µi

σi
√
n

(7)

pi = 2P [Z > ti] (8)

Standard single-comparison hypothesis tests stop here, re-

jecting the null hypothesis if pi ≤ α. However, we must take

further steps to avoid the multiple comparisons problem.

Controlling Type I Errors. The Holm-Bonferroni method

considers multiple hypotheses simultaneously [29]. It out-

puts a set of hypotheses that are rejected, and a set that are

not, where the probability of obtaining any Type I errors

is bound by α. The method begins by sorting the p-values

p1, p2, . . . , pk from lowest to highest, resulting in a new in-

dexing of p-values p(1), p(2), . . . p(k) corresponding to null

hypotheses H(1), H(2), . . . H(k). It then rejects hypotheses

H(1), H(2), . . . H(m−1), where m is the minimum index sat-

isfying Equation 9.

p(m) >
α

k + 1−m
(9)
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The result of this method is a set of null hypotheses H(m),

H(m+1), . . ., H(k) that are not rejected, corresponding to a

set of canaries C(m), C(m+1), . . . C(k) that are deemed to be

suitably similar to the full input.

Controlling Type II Errors. Given desired bounds α and

β on the likelihood of getting any Type I or Type II errors,

respectively, the standard formula for computing the number

of samples needed to ensure the likelihood of getting a Type

II error of no more than β in a single comparison hypothesis

test is shown in Equation 10.

n = 2(z1−α/2 + z1−β)
2 (10)

To account for the multiple testing problem when using k
canaries, we use the Bonferroni correction [16], substituting

α/k and β/k in place of α and β in Equation 10.

n = 2(z1−α/2k + z1−β/k)
2 (11)

This adjusted formula requires an increased sample size over

the non-adjusted formula. However, sampling overhead re-

mains reasonable even for large numbers of canary candi-

dates (large k) because the sample size due to this adjust-

ment grows sublinearly as k increases [60].

Smallest Acceptable Candidate. All of the canary candi-

dates that remain from the preceding set of steps are suitably

similar to the full input. However, it is important that we

choose the acceptable candidate that results in the shortest

search time in IRA’s next step. Thus, the canary construction

algorithm terminates by choosing the smallest from among

the remaining acceptable candidates.

4.2 Choosing an Effective Approximation

IRA uses the canary input to rapidly and dynamically choose

how to approximate the program on the full input. This

section describes how that choice is made.

4.2.1 Definition of Result Accuracy

Controlling and maintaining sufficiently accurate computa-

tion is important in approximate computing [49, 50, 56].

Prior work has pointed out that result accuracy is domain,

application, and context dependent [38] and includes such

varied metrics as the scaled difference between output, the

peak signal to noise ratio (PSNR) or the average absolute

output accuracy. Therefore, we design IRA to be agnos-

tic to the specific method used to calculate result accu-

racy. That is, we assume only that the application devel-

oper provides a well-defined accuracy calculation function.

Our formulation of this function Faccuracy , given two solu-

tions Sexact and Sapprox, computes a single accuracy met-

ric δ ∈ [0, 1] describing the accuracy of Sapprox relative

to Sexact. Faccuracy is leveraged by IRA to compute the

accuracy of a number of approximations on the canary in-

put, comparing them to the solution produced by the exact

method on the canary input. We assume also that the user of

Exact Method Approx. Candidates

Customized Approx. Method

Steepest Ascent Decision

Calculate 

Accuracy

Exact Canary 

Solution + Timing

Approx. Canary 

Solutions + Timings

Canary Input TOQ

Approx. CandidatesApprox. Candidates

Figure 6. Search for approximation using canary

the application supplies a minimum acceptable result accu-

racy, called the target output quality (TOQ).

4.2.2 Where and How to Approximate

There may be a number of code regions amenable to ap-

proximation in an program. Consider an program with two

disjoint loops that can be approximated with loop perfora-

tion [27, 45] and tiling [50], respectively. In IRA, each such

code region is an approximation opportunity, and IRA treats

each approximation opportunity as one dimension in a multi-

dimensional search space by encoding the parameters for

each approximation opportunity as one of a range of integral

values {1, . . . , v}. In the encoding, the value 1 has special

meaning, and is used to represent the exact computation in

lieu of approximation.

Many approximation mechanisms can be parameterized,

such as the rate at which iterations are skipped in loop per-

foration or the size of one side of a tile in tiling approxi-

mation. In such cases, numbers larger than 1 encode each

value that can be taken by a parameter. Our search algo-

rithm makes only the assumption that larger values corre-

spond to more aggressive approximation (i.e., that it runs

faster but has lower accuracy). By encoding the search space

in this fashion, IRA has the option to select the exact com-

putation at each approximation opportunity, allowing it to

choose where to approximate. By selecting between the val-

ues larger than 1, IRA determines how aggressively to take

advantage of each approximation opportunity.

4.2.3 Search for an Effective Approximation

IRA uses a greedy approach based on steepest ascent hill

climbing [48] to tune the parameters for the available ap-

proximations and choose how to approximate, using the ap-

proach presented in Figure 6. Each possible choice of how

to approximate is defined as a point in an m-dimensional

space (d1, d2, . . . , dm), where each dimension is an en-

coded range of integral values as described previously. IRA

first evaluates the point (1, 1, . . . 1) on the canary, which

is the exact solution to the program on the canary. This so-
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Figure 7. Example search for an effective approximation

lution is used as a timing and accuracy baseline, against

which approximate solutions are evaluated. Beginning at

(1, 1, . . . 1), IRA then iteratively evaluates the incremen-

tally more aggressive value for each of the tuning parame-

ters, computing the accuracy and speedup relative to the ex-

act version, then selects the increment that both satisfies the

TOQ set forth by the user and yields the steepest slope in

terms of accuracy vs. speedup. If no such increment exists,

the search terminates. If such an increment exists, it is used

as the starting point for the next iteration. Upon termination,

the last valid point is returned by the search and is used to

approximate the full program input.

In executing the search algorithm, IRA runs the exact

computation in addition to a number of approximation alter-

natives on the canary. The execution of this search is typ-

ically very fast relative to exact execution on the full in-

put because the amount of computation needed in regularly-

structured computation depends substantially on the size of

the canary, which is much smaller than the full input. We

quantitatively evaluate the time spent in the search in §5,

showing that it equates to an average of 3.2% of exact exe-

cution time on a suite of test programs.

Example Search. Consider Figure 7, which shows an exam-

ple search over 3 approximation opportunities. In step 1 IRA

evaluates (1, 1, 1) as a baseline. In step 2, the next available

increment along each dimension is tested – (2, 1, 1), (1, 2, 1)
and (1, 1, 2) in this case. (1, 2, 1) is found to have the steep-

est ascent in the speedup/accuracy space, and is used as the

baseline for the next step. In step 3, (2, 2, 1), (1, 3, 1) and

(1, 2, 2) are tested, and (1, 3, 1) is found to have the steep-

est ascent. Finally, in step 4 (2, 3, 1) (1, 4, 1) and (1, 3, 2)
are tested. Each of the configurations is found to violate the

TOQ bound and the search terminates. IRA returns (1, 3, 1)
as the most effective approximation.

4.3 Putting it all Together

Final Approximation. Once IRA has chosen an effective

approximation for the canary, that chosen approximation is

used to run the program on the full input to produce a final,

approximate result.

Runtime Safety. In approximate computing, altering com-

putation to trade performance for accuracy, particularly

when discarding computation, can have the effect of chang-

ing control flow, producing unsafe intermediate results (e.g.,

a 0 that will be used as the denominator in a division op-

eration), or memory accesses that corrupt state or result in

access violations, resulting in runtime faults that were not

anticipated by the application programmer. Prior work has

shown that it is often possible to recover from memory errors

using checkpointing [55] or heap replication [8], and from

floating point errors using reevaluation or rollback [24], re-

suming computation to successfully produce a result. We

have experienced no such faults in our experiments, however

if necessary IRA can be augmented to include mechanisms

to guard against such faults.

5. Evaluation

We thoroughly evaluate IRA to examine its impact on per-

formance and result accuracy.

5.1 Methodology

Applications and Inputs. We evaluate 13 applications that

use between 2 and 800 inputs. These applications cover a

number of important problem domains that include image

processing, data mining, machine learning and computer

vision. Applications and inputs are summarized in Table 2.

Approximation Techniques. Our experiments bring input

responsiveness to four classes of approximate computing

techniques. The approximation techniques themselves have

limitations in terms of how they can be applied. For exam-

ple, tiling approximation requires iterative computation on

image pixels, and thus is applied only to CrossCorr, Gamma

and GaussianFilter, while numerical approximation requires

particular mathematical constructs to be present in the pro-

gram (e.g., the use of trigonometric functions in Inversek2j).

In many cases, multiple approximations are used side-by-

side among an application’s different code regions. A sum-

mary of which approximations are applied to which bench-

marks is summarized in Table 2. Short code samples illus-

trating each of the approximations are given in Table 3. The

approximations used in the evaluation are as follows:

• Loop Perforation [27, 45] – loop perforation discards it-

erations in a loop. We use either unadjusted perforation,

where every nth iteration in a loop is executed, or extrap-

olated perforation, which is similar to unadjusted perfora-

tion but extrapolates computed results to make up for the

skipped iterations. Loop perforation can be made more ag-

gressive by using larger values of n. Loop perforation is

used in CrossCorr, FuzzyKmeans, LucasKanade, Kernel,

Kmeans, MatMult, MeanShift and ScalarProd.
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Application Description Domains Input Suite
Approximation(s)

Used

CrossCorr
Measure signal/image similarity

Pattern recognition, cryptanalysis, neurophysiology 800 IMAGE
4× perforate,

over sliding window 1× 2D-tile

FuzzyKmeans Cluster with fuzzy cluster membership Machine learning, data mining 4 SVM 5× perforate

Gamma Apply gamma correction to an image Image processing 800 IMAGE 1× 2D-tile

GaussianFilter Apply a Gaussian filter to an image Image processing 800 IMAGE 1× 2D-tile

Integration Numeric integration of transcendentals Scientific computing, engineering 19 EQN 1× numerical approx.

Inversek2j Kinematics for 2-joint arm Robotics 90 ANGLE 4× numerical approx.

Jmeint Triangle intersection detection 3D gaming 40 TRI 1× algorithm choice

LucasKanade Optical flow estimation Computer vision 2 PERFECT 2× perforate

Kernel Estimate a probability density function Machine learning, signal processing, econometrics 2 KDDCUP 4× perforate

Kmeans Cluster points for classification Mach. learning, data mining 4 SVM 4× perforate

MatMult Matrix-matrix multiply Machine learning, scientific computing, game theory 40 PDF 2× perforate

MeanShift Apply mean shift to an image Computer vision, image processing 4 SVM 3× perforate

ScalarProd Dot product of two vectors Mechanics, machine learning, graphics 40 PDF 2× perforate

Input Suite Description

90 ANGLE Sets of angles drawn from 90 different probability distributions

19 EQN Sets of equations containing polynomials with different max degree

800 IMAGE A database of 800 images

2 KDDCUP 1999 KDD Cup data set from the UCI Machine Learning Repository [5]

40 PDF Probability dists used: beta, binomial, cauchy, chi-squared, exponential, f, gamma, geometric, hyper, log-normal, normal, poisson, t, uniform, weibull

2 PERFECT Medium and large inputs from the PERFECT benchmarks [7]

4 SVM Support vector machines from the UCI Machine Learning Repository [5]

40 TRI Sets of triangles in the unit cube, varying distributions of triangle sizes

Table 2. Applications and input sets used in the evaluation

Loop Perforation Tiling Algorithm Choice Numerical Approximation

Exact Code

Sample

for (i=0; i<N; i++)

sum += A[i];

for (i=0; i<N; i++)

B[i] = f(A[i]);
y = f impl1(x); y = cos(x);

Approximate

Code Sample

for (i=0; i<N; i+=n)

sum += n*A[i];

for (i=0; i<N; i+=n){
B[i] = f(A[i]);

for (j=1; j<n; j++)

B[i+j] = B[i]; }

y = f impl2(x); y = (x - x*x/2.0);

Table 3. Examples of the approximations used in the evaluation; code impacted by approximation is highlighted

• Tiling [50] – instead of computing each element of an out-

put, tiling computes a single output element and projects it

onto the surrounding elements to form a tile. Tiling ap-

proximation is made more aggressive by using larger tile

sizes. We use tiling approximations in CrossCorr, Gamma

and GaussianFilter.

• Algorithm Choice [3, 15] – we use IRA to choose be-

tween five different algorithmic implementations of Jmeint

that offer different accuracy-performance tradeoffs in com-

puting whether pairs of 3D triangles intersect. The most

complex algorithm is the exact algorithm, while the sim-

plest algorithm uses computationally cheap heuristics that

work well only when triangles are far apart.

• Numerical Approximation [25] – we use numerical ap-

proximation techniques within Integration and Inversek2j.

Integration numerically integrates a non-integrable set

of equations using the trapezoid method, which can be

made faster and less accurate by using fewer trapezoids.

Inversek2j involves a motion calculation that relies on

the trigonometric functions sin(x), cos(x), sin−1(x),
cos−1(x). We approximate these trigonometric functions

by using the first one (sin and sin−1) or two (cos and

cos−1) terms of the function’s Taylor series in lieu of the

precise library implementation. These approximations are

accurate when x is near zero, and become less accurate

farther away from zero. Thus, we can trade speed for accu-

racy by choosing a k such that approximation is used only

when |x| < k, making the approximation more aggressive

by using larger values of k.

Platform. All results are collected on a stock 2.4GHz Intel

Xeon E5-2407v2 (Ivy Bridge) server running Linux kernel

3.11.0. Applications are executed on the server in serial, and

task pinning is used to prevent migration.

Error Bounds, TOQ and Accuracy. All experiments in

this evaluation use canary error bounds α = β = 0.05,

thus obtaining Type I and Type II error bounds of 0.05.

TOQ values ranging from 90% to 97.5% are used in the

evaluation, specified for each experiment. IRA is agnostic

to the accuracy metric, simply using the supplied definition

of accuracy (see §4.2.1) and configuring the approximation

so as to not violate the accuracy target set forth by the

user. In our evaluation, we use miss rate as the accuracy

metric for Jmeint, absolute relative error for ScalarProd and

average centroid distance from the origin in Kmeans and

FuzzyKmeans. For all other applications, accuracy is defined

as the average of element-wise absolute relative error.
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lower speedup, more TOQ violations, or both

5.2 Canary Construction

Similarity Metrics. Figure 8 presents the speedup over ex-

act computation obtained by IRA when employing each of

the four canary similarity metrics described in §4.1 at a TOQ

of 90%. As the figure illustrates, the largest speedups ob-

tained are for variance and mean, averaging 10.2× and 9.9×,

respectively. The speedups obtained when using autocorre-

lation are modest, averaging 4.3×, while using local homo-

geneity causes a speedup of 2.1×.

This is a non-intuitive result, as the simpler metrics –

Mean and Variance – perform better while achieving simi-

larly low counts of TOQ violations (TOQ is violated on less

than 1% of inputs on average for all metrics). Closer inspec-

tion reveals that autocorrelation and local homogeneity are

more difficult similarity metrics to satisfy, thus they often re-

sult in either (1) choosing larger canaries, leading to longer

search times, which diminishes the overall speedup or (2)

finding no acceptable canaries, and thus no approximation

being used. This is particularly true for local homogeneity,

which achieves speedups near 1 for 8 of the 13 applications.

This leads us to the insight that more complicated is not

always better; autocorrelation and local homogeneity reject

many canaries that are deemed acceptable according to their

mean and variance – canaries that turned out to be perfectly

adequate in searching for an effective approximation.

A second insight revealed by this data is that mean and

variance do not significantly differ from one another in terms
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Figure 11. Distribution of speedups across inputs for IRA

at 90% TOQ, illustrating the wide range of approximations

dynamically chosen across different inputs; larger speedups

occur when more aggressive approximation is applied

of the canaries selected, a fact that holds true on average

and among the individual applications. This suggests that

both metrics produce reasonable canaries and function well

across a range of problems and domains. Because variance

is a slight improvement over mean in terms of the overall

speedup of IRA, the remainder of the experiments use vari-

ance as the similarity metric when constructing canaries.

Sizing Canaries Dynamically. Dynamically-sized canaries

are valuable because they yield approximations that are

just aggressive enough for each input. This means that (1)

each canary is no larger than necessary for well-behaved

inputs, thus keeping the overhead low during the approx-

imation search process, and (2) each canary can be made

large enough to adequately represent the full input.

To illustrate the value of dynamic canary creation, we

compare the results of using IRA’s dynamically-chosen ca-

naries to canaries created using a range of fixed strategies

when approximating MatMult to at a TOQ of 90%. The in-

puts to MatMult are the set of 40 inputs described in Ta-

ble 2, spanning a range of probability distributions that in-

clude long tail and high variance distributions. The results

are illustrated in Figure 9, which shows the speedup (y-axis)

and number of inputs meeting TOQ (x-axis) achieved by

IRA when using fixed-size canaries (red circles and line).

As the figure shows, there is a tradeoff between speedup and

input violations to be made when using fixed-size canaries:

smaller canaries produce larger speedups but large numbers
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Application Meets TOQ % of Inputs

CrossCorr 790 / 800 98.8%

FuzzyKmeans 4/ 4/ 100%

Gamma 752 / 800 94.0%

GaussianFilter 797 / 800 99.7%

Integration 19 / 19 100%

Inversek2j 90 / 90 100%

Jmeint 40 / 40 100%

LucasKanade 4 / 4 100%

Kernel 2 / 2 100%

Kmeans 4 / 4 100%

MatMult 40 / 40 100%

MeanShift 4 / 4 100%

ScalarProd 40 / 40 100%

MEAN - 99.4%

Table 4. The proportion of inputs for which IRA hits the

target output quality (TOQ) at TOQ=90%; there are no TOQ

violations in 10 of the 13 applications

of TOQ violations, while larger canaries produce fewer TOQ

violations but smaller speedups. Improving in both dimen-

sions is the point illustrating the speedup (8.2×) and TOQ

violations (0%) achieved when using dynamically-chosen

canaries (blue star). This demonstrates the advantage of us-

ing dynamically-chosen canaries – a small canary is used if

a small canary can serve as a suitable representation of the

full input, while a large canary is used if not.

5.3 IRA Speedup and Accuracy

Speedup. We refer next to Figure 10, which presents the

average speedup achieved by IRA relative to the runtime

of the exact computation across three TOQ values: 97.5%,

95% and 90%. Each application is run on all inputs, and

the speedups presented are the geometric mean of speedup

across the inputs. Performance measurements of IRA are

the end-to-end runtime, including the time to produce the

canary input, search for the customized approximation and

run that approximation on the full input. As one would

expect, IRA achieves speedups that scale up as the TOQ is

relaxed, ranging from an average of 3.9× at 97.5% TOQ up

to 10.2× at 90% TOQ.

Dynamism. Figure 11 presents boxplots of IRA speedups

across inputs for each application at TOQ=90%. The box-

plots highlight the maximum (upper whisker), 75th per-

centile (box upper edge), median (line within box), 25th

percentile (box lower edge) and minimum (lower whisker)

speedups. The large range of speedups shown in Figure 11

highlights the key feature of IRA: different inputs to the

same application can be more or less difficult to approxi-

mate. IRA takes advantage of these differences to choose

the right approximation for each input and maximize per-

formance when applying approximation. This degree of dy-

namism allows IRA to realize significantly higher perfor-

mance for many cases that cannot be taken advantage of

by conventional approaches that apply one approximation

across inputs. We discuss this in greater detail in §5.5, com-
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Figure 12. Breakdown of time spent by IRA, showing time

to create the canary (barely visible), choose the approxima-

tion, and run the chosen approximation on the full input

paring IRA to oracle versions of two classes of prior work

that apply the same approximation across multiple inputs.

Accuracy. The accuracy of the results produced by IRA is

presented in Table 4, showing the number of TOQ violations

across inputs at TOQ=90%. On average, IRA meets TOQ for

over 99% of inputs. Furthermore, for 10 of 13 applications

there are no output quality violations, and the maximum

proportion of TOQ violations is 6% for Gamma. Moreover,

those cases that violate TOQ are typically not far from TOQ.

For instance, 78% of violating cases have an output quality

of 88% or better (within 2% of TOQ). From this we conclude

that IRA works very well at producing a minimal number of

TOQ violations in practice, however we take care to note

that IRA makes no guarantees about output accuracy.

5.4 Overhead Analysis

Figure 12 presents a breakdown of the time spent by IRA in

various stages of execution as a fraction of the total runtime

of the exact application run (TOQ=90%). These percentages

are the average across all inputs for each application. The

bulk of the time shown in the figure is execution time saved

by approximating the application with IRA (yellow). We

divide the execution time of IRA into three parts: the time

spent creating a canary input (green; barely visible), the time

spent using the canary to search for an approximation (blue),

and the time spent running the chosen approximation on the

full input (red).

The time spent choosing the canary is small, which

is to say that the remaining bottlenecks in IRA are else-

where. Many applications – Gamma, Integration, Inversek2j,

Jmeint, Kernel, MatMult, MeanShift and ScalarProd – spend

a small proportion of the time searching for the the approx-

imation, while many others spend a more appreciable frac-

tion of time in the search. Large search times are caused by a

combination of large canaries and high-dimensional search

spaces (that is, those that have a larger number of approxi-

mation opportunities to explore).
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Figure 13. Comparison of IRA to calibration-based ap-

proximation with Green [6], SAGE [49], showing that IRA

achieves more than 4× the speedup of both

The size of the approximation search spaces varies sig-

nificantly across applications, ranging from 5 in the case

of Jmeint (5 versions of the algorithm constitute the search

space) to 22,500 in the case of CrossCorr where 5 approx-

imation options are parameterized. Our hill climbing algo-

rithm takes O(m ∗ n) steps, where m is the number of ap-

proximations to parameterize and n is the number of ways

to parameterize a single approximation. In our experimen-

tation, we have found that searches often end in fewer than

10 steps and typically take no more than a few dozen steps,

ultimately resulting in searches that average 3.2% of exact

execution time.

The search time for choosing the approximation might be

reduced by paring down the number of approximation op-

portunities and parameter ranges to reduce the size of the

search space. For example, if certain approximation opportu-

nities were revealed through static analysis, offline profiling,

or feedback from earlier runs of IRA to result in ineffective

approximations for a substantial fraction of inputs, those op-

portunities could be discarded. However, because the goal in

this work is to automate the process of choosing the approx-

imation without the aid of offline profiling or analysis, we

implement no such mechanism.

5.5 Comparison to Prior Work

Oracle Calibration Approximation. Green and SAGE

are two state-of-the-art calibration systems that dynamically

tune approximation to control TOQ violations [6, 49]. Green

uses profiling in concert with calibration at fixed intervals

(e.g., every 10 inputs) to tune how aggressively to apply ap-

proximation. SAGE is also calibration-based, however it is

entirely dynamic in nature and it continually changes the

calibration period as more inputs are seen, lengthening the

period when calibration shows that the current tuning of the

approximation does not violate TOQ.

We compare IRA to using oracle versions of the SAGE

and Green runtime systems to choose approximations. The

oracle versions of SAGE and Green runtimes do two things

perfectly that the systems themselves cannot do in practice.
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Figure 14. Comparison of IRA to a static oracle, showing

that IRA achieves more than 2× the speedup

First, calibration on an input yields the precise speedup and

accuracy for that input on all approximations, allowing the

approximation to be tuned to exactly the most effective ap-

proximation at each calibration point. Second, calibration in-

tervals are given by oracle for each application. For Green,

the best calibration interval is used out of all possible cali-

bration intervals, and for SAGE both the best possible cali-

bration interval and calibration adjustments are used. Thus,

our experiments represent upper bounds for the speedups

achievable on these applications, inputs and approximation

techniques with Green and SAGE.

We compare IRA against the oracle Green and SAGE

by holding the number of TOQ violations achieved by each

approach constant and examining the speedups achieved.

The results of this comparison are shown in Figure 13,

which shows the speedup of the three techniques where the

TOQ violations are held constant at the TOQ violations IRA

achieves at 90% TOQ. IRA improves the performance by an

average of 10.2× by customizing the approximation to each

individual input, while oracle Green speeds up by an average

of 2.2× and oracle SAGE speeds up by a factor of 2.3×.

There are a number of programs for which the oracle

Green and SAGE provide no speedup, such as MatMult and

ScalarProd. This occurs because some of the inputs have

high variance or long tails, producing poor quality results

when applying approximation. For these programs, Green

and SAGE get locked into unnecessarily conservative ap-

proximation approaches for a series of inputs once calibra-

tion has been done on a difficult input. IRA, on the other

hand, uses conservative approximations on these difficult in-

puts while applying appropriately aggressive approximation

on others. On LucasKanade, Green and SAGE achieve more

speedup than IRA. This occurs because LucasKanade can

be aggressively approximated on all inputs, thus allowing

Green and SAGE to calibrate once and run those aggressive

approximations for all input, whereas IRA spends valuable

time searching for an approximation on all inputs.

Oracle Static Approximation. We next compare IRA to a

static oracle approach to choosing approximation. A static
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oracle approach to approximation is one that has full knowl-

edge of all inputs, as well as how the approximation op-

tions fare in terms of performance and accuracy for those

inputs. Such a static oracle is instructive for understanding

the limits of profile-guided approaches. We derive a com-

parison between IRA and the static oracle by using the static

oracle to choose one approximation per application from

the approximation options described in Table 2 such that

the average speedup is as large as possible without violat-

ing TOQ more than IRA. At TOQ=90%, we find that the

static oracle achieves an average speedup of 4.9×, where

IRA achieves a speedup of 10.2×. This result demonstrates

that approaches rooted in choosing one approximation to

cover numerous inputs serves as a significant limitation on

the speedups achievable by static techniques.

6. Related Work

There are many approaches for trading result accuracy for

decreased execution time or energy, based on some combi-

nation of programmers [10], runtime systems [6, 26, 58],

programming languages [3, 51], middleware [1, 19], com-

pilers [49], and hardware [2, 17, 17, 23, 33, 41, 52, 61].

Some approaches to software-based approximation use

formal analysis to provide worst-case guarantees [11, 12, 39,

54], while others use calibration offline [3, 27, 38, 40] or at

runtime [1, 49, 50] to guide approximation. Others have pro-

posed software [22, 47] and hardware [30] systems to catch

highly inaccurate approximations early in their execution.

SAGE [49] uses a dynamic calibration interval coupled with

steepest ascent decisions based on the result accuracy. An-

other body of related research analyzes the accuracy or ro-

bustness of programs in the event of faults [31, 32, 57] or

uncertain input data [9, 53], which has been used to locate

code regions to approximate or bound the accuracy of ap-

proximate computation [11–13, 38].

Approximation has been performed by decreasing the

number of iterations or tasks executed [27, 34, 56] or by re-

placing exact operations with less accurate versions [40, 54].

One such replacement strategy is to relax synchronization in

parallel architectures [43, 49, 59]. Misailovic et al. [40] re-

place loops with parallel loops. ApproxHadoop [19] lever-

ages statistical techniques to provide accuracy guarantees

when applying approximation to MapReduce applications.

Branch and data herding [54] eliminate warp divergence in

GPGPUs, selecting the most common branch or memory ac-

cess for the entire warp.

Compilers and frameworks have been used to facilitate

selecting between multiple programmer-supplied implemen-

tations [3, 15, 58, 62]. Loop perforation was used by Hoff-

mann et al. [27] and can incorporate extrapolation to correct

bias in the result [45], similar to the work on task skipping

by Rinard [44]. Discarding tasks is a similar method to loop

perforation in principle, but items in a queue are discarded

rather than iterations in a loop [46].

7. Conclusion

This work motivates and introduces Input Responsive Ap-

proximation (IRA), a novel approach for automatically

choosing how to approximate programs on an input-by-input

basis. IRA accomplishes this by producing a canary input at

the program outset, a reduced version of the full input rig-

orously constructed to retain the properties of the full input.

This canary is used to rapidly test and choose from among

the available approximations. We use IRA to approximate

13 image processing, machine learning, data mining, and

computer vision applications. Using these applications, we

show that IRA achieves an average speedup of 10.2× at a

target output quality of 10%, far higher than oracle versions

of state-of-the-art prior work.
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