
Baymax: QoS Awareness and Increased Utilization for
Non-Preemptive Accelerators in Warehouse Scale Computers

Quan Chen⇤†1 Hailong Yang⇤‡1 Jason Mars⇤ Lingjia Tang⇤

⇤Clarity Lab, University of Michigan - Ann Arbor, MI, USA
†Shanghai Jiao Tong University, Shanghai, China

‡Beihang University, Beijing, China
{quanchen, hailong, profmars, lingjia}@umich.edu

Abstract
Modern warehouse-scale computers (WSCs) are being out-
fitted with accelerators to provide the significant compute
required by emerging intelligent personal assistant (IPA)
workloads such as voice recognition, image classification,
and natural language processing. It is well known that the
diurnal user access pattern of user-facing services provides a
strong incentive to co-locate applications for better accelera-
tor utilization and efficiency, and prior work has focused on
enabling co-location on multicore processors. However, in-
terference when co-locating applications on non-preemptive
accelerators is fundamentally different than contention on
multi-core CPUs and introduces a new set of challenges to
reduce QoS violation.

To address this open problem, we first identify the un-
derlying causes for QoS violation in accelerator-outfitted
servers. Our experiments show that queuing delay for the
compute resources and PCI-e bandwidth contention for data
transfer are the main two factors that contribute to the long
tails of user-facing applications. We then present Baymax,
a runtime system that orchestrates the execution of compute
tasks from different applications and mitigates PCI-e band-
width contention to deliver the required QoS for user-facing
applications and increase the accelerator utilization. Using
DjiNN, a deep neural network service, Sirius, an end-to-end
IPA workload, and traditional applications on a Nvidia K40
GPU, our evaluation shows that Baymax improves the ac-
celerator utilization by 91.3% while achieving the desired
99%-ile latency target for for user-facing applications. In

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’16, April 02-06, 2016, Atlanta, GA, USA
Copyright c� 2016 ACM 978-1-4503-4091-5/16/04. . . $15.00
DOI: http://dx.doi.org/10.1145/2872362.2872368

fact, Baymax reduces the 99%-ile latency of user-facing ap-
plications by up to 195x over default execution.

Keywords scheduling; quality of service; warehouse scale
computers; non-preemptive accelerators

1. Introduction
Emerging intelligent personal assistant (IPA) workloads in-
cluding speech recognition [1, 2], image classification [3],
face recognition [4] and natural language processing [5, 6]
have recently gained tremendous momentum. Several ma-
jor Internet-service companies including Google [7], Mi-
crosoft [8], Apple [9] and Baidu [10] have all released their
IPA services providing a wide range of features. Compared
to traditional warehouse scale computer (WSC) applications
such as web-search, IPA applications are significantly more
computationally demanding [11].

Accelerators, such as GPUs, ASICs and FPGAs, have
been shown to be particularly suitable for these IPA ap-
plications from both performance and total cost of owner-
ship (TCO) perspectives [11]. Therefore, to satisfy the ever-
growing user demand at a low cost, datacenters have re-
cently adopted accelerator-outfitted servers for these appli-
cations [12, 13]. Meanwhile, since these IPA services gen-
erally experience diurnal pattern [14, 15] (leaving the ac-
celerator resources under-utilized for most of the time ex-
cept peak hours), it is more cost efficient to co-locate user-
facing applications and throughput-oriented applications on
accelerators. However, accelerator sharing introduces vary-
ing amount of performance interference between co-located
applications, and thus poses critical challenges for guaran-
teeing that user-facing applications can meet their quality of
service targets.

There has been a significant amount of prior work rec-
ognizing the importance, and addressing the problem, of
contention due to co-locations to enforce quality of service

1 Work was conducted as a postdoc fellow of Clarity Lab at the University
of Michigan.

681

Memory

c c c

Shared cache

(a) Interference on traditional server

P1 P2

(b) Interference on accelerator-outfitted server

Accelerator

P1 P2

Task
queue

Non-preemptive
processing elements

Accelerator
memory

Data transfer

CPU
Host memory

Figure 1: Interference between co-located applications on a
CMP server and an accelerator-outfitted server. Interference
on a traditional server is mainly due to cache and mem-
ory bandwidth contention. Interference on an accelerator-
outfitted server is caused by both queuing delay for process-
ing elements and PCI-e bandwidth contention.

(QoS) and maximize utilization. However, because tradi-
tional datacenter servers use only commodity general pur-
pose processors, these researches have focused exclusively
on techniques to predict the QoS interference among co-
located applications on multi-core processors [16–22] and
simultaneous multi-threading (SMT) processors [23]. These
solutions are not adequate for the emerging generation of
datacenter architectures that have introduced accelerators as
a key element of their design.

Figure 1 compares the performance interference between
co-located applications on traditional multicore servers and
accelerator-outfitted servers. While performance interfer-
ence on traditional servers is mainly due to cache and mem-
ory bandwidth contention [18, 20, 23], we discover that the
performance interference on accelerator-outfitted servers is
often caused by queuing delay and PCI-e bandwidth con-
tention. Together they can cause as much as 195x slowdown
in terms of the 99%-ile latency for user-facing applications.
As shown in Figure 1(b), when a compute task is running on
a non-preemptive accelerator, all the following tasks have to
wait for its completion before they can get executed. This
mechanism introduces severe queuing delay to user-facing
services. In addition, the co-located applications contend for
the PCI-e bandwidth to transfer data between the host mem-
ory and the accelerator memory. The prior techniques based
on shared resource contention (e.g., contention on shared
cache and memory bandwidth) cannot be applied to this
class of non-preemptive hardware that has distinctive data
transfer phases.

This paper aims to improve the utilization of accelera-
tor hardware while guaranteeing the required QoS target of
user-facing time-sensitive applications in WSCs. We find
that four main factors affect the queuing delay and data
transfer latency and thus the end-to-end latency of user-
facing applications. These factors include the number of
tasks in a user-facing query that indicates how many tasks
could be delayed, the task execution order that decides which
tasks may cause the delay for each user-facing task, the dura-
tion and occupancy of throughput-oriented tasks that impact
the queuing delay of each task in a user-facing query, as well

as the PCI-e bandwidth contention that affects data transfer
rate between host memory and accelerator memory.

Because key factors such as the task execution order and
PCI-e bandwidth contention may change during runtime,
an offline solution is not adequate. A runtime system that
can dynamically monitor the accelerator and PCI-e bus, and
schedule tasks accordingly is needed to maximize acceler-
ator utilization while satisfying QoS of user-facing appli-
cations. To this end, we propose Baymax, a runtime sys-
tem composed of two parts: a task duration predictor and a
task re-ordering engine. The task duration predictor lever-
ages novel models to predict the duration of tasks across dif-
ferent inputs. The task re-ordering engine then intercepts and
analyzes task launching function calls before passing control
to the accelerator. Based on the precisely predicted task du-
ration, Baymax re-orders compute tasks issued to the accel-
erator. Meanwhile, Baymax limits the number of concurrent
active data transfer tasks to mitigate PCI-e bandwidth con-
tention. By reordering tasks and managing PCI-e bandwidth,
Baymax guarantees that QoS of user-facing applications is
always satisfied regardless of the order of tasks issued by
applications.

To the best of our knowledge, Baymax is the first work
that improves the utilization of non-preemptive accelerators
while guaranteeing the QoS of user-facing applications on
real systems. Specifically, this paper makes the following
contributions:

1. Comprehensive analysis of QoS violation on non-
preemptive accelerators - We identify four key factors
that significantly affect the end-to-end latency of user-
facing applications when they are co-located with other
applications. The analysis motivates the design of a task
re-ordering system based on precisely predicted task du-
ration for accelerator co-locations.

2. Design of online task duration prediction models - We
establish accurate and low-overhead models to estimate
the duration of tasks on accelerators.

3. Design of a task re-ordering mechanism to manage
accelerator tasks - We design a task re-ordering mech-
anism that intercepts and re-orders task invocations from
both user-facing and throughput-oriented applications.
The mechanism trades off QoS headroom of user-facing
applications for increased accelerator utilization while
guaranteeing the satisfactory QoS.

4. Design of an online mechanism to mitigate PCI-e
bandwidth contention - We design a mechanism that
monitors the realtime data transfer pressure on PCI-e bus
and mitigates PCI-e bandwidth contention to eliminate
QoS violation.

We implement Baymax runtime system combining all the
above techniques. Our evaluation using Nvidia K40 GPU
demonstrates that Baymax can greatly increase the utiliza-
tion of accelerators by 91.3% while guaranteeing the 99%-
ile latency of user-facing applications within the QoS target.

682

Compared with the default scheduling, Baymax reduces the
tail latency of user-facing applications by up to 195x when
co-located with throughput-oriented applications.

2. Understanding Performance Interference
on Non-Preemptive Accelerators

We refer to accelerators that do not support context switch-
ing during kernel execution (such as ASICs, FPGAs and
GPUs) as non-preemtive. In this section, we seek to answer
the following research questions.
• Is there serious performance interference for user-facing

applications when co-located with throughput-oriented
applications on non-preemptive accelerators?

• What are the root causes of long tail latency when a user-
facing application is co-located with other throughput-
oriented applications?

• What can we do to improve the accelerator utilization
while guaranteeing that user-facing applications achieve
the desired QoS for tail latency?

2.1 Real System Setup
We use the GPU as our non-preemptive accelerator platform
throughout this work. Our real system study uses both user-
facing applications and throughput-oriented applications.
User-facing applications, such as emerging IPA application
Sirius [11] and deep neural network service DjiNN [24],
run as permanent services on the accelerator, accepting user
queries and returning the results with stringent QoS require-
ment. Throughput-oriented applications on the other hand do
not have QoS requirement but only require high throughput.
Both user-facing applications and throughput-oriented appli-
cations consist of various number of tasks (kernels and mem-
cpy tasks1), and the duration of each task also varies across
applications. In this experiment, multiple user-facing appli-
cations and throughput-oriented applications submit kernels
and memcpy requests to GPU simultaneously. The details on
the platform and benchmarks can be found in Section 7.1.

2.2 Long Tail Latency and Low Utilization
Interference between co-located applications often incurs
long tail latency for user-facing applications. Figure 2 shows
the QoS violation when a user-facing application is co-
located with throughput-oriented applications on a Nvidia
K40 GPU. In the figure, the x-axis indicates the combina-
tion of user-facing application and throughput-oriented ap-
plication, and the y-axis shows the 99%-ile latency of the
user-facing applications normalized to its QoS target (150
milliseconds [15, 25]). The left part of the figure and the
right part (shadowed part) of the figure show the results
when a user-facing application is co-located with compute
intensive throughput-oriented applications and PCI-e inten-
sive throughput-oriented applications, respectively.

1 A task that runs on processing elements is refer as a kernel and a task that
transfers data through PCI-e bus is refer as a memcpy task.

MPS (Multi-Process Service) scheduling [26] enables
concurrent sharing of a GPU among multiple applications.
As shown in Figure 2(a), the 99%-ile latency of user-facing
queries in 40 out of the 88 co-locations is much larger than
the expected QoS target with default MPS scheduling. The
99%-ile latency of user-facing applications is 10.8x of the
QoS target on average and up to 195.9x in the worst case.

Priority-based scheduling [27] used in TimeGraph [28]
and GPUSync [29] for improving performance of realtime
kernels on accelerators executes high priority kernels first
if multiple kernels are ready to run. Adopting priority-based
scheduling, as shown in Figure 2(b), user-facing applications
in 33 out of the 88 co-locations still suffer from QoS viola-
tion by 1.6x on average (up to 5.2x in the worst case).

The reason priority-based scheduling polices are not ca-
pable to guarantee the QoS of user-facing applications (high
priority) is that they are not aware of the duration of tasks.
Whenever a user-facing application is not submitting kernels
to GPU due to stalls such as CPU synchronization, kernels
of throughput-oriented applications may take over the GPU
resource with long duration and high occupancy. Because
emerging accelerators (e.g., GPU) are non-preemptive, even
if a user-facing kernel becomes ready right after the submis-
sion of the long throughput-oriented kernel, the user-facing
kernel would not be executed until the previous kernel com-
pletes. In this case, long queuing delay is added to the user-
facing kernel, risking QoS violations.

Meanwhile, as shown in Figure 2(c), the end-to-end la-
tency of user-facing queries in some other co-locations is
much smaller than the acceptable QoS target while the GPU
utilization is low. Always prioritizing user-facing kernels
even if the latency is much smaller than the QoS target
wastes the opportunity to improve the utilization. If the ker-
nels are scheduled properly, the QoS headroom can be lever-
aged for higher utilization.

2.3 Root Causes of Long Tail Latency
In order to show the root causes of long tail latency on non-
preemptive accelerators, Figure 3 presents two task execu-
tion timelines captured with nvprof [30] when co-locating
face (user-facing) and four compute intensive application
hw, stemmer (user-facing) and four PCI-e intensive applica-
tion pf (details on benchmarks are shown in Table 3). Note
that the overlapping of green bars in Figure 3(a) is not ker-
nel preemption, but concurrent kernel execution when using
MPS. From the figure we observe that four factors may im-
pact the tail latency of a user-facing application when it is
co-located with other applications.

The duration and occupancy of kernels - If the occu-
pancy of a kernel is high, MPS is not able to overlap the
kernel with its neighbor kernels to boost concurrent kernel
execution. In this case, if the duration of throughput-oriented
kernels is long, the execution of user-facing kernels will be
delayed significantly.

683

Figure 2: QoS violation of user-facing applications and low GPU utilization at co-locations with default MPS scheduling
policy and priority-based scheduling policy.

Figure 3: Kernel execution timeline on GPU and data trans-
fer timeline between host memory and accelerator memory.

The kernel scheduling order - Accelerators, such as
GPUs, schedule kernels in the same order as they arrived
(even if neighbor kernels can run concurrently when the
kernel occupancy is small). If the co-located throughput-
oriented applications submit kernels frequently, the user-
facing application will be delayed by a large amount of
throughput-oriented kernels.

The number of kernels in a user-facing query - The
more kernels a user-facing query has, the longer its tail
latency could be, because every kernel in the user-facing
query can be delayed by throughput-oriented kernels. For
example, as shown in Figure 3(a), every kernel of face is
delayed by at least two kernels of hw.

The contention on PCI-e bandwidth - If throughput-
oriented applications consume high PCI-e bandwidth, user-

facing applications may suffer from slow data transfer due to
the contention on PCI-e bandwidth. For example, as shown
in Figure 3(b), the memcpy task of stemmer is severely
slowed down to more than 1000 milliseconds from only 15
milliseconds when it is running alone. This slow down in
turn results in long tail latency.

2.4 Design Guidelines of Baymax
Based on the identified root causes of long tail latency, to
improve the utilization of non-preemptive accelerator while
guaranteeing the QoS of user-facing applications, we design
and implement Baymax following four guidelines.

• Baymax should be able to predict the duration of each
kernel and memcpy task. In this case, Baymax can quan-
tify the impact of each task on the end-to-end latency of
user-facing applications.

• Baymax should be able to re-order all the kernels issued
to the same accelerator, no matter how they are submitted
by the co-located applications.

• For a user-facing query, Baymax should be able to limit
the overall time delayed by the co-located applications
regardless of the number of kernels in the query.

• Baymax should be able to monitor realtime data transfer
pressure on PCI-e bus and mitigate PCI-e bandwidth
contention.

684

User-facing apps Baymax Runtime System

Throughput-oriented apps

Image
processing

Users

Ready task pool

Real
duration

Voice
recognition

DNN
service

Question-
answer

Duration predictor Task re-orderring engine

p1

pn

…

…

Predict duration Re-order tasks

k1 k2 km
Duration models

Control Feedback

SM

SM
…

Accelerator

PCI-e
Memcpy

Kernel

PCI-e bandwidth
contention

Queuing
delay

Memory

Host side Accelerator side

…

…

Figure 4: Design of Baymax.

3. Baymax Methodology
Figure 4 presents the design overview of Baymax. Limited
by the existing GPU design, there is no open interface to
schedule tasks that are already launched to the GPU. We
therefore design a mechanism to re-order tasks on the CPU
side. If such interface is provided in the future, Baymax can
be implemented directly on accelerators. The re-ordering de-
cision is based on the QoS target of user-facing applications
and the predicted duration of each task.

In Baymax, all the tasks submitted to the accelerator are
first pushed into a ready task pool managed by Baymax on
the CPU side. This is achieved by simple automatic instru-
mentation of the original task submission code. The task
submission rerouting APIs can be provided to programmers
to submit tasks through Baymax. When a task is pushed into
the ready task pool, the task duration predictor first predicts
its duration leveraging regression models (Section 4).

The task re-ordering engine periodically iterates over all
the tasks in the ready task pool and decides whether each
task can be launched to GPU. If the task is a kernel and its
predicted duration is larger than the realtime QoS headroom
of any active user-facing query, the kernel will stay in the
ready task pool. Otherwise, the kernel is launched to GPU
(Section 5). On the other hand, if the task is a memcpy
task, the engine decides whether to launch the task based
on realtime data transfer pressure on PCI-e bus (Section 6).

Baymax incorporates a feedback mechanism to update
the duration models used by the task duration predictor.
Once a task completes, the actual duration of the task is fed
back to the duration predictor to update its duration model.

4. Task Duration Modeling
In this section, we present the modeling methodology used
to predict the duration of GPU tasks.

4.1 Task Duration Predictor
Baymax builds duration models for three types of GPU
tasks: memcpy, native kernel, and library call. Native ker-
nels are the kernels defined by programmers. Besides writing
their own native kernels, an application can also call APIs
defined in highly-optimized GPU libraries (e.g., cuDNN [31]
and cuBLAS [32]). For the three types of GPU tasks, Fig-
ure 5 shows the methodology to predict their duration.

GPU
task

Identify task type

Memcpy

Native kernel

Library call

Extract features

Data size
Transfer direction
Data storage type

Input data size
Grid size, Block size
Shared memory size

All the parameters

Predict with models

k1 k2

ki kn

l1

lj lm

l2

Predicted
duration

GPU
task

HtoD (pageable/pinned)

DtoH (pageable/pinned)

Figure 5: Predict the duration of GPU tasks (memcpy, native
kernel, and library call).

When a task is submitted to Baymax, the duration predic-
tor identifies the type of the task, extracts the representative
features, and selects pre-trained duration model according to
the name of the GPU task (function name for native kernels
and API name for library calls). Once the duration model is
found, Baymax predicts the duration of the task using the
extracted features and the model, and attaches the predicted
duration to the task. After that, the task is pushed into the
ready task pool waiting for launching to GPU.

4.2 Selecting Representative Features
It is challenging to predict the duration of GPU tasks because
there is very limited information we can obtain at runtime.
Although nvprof [30] provides comprehensive performance
metrics after measuring the entire task execution, no perfor-
mance information can be accessed before the task is exe-
cuted. It is not applicable to rely on these metrics to predict
the duration of GPU tasks.

Table 1: Features selected for different types of tasks.

Task Type Features Dimension

Memcpy
Data size 1

Data transfer direction 1
Data storage (pageable/pinned [33]) 1

Native kernel
Input data size 1

Grid size (X ⇥ Y ⇥ Z) 3
Block size (X ⇥ Y ⇥ Z) 3

Size of required shared memory 1
Library call All the parameters /

The only information we can obtain before a GPU task
is executed includes its configurations (e.g., grid size, block
size etc.) and the parameters passed to the task. We further
select the information that strongly impact a task’s duration
on GPU (e.g., input scale and task configurations) as rep-
resentative features. Empirically, to capture the correlation
between features of a GPU task and its duration, as listed
in Table 1, we select different features for different types of
GPU tasks.

For a memcpy task, we select data size, data transfer
direction and data storage type as its representative features.
Data to be transferred from/to GPU can be stored in either
pageable memory or pinned memory [33]. It is much faster
(around 4x faster) to transfer data from pinned memory
compared with pageable memory while more time is needed
to initialize pinned memory when it is allocated.

685

For a native kernel, we use kernel configuration and input
data size as the features. The grid size and the block size
determine the scale of thread level parallelism on GPU and
the GPU occupancy of the kernel, which significantly affect
its duration; the size of required shared memory (both static
shared memory and dynamic shared memory) reflects the
efficiency of the kernel leveraging the memory hierarchy on
GPU. We train different duration models for native kernels
executing different functions, because they often have totally
different characteristics.

A library call may consist of multiple kernels, while the
actual kernels and their configurations are hidden behind
the API. Therefore, we treat all the kernels in a library
call as a whole, and use all the parameters of the API as
its representative features. For several widely used libraries
(i.e., cuBLAS and cuDNN), we only need to train models
for them once and use the models in all applications.

Besides fine-grained GPU tasks, the duration predictor
also predicts the solo-run duration of each user-facing query
when the query is first launched. For a user-facing query, we
select its input data size as its representative feature.

4.3 Low Overhead Prediction Models
The QoS target of a user-facing query is in the granularity
of hundreds of milliseconds to support smooth user interac-
tion [15, 25]. Therefore, choosing the modeling techniques
with low computation complexity and high prediction accu-
racy for the online duration predictor becomes critical.

We evaluated a spectrum of widely used prediction mod-
els (e.g., Linear Regression (LR) [34], Approximate Nearest
Neighbor (ANN) [35], K-Nearest Neighbor (KNN) [36] and
Support Vector Machines (SVM) [37]) to predict task du-
ration and eventually selected LR and KNN for their high
accuracy and low overhead. While LR assumes the linear re-
lationship between input and output variables, KNN regres-
sion holds no such assumption. Therefore using both LR and
KNN allows us to achieve accurate prediction for both linear
and non-linear relations. Other evaluated models either re-
quire longer calculation time with no accuracy improvement
(e.g., SVM), or cannot provide satisfactory accuracy (e.g.,
ANN). Both KNN and LR achieve low prediction overhead.
According to our measurement on real hardware, the dura-
tion prediction overhead with KNN model and LR model in
Baymax is under 0.05 millisecond.

Suppose a task has p representative features. Let X
i

rep-
resent an input sample with p features (x1, x2, ..., xp

), and n

represent the total number of input samples (i = 1, 2, ..., n).
The linear regression model is defined as Equation 1, and the
Euclidean distance for KNN model between sample X

i

and
X

l

(l = 1, 2, ..., n) is defined as Equation 2. In our case, the
input is the task features and the output is the predicted task
duration. The primary computation of KNN is to calculate
the Euclidean distance between the predicting and training
samples, which can be accelerated with different tree search-
ing algorithms such as K-D tree and ball tree. We pick the
most efficient KNN searching algorithm when training pre-

diction model according to the number of samples and the
number of features in every sample.

y

i

= �1xi1 + ...+ �

p

x

ip

+ "

i

, i = 1, ..., n (1)

d(X
i

, X

l

) =
q

(x
i1 � x

l1)2 + ...+ (x
ip

� x

lp

)2 (2)

4.4 Minimizing Prediction Error
To achieve high prediction accuracy, we apply both KNN
and LR to each task in both user-facing and throughput-
oriented applications, and choose the model that fits the
data most to predict the task duration at runtime. As shown
in Section 7.2, LR model and KNN model achieve dif-
ferent prediction accuracy for user-facing applications and
throughput-oriented applications respectively. Since the du-
ration models are trained offline with the profiled perfor-
mance samples from the workloads, more sample data is
usually effective to improve the accuracy of the duration
models. Especially, in WSCs, the workloads become stable
after certain time scale and the models become more accu-
rate with periodical updates. Moreover, the duration predic-
tor detects the prediction deviation at runtime. If the devia-
tion exceeds a certain threshold, incremental update [38] and
parallel update [39] can be applied during runtime with low
overhead to refine the duration models, which continuously
improves the accuracy of the duration prediction.

5. Task Re-ordering Mechanism
In this section, we describe the mechanism used to re-order
native kernels and library calls in Baymax. For ease of de-
scription, a kernel can be either a native kernel or a library
call in this section.

5.1 Breaking Down the End-to-End Latency
It is important to understand the end-to-end latency break-
down of a user-facing query when it is co-located with other
applications before diving into the task re-ordering policy.
We first assume the co-located applications do not contend
for PCI-e bandwidth (to be mitigated in Section 6).

Figure 6 presents the end-to-end latency breakdown of a
user-facing query Q when it is co-located with other appli-
cations. The end-to-end latency of a query is the time from
the first kernel of the query is issued to the last kernel of the
query is returned. As shown in the figure, Q’s end-to-end la-
tency is composed of three parts. The first part is the process-
ing time of the queued kernels (black kernels in Figure 6)
that are issued before k1 gets executed (denoted by T

q

). The
second part is the processing time of Q’s own kernels (de-
noted T

self

). The last part is the processing time of the ker-
nels (line-filled and white kernels) from the co-located ap-
plications between k1 and k

n

(denoted by T

other

).

5.2 Re-ordering Native Kernels and Library Calls
Let T

tgt

represent the QoS target of query Q. Only if T
self

+
T

q

+ T

other

 T

tgt

, Q’s QoS is satisfied. In the equation,

686

k1

Time line
k1

… kn

kn

Query Q

…

Delay Delay

…

end-to-end latency of Q
Ttarget

Query
Qi

Delay

Td

Completed
Kernel of Q
Kernel of other apps

Kernel of Qi

Queued kernel

Figure 6: Calculating QoS headroom of Q when its first
kernel is launched.

T

self

is predicted according to the prediction model pro-
posed in Section 4. In this case, to guarantee Q’s QoS, the
task re-ordering engine in Baymax monitors T

q

and reduces
T

other

as follows.

5.2.1 Monitoring Queued Time
To estimate the queuing delay a user-facing query will expe-
rience, T

q

, Baymax sums up the predicted duration of all the
kernels that are already issued to GPU by our re-ordering
engine but are not yet executed (still waiting in the GPU
queue). Specifically, once a kernel is issued to GPU, we
add its predicted duration to T

q

, the duration of all the un-
executed kernels on GPU. Once a kernel completes, we sub-
tract its predicted duration from T

q

.
To eliminate the situation that a user-facing query is sig-

nificantly delayed by the queued-up kernels on GPU, even
if no active user-facing query is running on the GPU, Bay-
max makes sure that T

q

is smaller than the QoS target T
tgt

.
If T

q

> T

tgt

, Baymax would not issue any kernel to GPU
until some kernels complete. This method would not reduce
the GPU utilization because the kernel will be queued up on
GPU even if it is issued to GPU.

5.2.2 Calculating QoS Headroom
As discussed above, T

self

and T

q

are known and cannot be
reduced when Q is launched. In this case, to guarantee Q’s
QoS, Baymax makes sure that T

other

 T

tgt

� T

self

� T

q

.
We use T

hr

to represent the free GPU time left for kernels
from the co-located applications during the execution of Q
(referred as QoS headroom). When the first kernel of Q is
launched, T

hr

= T

tgt

� T

self

� T

q

.
Based on T

hr

, the task re-ordering engine periodically
iterates over the ready task pool to check whether each
kernel can be safely issued to GPU without causing any QoS
violation. Suppose the predicted duration of a kernel is t. If
t is larger than T

hr

, the kernel is delayed until Q completes.
On the other hand, if t is smaller than T

hr

, the kernel is
launched to GPU, and at the same time, T

hr

is reduced by t.

5.2.3 Dealing with Multiple Active User-facing Queries
When multiple user-facing queries are active, more com-
plexity is introduced when calculating the headroom of each
user-facing query. Figure 6 describes the method to calculate
T

hr

of query Q when multiple user-facing queries are active.
As shown in the figure, if query Q

i

is still active when the

first kernel of query Q is launched, the un-executed kernels
of Q

i

have to be completed before T

d

so that the QoS of Q
i

is satisfied. In this case, when we calculate T

hr

for Q, the
GPU time reserved by the un-executed kernels of Q

i

need
to be subtracted from T

tgt

as well. Therefore, we monitor
the GPU time each active query still needs to complete the
whole query. For Q

i

in Figure 6, we estimate Q
i

’s remaining
GPU time by subtracting the time of its completed kernels
from its estimated overall GPU time (T

self

of Q
i

).
Suppose there are n active user-facing queries when Q is

launched. Let t1, ..., t
n

represent the remaining GPU time
required by the n active user-facing queries respectively.
Equation 3 calculates Q’s QoS headroom when it is issued.

T

hr

= T

tgt

� T

q

� T

self

�
nX

i=1

t

i

(3)

When multiple queries are active, if the predicted dura-
tion of a kernel (denoted by t) is larger than the QoS head-
room of any active query, the kernel will be delayed. Other-
wise, the kernel is launched and the QoS headroom of each
user-facing query is reduced by t.

It is worth noting that Baymax would not result in starva-
tion of any user-facing query even if multiple queries are ac-
tive concurrently. User-facing kernels are issued in an FIFO
order and a throughput-oriented kernel can be issued only
when it will not result in QoS violation of any active user-
facing query.

5.3 Utilizing Concurrent Kernel Execution
In Section 5.2, we assume that a GPU is not able to concur-
rently execute multiple kernels. Actually, leveraging emerg-
ing MPS technique [26], a GPU is able to execute multiple
independent kernels that have low occupancy concurrently.

When concurrent kernel execution happens, T
hr

calcu-
lated in Equation 3 is smaller than the real GPU time avail-
able for the co-located applications. In this case, the GPU
utilization is not maximized because there is actually more
GPU time can be used to process throughput-oriented ap-
plications while guaranteeing the QoS of all the active user-
facing queries.

To further increase GPU utilization when MPS is enabled,
as shown in Figure 7, when kernel k

i

of Q is submitted to the
ready task pool, Baymax updates the QoS headroom of Q.
In this way, the time saved from previous concurrent kernel
execution can be refilled to the QoS headroom for executing
throughput-oriented applications. Based on Equation 3, the
QoS headroom of Q when it submits k

i

can be calculated in
Equation 4.

T

hr

= (T
tgt

�T

used

)�T

q

� (T
self

�
iX

j=1

T

j

)�
nX

i=1

t

i

(4)

In the equation, T
j

is the processing time of kernel k
j

,
T

self

�
P

i

j=1 Tj

is the remain GPU time reserved by Q

itself, T
used

is the time from the beginning of Q to k

i

is

687

k1

Time line
k1

… kn

kn

Query Q

Ttgt

Tused

ki

ki

Tq

…

Figure 7: Updating QoS headroom of Q when it submits k
i

,
if concurrent kernel execution is enabled.

submitted, T
q

is the realtime queuing time, t
i

is the remain-
ing GPU time required by the active user-facing queries
launched before Q as calculated and defined in Section 5.2.3.

In summary, the QoS headroom of a user-facing query
will be updated when a kernel of the co-located applications
is launched to GPU and when a new kernel of the query is
submitted to the ready task pool.

6. Mitigating PCI-e Bandwidth Contention
Even if the native kernels/library calls are re-ordered as pre-
sented in Section 5, without considering PCI-e bandwidth
contention, user-facing applications may still suffer from se-
vere QoS violation. In this section, we analyze the impact of
PCI-e bandwidth contention on CPU-accelerator data trans-
fer rate per memcpy task and mitigate the contention for
achieving QoS of user-facing applications.

6.1 Characterizing PCI-e Bandwidth Contention
Figure 8 reports the data transfer rate of a user-facing appli-
cation stemmer when it is co-located with several applica-
tions that transfer data in the same direction. Data transfers
in different directions do not interfere with each other, be-
cause PCI-e bus supports full-duplex communication. In the
figure, the legends show the data transfer direction. For ex-
ample, “HtoD pageable pinned” means stemmer transfers
data from pageable memory to GPU, while the co-located
applications transfer data from pinned memory to GPU.
From the experiment, we have two main observations.

Observation 1: Transferring data from and to pageable
memory degrades the performance of its co-located memcpy
tasks only when more than three memcpy tasks are running
concurrently (“* * pageable” in Figure 8). As shown in the
figure, when stemmer uses pageable memory and transfers
data through PCI-e bus alone, the achieved data transfer
rate is 3,150MB/s. Because the theoretical peak bandwidth
of 16x PCI-e 3.0 bus used in our platform is 15,800MB/s
and the effective bandwidth is 12,160MB/s [40], the bus can
only support b 12160

3150 c = 3 memcpy tasks to transfer data in
their full speeds in the same direction. We generalize this
observation in Section 6.2.

Observation 2: A single memcpy task that transfers data
from/to pinned memory would severely degrade the perfor-
mance of its co-located memcpy tasks (“* * pinned” in Fig-
ure 8). As shown in the figure, transferring data from/to
pinned memory requires up to 11,883MB/s PCI-e band-

Figure 8: Data transfer rate of stemmer when it is co-located
with applications that transfer data in the same direction.

width, which saturates the whole PCI-e bus. In this case, all
the other memcpy tasks will be queued up and have to wait
for its completion.

6.2 Managing Memcpy Tasks
Baymax mitigates QoS violations due to PCI-e bandwidth
contention by reducing the number of concurrent memcpy
tasks and considering data transferring delay when calculat-
ing QoS headroom for active user-facing queries.

Let BW

peak

represent the effective PCI-e bandwidth,
BW

memcpy

represent the peak data transfer rate from/to
pageable memory per memcpy task. According to our obser-
vation 1, to make sure that memcpy tasks of user-facing ap-
plications can always transfer data in full speed, Equation 5
calculates the number of active throughput-oriented mem-
cpy tasks N

tr

that Baymax should allow in each direction.
For our platform N

tr

is two.

N

tr

= bBW

peak

/BW

memcpy

c � 1 (5)

Baymax periodically iterates over the ready task pool to
check whether each memcpy task can safely start to trans-
fer data. If the memcpy task is from a throughput-oriented
application and there are already N

tr

active memcpy tasks,
the task is delayed until one memcpy task completes. If the
memcpy task is from a user-facing query, it is directly issued
to GPU to minimize queuing delay.

According to the second observation, if a memcpy task
mc uses pinned memory, it may severely delay the data
transfer of user-facing queries. Let t represent the predicted
duration of mc. If t is larger than the QoS headroom of any
active user-facing query, mc will not be launched. Otherwise,
mc can start to transfer data, but to avoid QoS violation
due to the possible queuing delay caused by mc, the QoS
headroom of every active user-facing query is reduced by t.
This method would not degrade the accelerator utilization. If
mc does not cause severe queuing delay, the QoS headroom
of each active user-facing query will be refilled when a new
task is launched as described in Section 5.3.

7. Evaluation
7.1 Experimental Setup
We evaluate Baymax using Nvidia GPU K40. Note that Bay-
max does not rely on any special hardware features or char-
acteristics of K40 and treats it as a generic non-preemptive

688

accelerator. The detailed setups are summarized in Table 2.
MPS [26] is enabled to allow concurrent kernel execution
on GPU. As listed in Table 3, We use Tonic suite [24] in
DjiNN and Sirius suite [11] in Sirius as the user-facing
applications; use eight most compute intensive and three
most PCI-e intensive applications from Rodinia [41] as
throughput-oriented applications. In order to evaluate the
impact of memcpy tasks using both pageable memory and
pinned memory, we configure hs to use pageable memory,
pf and nw to use pinned memory. To construct the training
and testing data sets for our prediction models, we collect a
large amount of samples, and randomly choose 90% of the
samples to train the model and use the rest to test. For KNN
model, we choose the number of nearest neighbors to be 5
(K = 5).

Table 2: Hardware and software specifications.

Specifications

Hardware CPU Intel Xeon E5-2620 @ 2.10GHz
Nvidia GPU Tesla K40

Software CentOS 6.6 x86 64 with kernel 2.6.32-504
CUDA Driver 340.29, CUDA SDK 6.5, CUDA MPS

Table 3: Benchmarks used in the experiment.

Benchmark Suite Workloads
Sirius suite in Sirius [11] asr, gmm, stemmer
Tonic suite in DjiNN [24] dig, face, imc, ner, pos

Rodinia [41]

heartwall (hw), lavaMD (md), cfd
hybridsort (hsort), streamcluster (sc), srad,

leukocyte (lc), myocyte (mc),
hotspot (hs), nw, pathfinder (pf)

Throughout this section, the QoS is defined as the 99%-
ile latency, and the accelerator utilization is measured as the
ratio of throughput-oriented application execution time to
the whole co-location execution time. The prediction error
for the duration of task t (memcpy, native kernel or library
call) is calculated in Equation 6.

Err

t

=

���Duration

predicted

t

�Duration

measured

t

���
Duration

measured

t

(6)

7.2 Task Duration Prediction
In this section, we first evaluate the accuracy of the task
duration predictor in Baymax. The representative features
for different types of tasks are listed in Table 1.

7.2.1 Prediction for Memcpy
In order to build duration models for memcpy tasks, we
create a micro kernel to transfer data between main memory
and GPU global memory with arbitrary input sizes. The
range of data transfer size in our experiment reflects the
actual size of memcpy tasks cross all the benchmarks. As
shown in Figure 9(a), with the tested data size profiled from
all the benchmarks, LR model is able to accurately predict
the duration of memcpy across all workloads, which also in
accordance with existing literature. The average prediction

Figure 9: Prediction error for the duration of memcpy tasks
and library calls. In (a), the x-axis is the size of data to be
transferred (KB); In (b), the x-axis is the library calls. Bay-
max achieves 3.2% and 6.2% prediction errors on average
for memcpy and library call respectively.

Figure 10: Prediction error for the duration of Sirius, Tonic,
and native kernels in Rodinia. KNN model achieves 7.2%
prediction error for Rodinia; LR model achieves 5.8% pre-
diction error for Sirius suite and Tonic suite.

error is smaller than 3.2%, when the duration is longer than
two milliseconds. Thus, Baymax uses LR to predict the
duration of memcpy tasks.

7.2.2 Prediction for Library Call
Library calls take a large portion of GPU execution time
across emerging user-facing applications. All the library
APIs used in the benchmarks are listed in Table 4. These
library calls control which kernel to launch as well as the
launch configuration with detailed information hidden be-
hind the APIs.

Table 4: Frequently used library APIs.

Library API Name
cuBLAS [32] sgemm/dgemm

cuDNN [31] convolutionForward, addtensor4d
poolingForward, activationForward, softmaxForward

To build duration model for a library call, we analyze ev-
ery parameter to the library call according to its API def-
inition and extrapolates the size of the input based on the
number as well as the data type of the input parameters. Us-
ing the input size as the representative feature available at
runtime, the prediction fits well into linear regression model

689

Figure 11: Normalized average latency, 99%-ile latency of user-facing queries, and accelerator utilization when user-
facing applications are co-located with compute-intensive throughput-oriented applications. Different from Baymax,
Baymax-NC does not consider concurrent kernel execution.

as shown in Figure 9(b), which is consistent with the find-
ings in prior work [31, 42]. Across all the 180 calls of the
library APIs in all the benchmarks, our models can precisely
predict the duration of library calls with the prediction er-
ror smaller than 6.2%, when the duration is longer than two
milliseconds.

If the duration of a library call or a memcpy task is shorter
than two milliseconds, even if its duration is not predicted
precisely, it will not affect the latency of the co-located
applications seriously.

7.2.3 Prediction for Native Kernel
The behaviors of native kernels are quite diverse across
benchmark suites. While Rodinia is composed of classic
HPC workloads that exhibit high thread level divergence on
GPU, workloads in Sirius and Tonic are speech recognition,
nature language processing and DNN computation that rely
on large matrix multiplication with almost no divergence.
To build duration models for native kernels, we collect per-
formance samples, including features and duration, using
nvprof [30]. Note that most of the workloads in Rodinia con-
tain iterative kernel invocations in their implementations and
we treat each kernel invocation as an individual sample. To
provide rigid validation, we use different samples to train
model and to evaluate prediction accuracy.

As shown in Figure 10, no single regression model fits
both user-facing and throughput-oriented applications per-
fectly. In general, KNN works better than LR for Rodinia
since in some cases (e.g., hs and md) the prediction of LR
goes extremely wrong. This observation reveals that the du-

ration of a kernel and its inputs do not always have a linear
relationship. Whereas for Tonic suite and Sirius suite, the
computation is more regular and predictable, LR has more
advantage over KNN with a constrained sample dataset. The
average prediction error of KNN for the kernels in Rodinia
is 7.2% on average, and the prediction error of LR for Sirius
suite and Tonic suite is 5.8% on average.

7.3 QoS and Throughput
In this section, we evaluate the effectiveness of Baymax
in increasing the accelerator utilization while satisfying the
QoS requirement of emerging user-facing applications.

Figure 11 presents the average latency, 99%-ile latency
of user-facing queries, and the improved accelerator uti-
lization when user-facing applications are co-located with
throughput-oriented applications. In the figure, “Baymax”
updates the QoS headroom of each user-facing query when a
new kernel is issued to squeeze the extra QoS headroom ben-
efited from concurrent kernel execution as presented in Sec-
tion 5.3. “Baymax-NC”, on the contrary, does not squeeze
the extra QoS headroom.

Figure 11(a) and Figure 11(b) show that both Baymax-
NC and Baymax are able to effectively satisfy the QoS
for user-facing applications under different pair-wise co-
locations. On the contrary, default MPS scheduling [26] and
priority-based scheduling [28, 29] cannot satisfy the QoS
for user-facing applications as presented in Figure 2 in Sec-
tion 2. With MPS scheduling and priority-based scheduling,
the 99%-ile latency of user-facing queries is up to 195.9x
and 5.2x of the QoS target, respectively.

690

Figure 12: Normalized average latency, 99%-ile latency of
user-facing queries, and accelerator utilization when user-
facing applications are co-located with PCI-e intensive
throughput-oriented applications. Different from Baymax,
Baymax-NP does not mitigate PCI-e bandwidth contention.

Figure 11(a) and (b) also show that the average la-
tency and 99%-ile latency of user-facing queries in Bay-
max is higher than in Baymax-NC. This is because Bay-
max squeezes more QoS headroom to trade off higher GPU
utilization. As shown in the Figure 11(c), Baymax-NC in-
creases the accelerator utilization by 70.8% on average, and
Baymax further increases the average accelerator utilization
by 11.4%. The reason of utilization increasing is that Bay-
max can utilize the saved GPU time from concurrent kernel
execution to execute more throughput-oriented kernels.

Observed from Figure 11, for some co-location pairs
(e.g., dig+hsort and ner+hw), the accelerator utilization is
not increased using Baymax compared to Baymax-NC. This
is because the kernels of these throughput-oriented applica-
tions have large GPU occupancy. In this case, MPS does not
have chance to execute multiple kernels concurrently and
Baymax cannot squeeze extra GPU time for throughput-
oriented applications.

7.4 Mitigating PCI-e Bandwidth Contention
As presented in Section 6, Baymax also mitigates PCI-e
bandwidth contention for achieving QoS of user-facing ap-
plications. Figure 12 shows the average latency and 99%-ile
latency of user-facing queries when they are co-located with
PCI-e intensive throughput-oriented applications. As shown
in the figure, the QoS requirement of user-facing queries
cannot be satisfied if PCI-e bandwidth contention is not mit-
igated (shown as “Baymax-NP” in Figure 12). As shown in
the figure, user-facing queries still suffer from up to 5.1x
QoS violation in Baymax-NP.

Even if a user-facing application is not PCI-e intensive,
its occasional data transfer can be severely delayed by mem-

Figure 13: Normalized average latency, 99%-ile latency of
user-facing queries, and accelerator utilization when each
user-facing application is co-located with all the throughput-
oriented applications.

cpy tasks from throughput-oriented applications. For exam-
ple, while less than 10% of GPU time is spent on PCI-e data
transfer for imc and face, they still suffer from severe QoS
violation due to the unmanaged and unpredicted PCI-e band-
width contention in Baymax-NP.

Figure 12(c) shows that the accelerator utilization in
Baymax and Baymax-NP are similar for most of the co-
locations. This is mainly because existing emerging user-
facing applications do not transfer data between CPU and
GPU frequently, and the duration of their memcpy tasks is
often less than 10 milliseconds (Figure 9). In this case, the
memcpy tasks in throughput-oriented applications will not
be delayed seriously and the accelerator utilization is not re-
duced seriously in Baymax compared with in Baymax-NP.

7.5 Beyond Pair-wise Co-locations
To evaluate the robustness of Baymax in dealing with more
complex co-location scenarios, we pick all the Rodinia
benchmarks in Table 3 to form a mixture of throughput-
oriented applications, and co-locate them all with the user-
facing applications from both Sirius suite and Tonic suite.

We report the normalized average latency and 99%-ile la-
tency of user-facing queries, and accelerator utilization in
this scenario in Figure 13. As shown in the figure, Baymax
is robust enough to increase the accelerator utilization while
guaranteeing the QoS of user-facing applications. The aver-
age latency and 99%-ile latency of user-facing applications
with Baymax and Baymax-NC are always within the QoS
target as shown in Figure 13(a) and Figure 13(b). On the
contrary, Baymax-NP cannot satisfy the QoS of user-facing
application (up to 1.6x QoS violation in terms of 99%-ile
latency) due to the unawareness of PCI-e bandwidth con-
tention. Compared with Baymax-NP, Baymax can achieve

691

similar utilization improvement while satisfying the QoS of
all the user-facing applications. Compared with Baymax-
NC, Baymax can further increase the average accelerator uti-
lization from 81.2% to 87.4% as shown in Figure 13(c).

7.6 Applying Baymax in a WSC
In this section, instead of evaluating Baymax on a single
GPU, we conduct experiments to evaluate the effectiveness
of Baymax in a GPU-outfitted datacenter scenario. In the
experiment, we model a datacenter composed of 800 Nvidia
K40 GPUs, 100 GPUs for each type of user-facing applica-
tions in Sirius suite and Tonic suite. The throughput-oriented
workloads are composed of 8000 instances (10 instances as-
signed to each GPU) evenly selected from Rodinia shown
in Table 3. In the experiment, we use pair-wise co-locations,
and randomly select throughput-oriented applications to co-
locate with each user-facing application.

Figure 14 shows the percentage of co-locations that suffer
from QoS violation under different scheduling policies. The
first three bars present QoS violation when co-located appli-
cations on each GPU are scheduled using the default MPS
scheduling policy, priority-based scheduling policy and Bay-
max, respectively. As shown here, 55% of the user-facing
applications suffer from severe QoS violations(>40% degra-
dation) with MPS scheduling, and 37.5% with priority-based
scheduling. On the contrary, Baymax is able to maintain the
QoS of user-facing applications for most co-locations. Less
than 5% of user-facing applications suffer from insignificant
QoS violations (less than 2% degradation) with Baymax.
In addition to randomly mapping jobs at the cluster level
to each GPU (the first three bars), we also present data for
Baymax when the cluster-level job mapping is done using
Hungarian algorithm [43]. When the accelerator utilization
for each co-location pair with Baymax is known through
profiling, Hungarian algorithm, a combinatorial optimiza-
tion algorithm can be used at the cluster level to select the
best mapping of applications to the GPUs that achieve the
highest utilization (Denoted by “Baymax+Hungarian”). In
other words, this presents the best case utilization Baymax
can achieve. As shown here, Baymax+Hungarian also only
incur negligible QoS violation.

Figure 15 presents the accelerator utilization of GPUs
when the co-located applications are scheduled with MPS
scheduling, priority-based scheduling, and Baymax. As
shown in the figure, Baymax significantly improves accel-
erator utilization by selecting appropriate co-locations and
scheduling tasks appropriately. On average, Baymax is able
to achieve 79.9% accelerator utilization improvement at the
WSC level. If Hungarian algorithm is applied to choose
co-location pairs at WSC level and Baymax is applied to
schedule tasks on the same GPU, the average accelerator
utilization is further increased to 91.3%.

Figures 14 and 15 show that Baymax is effective at signif-
icantly improving accelerator utilization while guaranteeing
the QoS of user-facing applications at the WSC level. On the
contrary, default MPS scheduling policy and priority-based

Figure 14: Percentage of QoS violation in all scheduled co-
locations when using MPS scheduling policy, priority-based
scheduling policy, and Baymax.

Figure 15: Percentage of accelerator utilization of each
GPU at different levels when using MPS scheduling policy,
priority-based scheduling policy, and Baymax.

scheduling policy result in severe QoS violation and low uti-
lization.

8. Related Work and Limitations
In this section, we discuss the state-of-the-art techniques and
their limitations.

8.1 Improving CPU Utilization
There has been a large amount of prior work focusing on
improving application QoS and hardware utilization [18,
20, 21, 23, 46]. Recently, techniques have been proposed
to improve CPU utilization while guaranteeing the QoS re-
quirement of high priority user-facing applications. Bubble-
Up [18] and Bubble-Flux [20] identify “safe” co-locations
that bound performance degradation while improving chip
multiprocessor utilization. SMiTe [23] further extends Bubble-
Up and Bubble-Flux to predict performance interference be-
tween applications on simultaneous multithreading (SMT)
processors. However, all these interference prediction tech-
niques do not apply to non-preemptive accelerators.

Some other prior scheduling infrastructures, such as
Loadleveler [44] and Maui [47], attempt to increase the hard-
ware utilization by allocating jobs to servers using backfill-
ing scheduling algorithm [48]. These infrastructures require
users to provide resource requirement of every job. More-
over, as these techniques overlook the interference between
co-located jobs, for example, PCI-e bandwidth contention
is not considered, they are not able to guarantee the QoS of
user-facing applications on accelerators.

692

Table 5: Comparison between Baymax and prior work

Loadleveler [44] GPUSync [29] Bubble-Flux [20] GPU-EvR [45] SMiTe [23] Quasar [21] TimeGraph [28] Baymax
QoS awareness 3 3 3 3 3
Improved utilization 3 3 3 3 3
Work on accelerator 3 3 3 3
Commodity HW/driver 3 3 3 3 3 3
Mitigated PCI-e contention 3
No user-provided info. 3 3 3 3
Concurrent kernel exec. 3 3
Adaptive 3 3 3 3 3 3 3

In addition to backfilling scheduling policy, rate mono-
tonic scheduling algorithm [49, 50] and its variations [51,
52] are proposed to schedule periodical tasks with different
priorities in embedded systems. In rate monotonic schedul-
ing, shorter tasks are given higher priorities to be sched-
uled earlier. These scheduling algorithms assume that the
inter-arrival rate of every task is fixed and the duration of
every task is known before scheduling. However, in real
world datacenters, the duration of user-facing queries and
the inter-arrival rate of queries may vary significantly at run-
time, therefore these scheduling algorithms do not apply to
those real-world datacenter scenarios.

8.2 Scheduling on Accelerator
Realtime scheduling on accelerator is another research di-
rection related to Baymax. Prior work [28, 29, 53, 54] has
proposed techniques to improve the performance of tradi-
tional realtime GPU tasks (e.g., frames per second for video
processing) when they are co-located with other GPU tasks.
TimeGraph [28] and GPUSync [29] use priority-based poli-
cies to manage kernel execution on GPUs. High priority ker-
nels are executed first if multiple kernels are launched to
the same GPU. GPU-EvR [45] maps concurrent applications
to different streaming multiprocessors (SMs) on the same
GPU. These techniques assign a fix proportion of GPU time
to high priority tasks but cannot guarantee that the realtime
tasks do not violate the QoS requirement [45]. In addition,
these techniques rely on users to provide task arrival rate,
length of time window and the expected GPU time for each
type of GPU tasks. Such information is often unavailable
in real datacenter environment. In addition, these techniques
focus on increasing throughput for high priority tasks, over-
looking the long tail latency problem, which is more critical
for user-facing applications.

At the hardware level, GPU thread preemption [55, 56] is
also proposed to intelligently schedule threads for improved
hardware utilization. Tanasic et al. [57] proposed a technique
that improves performance of high priority processes by
enabling preemptive scheduling on GPUs. The proposed
technique requires vendors to add extra hardware extensions
and does not work on commodity accelerators. Aguilera
et al. [54] proposed a technique to guarantee QoS of high
priority tasks by spatially allocating them more SMs on a
GPU. This work assumes that programmers can decide how
to allocate SMs to the co-located applications. However,

commodity GPUs do not support allocating a set of SMs to
a specific application.

Other techniques improve application performance on
GPUs through addressing the problems of data transfer [58,
59], thread divergence [60], data placement [61], synchro-
nization overhead [62] and configuration tuning [63, 64].
GPU resource sharing has been studied at both system [65,
66] and architecture levels [67, 68] to address the resource
contention and performance interference. Table 5 compares
our proposed technique, Baymax, with prior utilization im-
proving techniques and GPU scheduling techniques.

9. Conclusion
Baymax improves the hardware utilization in WSCs while
guaranteeing the QoS requirement of user-facing applica-
tions on the non-preemptive accelerator. To achieve the
above purpose, Baymax enables precise kernel duration pre-
diction, QoS aware kernel re-ordering, and PCI-e bandwidth
contention aware data transfer management. Through eval-
uating Baymax with emerging user-facing workloads, we
demonstrate the effectiveness of Baymax in eliminating QoS
violation due to kernel interference and PCI-e bandwidth
contention. We achieve up to 91.3% utilization improvement
on average for pair-wise co-locations at the WSC level. Be-
yond the pair-wise co-locations, Baymax can improve the
accelerator utilization by 87.4% without violating the QoS
of 99%-ile latency for user-facing applications.

10. Acknowledgements
We thank our anonymous reviewers for their feedback and
suggestions. This work was partially sponsored by Google
and by the National Science Foundation (NSF) under grant
CNS-CSR-1419243. We also would like to acknowledge
Xayden, born 5 weeks before the deadline, for being an
awesome and easy baby.

References
[1] David Huggins-Daines, Mohit Kumar, Arthur Chan, Alan W

Black, Mosur Ravishankar, and Alex I Rudnicky. Pocket-
sphinx: A Free, Real-time Continuous Speech Recognition
System for Hand-Held Devices. In International Conference
on Acoustics, Speech and Signal Processing (ICASSP), vol-
ume 1, pages 185–188. IEEE, 2006.

[2] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukáš Bur-
get, Ondřej Glembek, Nagendra Goel, Mirko Hannemann,

693

Petr Motlı́ček, Yanmin Qian, Petr Schwarz, et al. The Kaldi
Speech Recognition Toolkit. 2011.

[3] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf:
Speeded Up Robust Features. In Computer Vision–ECCV
2006, pages 404–417. Springer, 2006.

[4] Qualcomm Acquires Kooaba Visual Recognition Company.
http://mobilemarketingmagazine.com/qualcomm-acquires-
kooaba-visual-recognition-company.

[5] Erik F Tjong Kim Sang and Sabine Buchholz. Introduction to
the CoNLL-2000 Shared Task: Chunking. In the 2nd Work-
shop on Learning Language in Logic and the 4th Confer-
ence on Computational Natural Language Learning-Volume
7, pages 127–132. Association for Computational Linguistics,
2000.

[6] Marti A Hearst. ’Natural’ Search User Interfaces. Communi-
cations of the ACM, 54(11):60–67, 2011.

[7] Google’s Google Now. http://www.google.com/

landing/now/.
[8] Microsoft’s Cortana. http://www.windowsphone.com/

en-us/features-8-1.
[9] Apple Siri. https://www.apple.com/ios/siri/.

[10] Baidu YuYin. http://yuyin.baidu.com/.
[11] Johann Hauswald, Michael A. Laurenzano, Yunqi Zhang,

Cheng Li, Austin Rovinski, Arjun Khurana, Ron Dreslinski,
Trevor Mudge, Vinicius Petrucci, Lingjia Tang, and Jason
Mars. Sirius: An Open End-to-End Voice and Vision Personal
Assistant and Its Implications for Future Warehouse Scale
Computers. In the 20th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS). ACM, 2015.

[12] Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek
Chiou, Kypros Constantinides, John Demme, Hadi Es-
maeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal, Jor-
dan Gray, et al. A Reconfigurable Fabric for Accelerating
Large-scale Datacenter Services. In the 41st International
Symposium on Computer Architecture (ISCA), pages 13–24.
ACM/IEEE, 2014.

[13] Nicola Jones. The Learning Machines, 2014.
[14] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. The

Datacenter as a Computer: An Introduction to the Design of
Warehouse-Scale Machines. Synthesis Lectures on Computer
Architecture, 8(3):1–154, 2013.

[15] Jeffrey Dean and Luiz André Barroso. The Tail at Scale.
Communications of the ACM, 56(2):74–80, 2013.

[16] Lingjia Tang, Jason Mars, and Mary Lou Soffa. Compiling
for niceness: Mitigating contention for qos in warehouse scale
computers. In Proceedings of the Tenth International Sympo-
sium on Code Generation and Optimization (CGO), CGO ’12,
pages 1–12, New York, NY, USA, 2012. ACM.

[17] Jason Mars and Lingjia Tang. Whare-map: Heterogeneity in
”homogeneous” warehouse-scale computers. In Proceedings
of the 40th Annual International Symposium on Computer
Architecture (ISCA), ISCA ’13, pages 619–630, New York,
NY, USA, 2013. ACM.

[18] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and
Mary Lou Soffa. Bubble-Up: Increasing Utilization in Mod-
ern Warehouse Scale Computers via Sensible Co-locations. In

the 44th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), pages 248–259. IEEE/ACM, 2011.

[19] Wei Wang, Tanima Dey, Jason Mars, Lingjia Tang, Jack W.
Davidson, and Mary Lou Soffa. Performance analysis of
thread mappings with a holistic view of the hardware re-
sources. In Proceedings of the 2012 IEEE International Sym-
posium on Performance Analysis of Systems & Software (IS-
PASS), ISPASS ’12, pages 156–167, Washington, DC, USA,
2012. IEEE Computer Society.

[20] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang.
Bubble-flux: Precise Online QoS Management for Increased
Utilization in Warehouse Scale Computers. In the 40th Annual
International Symposium on Computer Architecture (ISCA),
pages 607–618. ACM/IEEE, 2013.

[21] Christina Delimitrou and Christos Kozyrakis. Quasar:
Resource-efficient and QoS-aware Cluster Management. In
the 19th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASP-
LOS), pages 127–144. ACM, 2014.

[22] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy
Ranganathan, and Christos Kozyrakis. Heracles: Improving
Resource Efficiency at Scale. In the 42nd International Sym-
posium on Computer Architecture (ISCA), pages 450–462.
ACM/IEEE, 2015.

[23] Yunqi Zhang, Michael Laurenzano, Jason Mars, and Lingjia
Tang. SMiTe: Precise QoS Prediction on Real System
SMT Processors to Improve Utilization in Warehouse Scale
Computers. In the 47th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 406–418.
IEEE/ACM, 2014.

[24] Johann Hauswald, Yiping Kang, Michael A. Laurenzano,
Quan Chen, Cheng Li, Ronald Dreslinski, Trevor Mudge, Ja-
son Mars, and Lingjia Tang. DjiNN and Tonic: DNN as a Ser-
vice and Its Implications for Future Warehouse Scale Com-
puters. In the 42nd Annual International Symposium on Com-
puter Architecture (ISCA), pages 27–40. ACM/IEEE, 2015.

[25] Vinicius Petrucci, Michael Laurenzano, John Doherty, Yunqi
Zhang, Daniel Mosse, Jason Mars, and Lingjia Tang.
Octopus-Man: QoS-driven Task Management for Heteroge-
neous Multicores in Warehouse-Scale Computers. In the 21st
International Symposium on High Performance Computer Ar-
chitecture (HPCA), pages 246–258. IEEE, 2015.

[26] Nvidia Multi-Process Service. https://docs.nvidia.

com/deploy/pdf/CUDA_Multi_Process_Service\

_Overview.pdf.
[27] Carlos Boneti, Francisco J. Cazorla, Roberto Gioiosa,

Alper Buyuktosunoglu, Chen-Yong Cher, and Mateo Valero.
Software-Controlled Priority Characterization of POWER5
Processor. In the 35th International Symposium on Computer
Architecture (ISCA), pages 415–426. ACM/IEEE, 2008.

[28] Shinpei Kato, Karthik Lakshmanan, Raj Rajkumar, and Yu-
taka Ishikawa. TimeGraph: GPU Scheduling for Real-time
Multi-tasking Environments. In USENIX Annual Technical
Conference (ATC), pages 17–30. USENIX, 2011.

[29] Glenn Elliott, Bryan C Ward, and James H Anderson.
GPUSync: A Framework for Real-time GPU Management. In
the 34th Real-Time Systems Symposium (RTSS), pages 33–44.
IEEE, 2013.

694

[30] Profiler User’s Guide. http://docs.nvidia.com/cuda/

profiler-users-guide.
[31] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch,

Jonathan Cohen, John Tran, Bryan Catanzaro, and Evan Shel-
hamer. cuDNN: Efficient Primitives for Deep Learning. arXiv
preprint arXiv:1410.0759, 2014.

[32] CUDA Nvidia. cuBLAS library. Nvidia Corporation, Santa
Clara, California, 15, 2008.

[33] David Kirk et al. Nvidia CUDA Software and GPU Parallel
Computing Architecture. In the 6th International Symposium
on Memory Management (ISMM), volume 7, pages 103–104.
ACM, 2007.

[34] George AF Seber and Alan J Lee. Linear Regression Analysis,
volume 936. John Wiley & Sons, 2012.

[35] Sunil Arya, David M Mount, Nathan S Netanyahu, Ruth Sil-
verman, and Angela Y Wu. An Optimal Algorithm for Ap-
proximate Nearest Neighbor Searching Fixed Dimensions.
Journal of the ACM, 45(6):891–923, 1998.

[36] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tib-
shirani. An Introduction to Statistical Learning. Springer,
2013.

[37] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A Library
for Support Vector Machines. ACM Transactions on Intelli-
gent Systems and Technology, 2(3):27, 2011.

[38] Cui Yu, Rui Zhang, Yaochun Huang, and Hui Xiong. High-
Dimensional KNN Joins with Incremental Updates. Geoin-
formatica, 14(1):55–82, 2010.

[39] Vincent Garcia, Eric Debreuve, and Michel Barlaud. Fast K
Nearest Neighbor Search using GPU. In Conference on Com-
puter Vision and Pattern Recognition Workshops (CVPRW),
pages 1–6. IEEE, 2008.

[40] Alex Goldhammer and John Ayer Jr. Understanding Perfor-
mance of PCI Express Systems. Xilinx WP350, Sept, 4, 2008.

[41] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan,
Jeremy W Sheaffer, Sang-Ha Lee, and Kevin Skadron. Ro-
dinia: A Benchmark Suite for Heterogeneous Computing. In
IEEE International Symposium on Workload Characteriza-
tion (IISWC), pages 44–54. IEEE, 2009.

[42] Sergio Barrachina, Maribel Castillo, Francisco D Igual, Rafael
Mayo, and Enrique S Quintana-Orti. Evaluation and Tun-
ing of the Level 3 cuBLAS for Graphics Processors. In In-
ternational Parallel and Distributed Processing Symposium
(IPDPS), pages 1–8. IEEE, 2008.

[43] Harold W Kuhn. The Hungarian Method for the Assignment
Problem. Naval research logistics quarterly, 2(1-2):83–97,
1955.

[44] Subramanian Kannan, Mark Roberts, Peter Mayes, Dave
Brelsford, and Joseph F Skovira. Workload Management with
Loadleveler. IBM Redbooks, 2:2, 2001.

[45] Haeseung Lee, Al Faruque, and Mohammad Abdullah. GPU-
EvR: Run-time Event based Real-time Scheduling Framework
on GPGPU Platform. In Design, Automation and Test in
Europe Conference and Exhibition (DATE), pages 1–6. IEEE,
2014.

[46] Michael A Laurenzano, Yunqi Zhang, Lingjia Tang, and Ja-
son Mars. Protean code: Achieving Near-Free Online Code

Transformations for Warehouse Scale Computers. In the 47th
Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), pages 558–570. IEEE/ACM, 2014.

[47] David Jackson, Quinn Snell, and Mark Clement. Core Algo-
rithms of the Maui Scheduler. In Job Scheduling Strategies
for Parallel Processing, pages 87–102. Springer, 2001.

[48] Ahuva W Mu Alem and Dror G Feitelson. Utilization,
Predictability, Workloads, and User Runtime Estimates in
Scheduling the IBM SP2 with Backfilling. IEEE Transactions
on Parallel and Distributed Systems, 12(6):529–543, 2001.

[49] Chung Laung Liu and James W Layland. Scheduling Al-
gorithms for Multiprogramming in a Hard-real-time Environ-
ment. Journal of the ACM, 20(1):46–61, 1973.

[50] Lui Sha, Ragunathan Rajkumar, and Shirish S Sathaye. Gen-
eralized Rate-Monotonic Scheduling Theory: A Framework
for Developing Real-time Systems. Proceedings of the IEEE,
82(1):68–82, 1994.

[51] Neil C Audsley, Alan Burns, MF Richardson, and
AJ Wellings. Deadline Monotonic Scheduling. Citeseer,
1990.

[52] Alan Bertossi, Luigi V Mancini, and Federico Rossini. Fault-
tolerant Rate-Monotonic First-fit Scheduling in Hard-real-
time Systems. IEEE Transactions on Parallel and Distributed
Systems, 10(9):934–945, 1999.

[53] Glenn A Elliott and James H Anderson. Globally Scheduled
Real-time Multiprocessor Systems with GPUs. Real-Time
Systems, 48(1):34–74, 2012.

[54] Pedro Aguilera, Katherine Morrow, and Nam Sung Kim. QoS-
aware Dynamic Resource Allocation for Spatial-multitasking
GPUs. In the 19th Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 726–731. IEEE, 2014.

[55] Jason Jong Kyu Park, Yongjun Park, and Scott Mahlke.
Chimera: Collaborative Preemption for Multitasking on a
Shared GPU. In the 20th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 593–606. ACM, 2015.

[56] Kittisak Sajjapongse, Xiang Wang, and Michela Becchi. A
Preemption-based Runtime to Efficiently Schedule Multi-
process Applications on Heterogeneous Clusters with GPUs.
In the 22nd International Symposium on High-performance
Parallel and Distributed Computing (HPDC), pages 179–190.
ACM, 2013.

[57] Ivan Tanasic, Isaac Gelado, Javier Cabezas, Alex Ramirez,
Nacho Navarro, and Mateo Valero. Enabling Preemptive
Multiprogramming on GPUs. In the 41st International Sym-
posium on Computer Architecuture (ISCA), pages 193–204.
ACM/IEEE, 2014.

[58] Neha Agarwal, David Nellans, Mike O’Connor, Stephen W
Keckler, and Thomas F Wenisch. Unlocking Bandwidth for
GPUs in CC-NUMA Systems. In the 21st International Sym-
posium on High Performance Computer Architecture (HPCA),
pages 354–365. IEEE, 2015.

[59] Jens Breitbart. Analysis of a Memory Bandwidth Limited
Scenario for NUMA and GPU systems. In the 25th Inter-
national Symposium on Parallel and Distributed Processing
Workshops(IPDPSW), pages 693–699. IEEE, 2011.

[60] Ping Xiang, Yi Yang, and Huiyang Zhou. Warp-level Diver-
gence in GPUs: Characterization, Impact, and Mitigation. In

695

the 20th International Symposium on High Performance Com-
puter Architecture (HPCA), pages 284–295. IEEE, 2014.

[61] Guoyang Chen, Bo Wu, Dong Li, and Xipeng Shen. Enabling
Portable Optimizations of Data Placement on GPU. Micro,
35(4):16–24, July 2015.

[62] Daniel Lustig and Margaret Martonosi. Reducing GPU Of-
fload Latency via Fine-grained CPU-GPU Synchronization.
In the 19th International Symposium on High Performance
Computer Architecture (HPCA), pages 354–365. IEEE, 2013.

[63] Ankit Sethia and Scott Mahlke. Equalizer: Dynamic Tuning
of GPU Resources for Efficient Execution. In the 47th An-
nual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pages 647–658. IEEE/ACM, 2014.

[64] J-F Dollinger and Vincent Loechner. Adaptive Runtime Se-
lection for GPU. In the 42nd International Conference on
Parallel Processing (ICPP), pages 70–79. IEEE, 2013.

[65] Vignesh T Ravi, Michela Becchi, Gagan Agrawal, and Srimat
Chakradhar. Supporting GPU Sharing in Cloud Environments

with a Transparent Runtime Consolidation Framework. In
the 20th International Symposium on High Performance Dis-
tributed Computing (HPDC), pages 217–228. ACM, 2011.

[66] Khaled M Diab, M Mustafa Rafique, and Mohamed Hefeeda.
Dynamic Sharing of GPUs in Cloud Systems. In the 27th
International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pages 947–954. IEEE, 2013.

[67] Onur Kayiran, Nachiappan Chidambaram Nachiappan, Ad-
wait Jog, Rachata Ausavarungnirun, Mahmut T Kandemir,
Gabriel H Loh, Onur Mutlu, and Chita R Das. Managing GPU
Concurrency in Heterogeneous Architectures. In the 47th An-
nual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pages 114–126. IEEE/ACM, 2014.

[68] Rashid Kaleem, Rajkishore Barik, Tatiana Shpeisman,
Brian T Lewis, Chunling Hu, and Keshav Pingali. Adaptive
Heterogeneous Scheduling for Integrated GPUs. In the 23rd
International Conference on Parallel Architectures and Com-
pilation Techniques (PACT), pages 151–162. ACM, 2014.

696

