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Abstract—The increasing demand for computational power
has led to the creation and deployment of large-scale data
centers. During the last few years, data centers have seen
improvements aimed at increasing computational density – the
amount of throughput that can be achieved within the allocated
physical footprint. This need to pack more compute in the
same physical space has led to density optimized server designs.
Density optimized servers push compute density significantly
beyond what can be achieved by blade servers by using
innovative modular chassis based designs.

This paper presents a comprehensive analysis of the impact
of socket density on intra-server thermals and demonstrates
that increased socket density inside the server leads to large
temperature variations among sockets due to inter-socket
thermal coupling. The paper shows that traditional chip-level
and data center-level temperature-aware scheduling techniques
do not work well for thermally-coupled sockets. The paper pro-
poses new scheduling techniques that account for the thermals
of the socket a task is scheduled on, as well as thermally coupled
nearby sockets. The proposed mechanisms provide 2.5% to
6.5% performance improvements across various workloads and
as much as 17% over traditional temperature-aware schedulers
for computation-heavy workloads.

Keywords-Server; Data center; Density Optimized Server;
Scheduling

I. INTRODUCTION

The last decade has seen an increase in data center deploy-
ments in the enterprise as well as by cloud service providers.
With the continued push towards consolidated systems in
the enterprise, and the emergence of new applications in
domains such as real-time data analytics, industrial IOT and
deep learning, this trend is expected to continue [10] [37].
This has resulted in demand for Density Optimized Servers.

Density optimized servers consist of a chassis that provides
power and cooling. Compute, memory, storage, and connec-
tivity are organized in the form of cartridges. Upgrades to
servers can be performed by upgrading individual cartridges.
Various combinations of cartridges can be used to create a
modular server design where the server is heavily optimized
for different workloads such as compute or storage.

Examples of density optimized servers include the HPE
Moonshot [15] M700 [12] based systems that are targeted at
enterprise virtual desktop infrastructure (VDI) applications.
The HPE Moonshot packs forty-five cartridges, each with
up to four AMD OpteronTMX2150 [2] sockets in a 4U form
factor. Another example is the Cisco UCS M-Series [3]
modular servers. The UCS M-Series has eight compute

(a)

(b)

Figure 1: (a) Power per 1U, and (b) Sockets per 1U for
400 server designs released from 2007-2016.

modules, each with two Intel Xeon E3 sockets [20] in a 2U
form factor. Similarly, Dell has a lineup of density optimized
servers with the PowerEdge FX2 [7] chassis-based solutions.
More recently, Facebook and QCT have released the Rackgo
X Yosemite Valley dense-server design [23] that packs 12
Intel Xeon D-1500 [19] sockets in a 2U form factor.

As server shipments continue to rise, the density optimized
server market is growing at a much faster rate than the
overall market [16] [17]. According to IDC, in 2015 density
optimized servers (also called modular hybrid-blade servers)
represented 10% of the server market and they are expected to
rise to represent 30% of the server market share by 2020 [8].

The market for density optimized servers is growing
rapidly because these designs offer distinct advantages. First,
they offer the ability to customize server hardware for the
application. Second, these servers optimize for the physical
space and hence reduce data center build out costs [5].
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Third, reduced physical footprint enables more efficient
(e.g., smaller or cheaper) cooling systems [5]. Fourth, as
the physical footprint shrinks, operational, maintenance, and
IT administration costs are reduced [10].

Density optimized servers provide these advantages by
packing more CPU sockets per unit volume than traditional
server designs. Figure 1 shows socket and power density for
400 servers from published results of SPECpower ssj R© 2008
benchmark data [38]. All published data from 2007-2016 was
considered except tower servers. Data for density optimized
servers was estimated from manufacturer specifications.

Figure 1 shows that 1U servers consume more power per
unit volume on average (208 Watt/U) than 2U (147 Watt/U)
and ”Other” rack server designs (114 Watt/U). This can be
attributed to the higher socket density of 1U designs (1.79
Sockets/U) as compared to 2U (1.15 Sockets/U) or ”Other”
(0.78 Sockets/U). Blade servers exhibit power (421 Watt/U)
and socket density (3.47 Sockets/U) that is nearly double that
of 1U designs. This is because Blade servers are optimized
to pack in more sockets with the use of a shared chassis.
Density optimized servers are an evolution of Blade server
designs and push the envelope even further. They exhibit
power density of 588 Watt/U and socket density of about
25 Sockets/U based on a study of 10 server designs from
4 vendors. This is nearly a 50% increase in power density
along with nearly a 6X increase in socket density over Blade
server designs.

As density optimized servers gain popularity, it is important
to consider the impact of higher power and socket densities
on system performance, especially since the individual
cartridges share resources. As previous work in balanced
system design has demonstrated, performance is not just
a matter of increasing the number of cores or size of the
machine. Rather, any such increase needs to be accompanied
with efficient management techniques to maximize perfor-
mance [73] [62] [64].

In this paper, we specifically focus on understanding intra-
server thermals because of the use of a shared cooling system.
With this understanding, we investigate new scheduling
techniques that improve performance of density optimized
servers. In particular, workload schedulers need to now
account for thermal coupling. Since many sockets share
the cooling system, the placement of a single job not only
impacts the temperature profile of the scheduled socket,
but potentially every socket downwind of that socket. This
asymmetry (upwind sockets impact downwind ones, but not
typically vice versa) makes scheduling a challenge.

Thermal coupling is defined as the heat-transfer phe-
nomenon of one heat source affecting the temperature of
other heat sources in close physical proximity. Thermal
coupling is pervasive in computing systems and previous
research has demonstrated the impact of such interactions
on cores [72], in 3D stacked systems [66], in CPU-GPU
systems [64] and between DRAM DIMMs and CPU sockets
in a server system [41]. With increasing socket counts and

Figure 2: CFD model of a dense server cartridge.

sharing of the cooling system, sockets within dense servers
exhibit strong thermal coupling. This can impact scheduling
algorithms.

This paper makes the following contributions:

(1) Using real-world server configurations this work
demonstrates how socket density creates a new type of
temperature heterogeneity inside dense servers. This causes
significant temperature difference inside the dense server
even at reasonable single-socket power and cooling levels.

(2) This work studies temperature-dependent scheduling
schemes used at the chip-level as well as data-center
system level and demonstrates that existing algorithms are
insufficient because they do not take into account the effects
of inter-socket thermal coupling caused by directional air-
flow.

(3) Lastly, the paper proposes a new scheduling scheme
that shows gains in performance and energy efficiency. In
particular, for computation-heavy workloads, we see as much
as a 17% performance gain over a traditional temperature-
aware scheduler, and across all load levels, we average 2.5%
to 6.5% gains for various workloads.

The rest of the paper is organized as follows. Section II
presents an analysis of socket density and temperature
heterogeneity in dense servers. Section III describes our eval-
uation methodology. Section IV describes existing scheduling
algorithms, their key shortcomings, and describes our pro-
posed enhancements. Section V presents results, Section VI
describes related work, and Section VII concludes the paper.

II. THE IMPACT OF SOCKET DENSITY

Systems such as the HPE Moonshot system can pack in as
many as 180 sockets in a 4U chassis. This level of density can
create socket to socket interactions that impact performance
and efficiency. Using recently proposed density optimized
servers as examples, this section analyzes the influence of
density on intra-server thermals and application performance.

Figure 2 shows a computational fluid dynamics (CFD)
model of a dense server cartridge similar to the HPE
Moonshot Proliant M700 [12] constructed using Ansys
Icepak. The system has four sockets, arranged in a 2 X
2 configuration. Each socket consumes 15 Watt of power.
Air flows horizontally from left to right and passes over

688



Table I: Recent density optimized systems.

Organization System Details Application Domain Dimensions System Total Sockets Socket CPU Degree of

Organization Sockets per 1U TDP(W) Thermal Coupling

QCT/Facebook Rackgo X [23] Open compute server General purpose 2U 2 tray x 3 blade x 2 socket 12 6 45 Intel Xeon D-1500 [19] 1

AMD AMD SeaMicro [24] SM15000e-OP [24] Scale-out applications 10U 4 row x 16 card x 1 socket 64 6.4 140 AMD OpteronTM6300 [1] 1

Cisco UCS M4308 [3] M2814 [3] Scale-out applications 2U 2 row x 2 card x 2 socket 8 4 120 Intel Xeon E5 [20] 1

HP Enterprise Moonshot [15] ProLiant M710P [13] Big data analytics 4U 15 row x 3 cartridge x 1 socket 45 11.25 69 Intel Xeon E3 [20] 2

Dell Copper [6] Prototype system [6] Scale-out applications 3U 12 sled x 4 socket 48 16 15 32-bit ARM R© [6] 3

Mitac Datun project [9] Prototype system [9] Scale-out applications 1U 2 row x 4 socket 8 8 50 Applied Micro X-Gene [9] 3

Seamicro SeaMicro [26] SM15000-64 [26] Scale-out applications 10U 4 row x 16 card x 4 socket 256 25.6 8.5 Intel Atom N570 [18] 3

HP Enterprise Moonshot [15] ProLiant M350 [11] Web hosting 4U 15 row x 3 cartridge x 4 socket 180 45 20 Intel Atom C2750 [21] 5

HP Enterprise Moonshot [15] ProLiant M700 [12] Virtual desktop (VDI) 4U 15 row x 3 cartridge x 4 socket 180 45 22 AMD Opteron X2150 [2] 5

HP Enterprise Moonshot [15] ProLiant M800 [14] Digital signal processing 4U 15 row x 3 cartridge x 4 socket 180 45 14 TI Keystone II [27] 5

HP Redstone [34] Development server Scale-out applications 4U 4 tray x 6 row x 3 cartridge x 4 socket 288 72 5 Calxeda EnergyCore [34] 11

Figure 3: (a) Organization, and (b) Relative performance
of Coolest First (CF) and Hottest First (HF) scheduling
for coupled and un-coupled designs.

sockets in series. Figure 2 shows that, while cool air flows
over the sockets on the left, the sockets on the right receive
air that is higher in temperature. The measured average air
temperature difference between the left and right sockets was
8C. Consequently, the second set of downstream sockets have
a higher ambient temperature and may reduce performance
when operating under a temperature limit.

To mitigate chip temperature differences because of inter-
socket thermal coupling, the cartridge uses 2 types of heat
sinks. The upstream sockets that receive cooler air have 18
fins in the heat sink versus 30 fins for the downstream sockets.
The use of distinct heat sinks adds yet another dimension
to the thermal heterogeneity in the system, increasing
the difficulty of making optimal scheduling decisions. For
example, we can choose to place a job on the socket with
the coolest ambient air, but that choice heats up at least 1
more downstream socket.

Figure 3 (a) shows a 2-socket system with different heat
sinks arranged in a coupled (similar to the cartridge) and un-
coupled manner (similar to traditional 2-socket 1U server).
Part (b) shows the relative performance when using two
scheduling schemes, Coolest First (CF) and Hottest First
(HF) at 50% utilization. The CF scheme schedules jobs
on the coolest available core and keeps work away from
the hotter cores. CF-style scheduling algorithms have been
demonstrated to work well as scheduling algorithms [57] [63]
[80]. The HF scheme does the exact opposite – it schedules

Figure 4: Thermal coupling in density optimized servers.

work at the hottest possible idle socket, which would not
generally be expected to be a good strategy.

As expected, for an uncoupled system, CF outperforms
HF by about 8%. However, for a coupled system, HF
outperforms CF by about 5%. This happens because the
HF scheme mitigates thermal coupling effects by scheduling
less work on the upstream socket. This results in lower air
temperature at the downstream socket. The better heat sink
at the downstream socket also results in better performance.
This simple motivational experiment shows that scheduling
policies such as CF that have worked well for chip-level
or data-center level scheduling may not work for thermally
coupled systems.

A. Socket Organization in Dense Servers

An important factor that differentiates density-optimized
servers from traditional designs is socket organization. As
demonstrated in the previous section, differences in socket
organization (e.g., coupled versus un-coupled) can lead to
different performance of scheduling schemes. In this section,
we will look at how sockets are organized in current density
optimized systems and using an analytical model of heat-
transfer, we estimate temperature variations across sockets
inside density optimized systems.

Figure 4 illustrates some choices around socket organiza-
tion in dense systems. As shown in the figure, sockets can
be organized in a coupled or un-coupled manner. More than
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two sockets can also be organized in a coupled manner to
yield a tighter system fit but at a higher degree of coupling.
We define degree of coupling as the maximum number of
sockets that may have a significant thermal interaction caused
by sharing of the cooling system.

Figure 4 also demonstrates socket entry temperature. We
define socket entry temperature as the average temperature
of air before it passes over a socket. As shown, systems
with higher degree of thermal coupling and shared cooling
show progressively higher entry temperatures if all sockets
consume power.

Table I shows recently released density optimized server
systems and compares them across various dimensions.
Density for such systems varies from about 4 Sockets/U
to as high as 72 Sockets/U. The systems with higher socket
densities tend to use lower power sockets. A study of system
organization shows that systems are organized in modular
form as rows/trays of cartridges/boards, each with multiple
sockets. Power for the sockets used in these systems varies
from very low power cores at 5W per socket to as high as
140W per socket. The degree of thermal coupling varies from
1 to as high as 11.

Table I shows that the design space of density optimized
systems is fairly large. To consider the impact on inter-socket
thermals of various socket organization choices, we construct
an analytical model of socket entry temperature for various
power, degree of coupling, and airflow levels.

Table II: Airflow requirements for server systems.

Server Size Power per 1U Air-flow (CFM) needs per 1U

(W) (DeltaT = 20C)

1U 208 18.30

2U 147 12.94

Other 114 10.03

Blade 421 37.05

DensityOpt 588 51.74

B. Analytical Model of Socket Entry Temperature

In order to see the impact of socket density on intra-
server thermals, we build a simple analytical model based on
heat transfer theory – this complements our more complex
models later in the paper. Electronic systems using forced air
cooling rely on the transfer of heat between hot components
and cold air being pushed through by fans in order to
maintain the temperature. One of the critical limits imposed
on server systems is the hot-aisle temperature limit. This
limit sets the maximum temperature of air from the server
outlet for human comfort. For example, Facebook data
center hot aisle temperatures can be as high as 49C with
inlets set to about 29C [32]. This means that there must be
enough air-flow provisioned to remove heat and maintain
an outlet-inlet temperature difference of 20C. ASHRAE TC
9.9 guidelines [30] also mention a typical server temperature
rise of 20C from inlet to outlet.

(a)

(b)

Figure 5: (a) Mean socket entry temperature, and (b)
Socket entry temperature coefficient of variance, a mea-
sure of the variance in heat across the coupled sockets [4].

Table II shows the air-flow requirements in order to
maintain a 20C temperature difference between the inlet
and outlet for various server systems. Air flow in the table is
measured in cubic feet per minute (CFM) and power numbers
are average server power levels as previously discussed in
section I. CFM levels were calculated using the standardized
total cooling requirements formulation of the first law of
thermodynamics [25]. Table II shows that to maintain a
temperature difference of 20C between the inlet and the
outlet, fans need to supply between 18.3CFM to 51.74CFM
of air per 1U for different server power levels. High-end
server fans, such as Activecool fans [29], can meet such
airflow requirements at reasonable power levels.

While the total CFM requirements are determined by the
outlet temperature limits, the temperature inside the server
is dependent on the socket power, degree of coupling, and
the airflow on each socket. We use the values in Table II to
calculate reasonable bounds on per-socket air flow. Next, we
use socket power and degree of coupling combinations, with
the standardized total cooling requirements formulation of the
first law of thermodynamics [25] to derive the temperature
of air arriving at points within the server. Figure 5 shows
the results of our analysis.

Figure 5(a) demonstrates that as the degree of coupling
increases, the mean socket entry temperatures also increases.
As expected, the mean entry temperature for high-powered
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sockets is high, but even low-powered sockets can have
high mean entry temperature at different airflow values. For
example, a 15 Watt part with 6CFM of airflow can have about
a 10C mean entry temperature difference for a system with
degree of coupling 5, as compared to a system with degree
of coupling 1. Figure 5(b) shows that not only is the mean
socket entry temperature high, but inter-socket variations are
also high and increase even further as the degree of coupling
increases. The data demonstrates that socket organization
can play a major role in intra-server thermals for systems
with high degree of thermal coupling.

As table I shows, density optimized systems vary in
organization, processor choices and application domains.
In order to study optimization opportunities, we pick a
single representative system used for its intended application
domain. We pick a system similar in design to the HPE
Moonshot Proliant M700 system as our system under test
(SUT) for this deeper analysis. A key target application
market for such systems is Virtual Desktop Infrastructure
(VDI) intended for enterprise desktop consolidation [12].
With 180 sockets packed in 4U space, the SUT is highly
representative of density optimized systems and is intended
for a popular enterprise data-center use-case [10]. Next, we
discuss infrastructure used to model our target system.

III. METHODOLOGY

This section describes details of our modeling infrastruc-
ture. Our SUT consists of 180 sockets and targets VDI
applications. Since we are modeling a large-scale system
consisting of many sockets, and running workloads over a
period of minutes, we develop a methodology that enables
us to accurately simulate the behavior of such systems in
reasonable simulation time.

A. Workloads

For the purposes of this study we focus on VDI, where
the servers are running desktop applications in support of
thin clients or terminals.

To study desktop application behavior, we used PCMark R©

7 [31]. PCMark is a popular consumer application benchmark-
ing suite, commonly used in industry to characterize desktop
performance. PCMark consists of more than 25 applications
characterized into domains such as computation, storage,
graphics, entertainment, creativity, and productivity. Out of
these, we omit applications that are not relevant to enterprise
VDI (e.g., gaming) for a total of 19 PCMark 7 applications.
To easily categorize benchmarks, we divide these remaining
applications into 3 sets: Computation intensive (Computation),
Storage intensive (Storage), and General Purpose (GP)
benchmarks.

Due to the unavailability of timing-accurate public domain
simulation tools that can execute typical desktop applications
on Windows R©, we use a trace based simulation methodology
similar to that used in previous research using PCMark 7 [39].
We capture hardware traces of various PCMark benchmark

Figure 6: (a) Average job duration, and (b) Coefficient of
variance of job durations within benchmark sets.jjj

Figure 7: (a) Workload power (90C) with varying fre-
quencies. (b) Relative workload performance versus
performance at 1900MHz.

runs using the Windows Xperf tool [28] at various processor
frequency states. Xperf captures idle and active transitions
of the socket for the workload at a fine granularity. Using
this information, we create a job arrival model for various
PCMark benchmarks. We vary the job inter-arrival duration
to simulate different loads on the system.

Figure 6(a) shows average job durations across all bench-
marks for the three benchmark sets. The average job durations
were found to be on the order of a few msec. The maximum
job durations within each benchmark set were found to be
almost 2 orders of magnitude higher. This is in line with
previously published analysis of PCMark 7 [39]. Figure 6(b)
shows the coefficient of variance across average job durations
within the different benchmarks of each set. The coefficient
of variance ranges between 0.25 to 0.33. This shows that
benchmarks within each set exhibit similar job durations on
average and hence we choose to study benchmarks grouped
in sets, rather than studying benchmarks individually.

We measured power and performance in hardware at
various frequency states to build a complete socket-level
workload model. As power is influenced by temperature,
we measure both temperature and power together, across
varied loads. Using the measured power value, temperature
value, and by estimating leakage to be 30% of TDP at the
temperature limit (90C), we calculate power at different
frequencies and chip temperatures. Figure 7 shows the power
and performance levels for the different workloads.

The AMD Opteron X2150 used in the system has a TDP
of 22 Watts and runs from 1900MHz to 1100MHz [2]. We
see that the Computation workload uses the most power
and Storage uses the least (18 Watt versus 10.5 Watt) at
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Figure 8: Side view of modeled cartridge.

the highest frequency of operation. As frequency decreases,
power decreases but more so for Computation than Storage.
As expected, the Computation workload is also the most
frequency sensitive with performance dropping about 35%
for a 800MHz reduction in frequency. Storage is the least
frequency sensitive workload. The General Purpose workload
exhibits intermediate levels of both power and sensitivity to
processor frequency.

B. Socket Ambient Temperature Model

Socket ambient temperature is a function of the physical
design, power consumption of sockets, heat sink design and
airflow inside the server box. Using available data for the
ActiveCool [29] fans, physical dimensions published for the
M700 server cartridge [12], and socket power model, we used
an Ansys Icepak based modeling infrastructure to construct
a model of our SUT. This computationally intensive model
tracks heat sources, physical artifacts, fans, and turbulent
airflow through the system. This commercial CFD based
modeling infrastructure and methodology has been validated
on real server designs to be within 1C of actual temperature
within the server box [71]. This modeling infrastructure yields
socket ambient air flow levels and socket temperature based
on the server physical design and different socket power
consumptions.

Figure 8 shows the side view of a single cartridge. The
figure shows the model for a single cartridge as well as the
second row acting as a lid on top of the first cartridge with
its backside facing the first cartridge. The SUT has 15 rows
of cartridges spanning the width of the server, stacked on
top of each other in this side view. We only examine thermal
coupling along the direction of airflow in this work. There is
some thermal coupling between cartridges in the z direction
across the width of the server; however, our CFD modeling
confirms that these are small effects compared to the thermal
coupling we model.

C. Chip Peak Temperature Model

To simulate system behavior with reasonable accuracy, it
is important to reliably estimate peak chip temperature for
a socket with known ambient temperature and chip power
consumption. Architecture research has traditionally used
compact thermal models like Hotspot [75] to estimate chip

(a)

(b)

Figure 9: (a) Temperature differences between hottest and
coolest spots, and (b) Max temperature versus power.

thermals as on-chip temperature differences between cold and
hot spots can exceed as much as 50C [65] for large sized dies.
However, recent research has also shown that socket level
thermals in server systems can have time constants of the
order of tens of seconds [40] [64]. Hence, traditional detailed
modeling approaches becomes prohibitively expensive when
modeling a dense server system with many sockets and
running workloads for periods of seconds to minutes.

In order to explore the development of simpler thermal
models for peak temperature estimation, we studied on-chip
temperature differences for the AMD Opteron X2150 [2].
Figure 9(a) shows data for temperature differences between
the hottest and coldest spots on the die for 19 PCMark
7 benchmarks. The data was collected via a proprietary
HotSpot like model that has been validated with thermal
camera measurements.

The data shows that different heat sinks do not have a major
impact on chip lateral temperature differences, although, in
general, the 18 fin heatsink had lower chip lateral temperature
differences than the 30 fin heatsink. Interestingly, we see
that the temperature differences on die are fairly low for the
X2150 and range between 4C - 7C. We attribute this to the
small size of the die at about 100mm2 [35], about 3.5× –
6× smaller than server processor dies [22].

Figure 9(b) shows the maximum chip temperature and
power for various PCMark 7 benchmarks using the validated
temperature model. The data shows that the 30 fin heatsink
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Figure 10: Proposed max temperature model validation.

provides better thermals than the 18 fin heatsink by about 6C
- 7C for high power cases and 3C - 4C for lower power cases.
Also, the peak temperature is well correlated with total power.
Using data and insights from the validated temperature model,
we develop a simplified peak temperature prediction model
for the X2150. We approximate the core peak temperature
as:

TPeak = TAmb +Power× (RInt +RExt)+θ(Power,Sink) (1)

where TPeak is the peak chip temperature, TAmb is the socket
ambient temperature, RInt and RExt are the chip internal
and heatsink external thermal resistance, and θ(Power,Sink)
is a linear function that is derived empirically. The model
considers the thermal resistance from the die to the external
environment but ignores any lateral thermal resistance. The
developed model is similar conceptually to the simplified
chip temperature model proposed in [42], but additionally
models the path from the heatsink to the ambient.

Figure 10 shows the differences in temperature between
our proposed simplified model and the validated proprietary
thermal model. The figure shows that our proposed simplified
model estimates temperature within 2C of the validated model.
This holds valid irrespective of the heatsink size.

D. Overall Model

In this section, we will describe the overall model. Table III
provides values of different parameters used in our model
along with information as to how they were derived.

In our simulation model, jobs for various benchmarks
arrive as per a probabilistic job distribution model created
to match the Xperf measurements previously described.
Once the job arrives, it is put into a job queue, which is
used by a centralized job controller to allocate jobs. The
scheduler checks for job arrivals every 1 usec. If there is a
job to be scheduled and at least one idle socket available,
the scheduler implements policies based on current and
historical temperature, physical location, job power, and other
parameters.

The scheduler works by first making a list of all sockets
that are idle. It then makes a decision to allocate the job from
the queue, based on the scheduling policy, on to one of the
free sockets. If a free socket is not available, the scheduler
does not make any allocation decision and waits to make

Table III: Overall simulation model parameters.

Parameter Value Methodology

Job length Variable Captured using Xperf [28]

Job arrival time Variable with load Captured using Xperf [28]

Job power Variable Measured in hardware

Job performance Variable with PStates Measured in hardware

Frequency 1900MHz - 1100MHz Product data sheet [2]

Temperature limit 95C Typical

Frequency change interval 1msec From [64]

Power management Highest frequency allowed under 95C Typical for responsive systems [64] [67]

On-Chip thermal time constant 5msec Typical

Socket thermal time constant 30 seconds From [67]

Server inlet temperature 18C Typical

Server total airflow 400CFM Calculated from fan data [29]

Airflow at sockets 6.35CFM Estimated using Ansys Icepak model

Ambient temperature Variable Estimated using Ansys Icepak model

RInt 0.205 Celsius/Watt Calculated using Hotspot [75]

RExt 18-fin 1.578 Celsius/Watt Calculated using Hotspot [75]

RExt 30-fin 1.056 Celsius/Watt Calculated using Hotspot [75]

θ(Power,18− f in) 4.41 - Power x 0.0896 Modeled

θ(Power,30− f in) 4.45 - Power x 0.0916 Modeled

Simulation time 30 minutes of server time Simulate at least 10M jobs

decisions until a socket becomes available. In this study,
we do not implement unbalanced schedulers that choose to
schedule jobs to busy sockets even though there is an empty
socket available.

Once the allocation of jobs is complete, the sockets execute
work every time-step until the next job arrives. Throughput
of every time interval and power are estimated based on
the current frequency. Estimated power values are used to
calculate the current peak temperature of each socket.

The peak temperature value is used to make frequency
change decisions. Frequencies vary from 1.9GHz to 1.1GHz
in 200MHz steps. The higher two frequencies are boost states
that are used opportunistically to improve performance where
thermal headroom is available. A fully loaded socket under
reasonable ambient temperatures is expected to only be able
to sustain the highest non-boosted frequency (1500MHz) [36].
We implement a power management policy that emphasizes
responsiveness and runs jobs at the highest possible frequency
within the temperature limit. This is a commonly used policy
in consumer systems that emphasize responsiveness [64].
The power manager runs every 1msec.

The power manager also implements power gating for idle
sockets. At every run of the power manager, it checks for
sockets that were idle completely during the last 1msec and
power gates them instantaneously. We assume that power
gated sockets still consume 10% of TDP power. Once a job
is complete, its performance is recorded by calculating the
time it took to finish the job. Overall performance for each
job allocation scheme is calculated by finding the cumulative
time the system took to complete all jobs.

IV. SCHEDULING TECHNIQUES

The uni-directional flow of air from one end of the server
to the other is the primary factor leading to inter-socket
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Figure 11: Average runtime expansion vs. CF for existing
thermal aware scheduling mechanisms at 30% and 70%
load for the Computation workload (lower is better).

Figure 12: Organization of zones in the SUT. Each row
consists of 3 cartridges (12 sockets) and 6 zones. There
are a total of 15 rows in the system.

temperature variance. In such systems, hot air that has already
absorbed heat from one socket ends up flowing over a
downstream socket causing different sockets to thermally
couple.

Thermal coupling is fairly well-studied in existing com-
puting systems. Thermal coupling exists among cores in
a multi-core system [59], between the CPU and the GPU
in a heterogeneous multi-core system [64], between cores
across layers in a 3D stacked processor [66], and between
sockets and DRAM in server systems [41]. At the data-center
level, thermal coupling occurs vertically among servers in a
rack [50] and across regions of a data center [63] [69].

However, the problem of thermal coupling for density
optimized servers has different properties. There are three
main differences. First, thermal coupling in this context is
primarily uni-directional because of the air-flow direction.
Second, thermal coupling is unavoidable, at least amongst
certain sockets, due to their physical proximity. Last, as
discussed before, the degree of coupling is fairly severe.

Because of these differences, traditional scheduling tech-
niques that have been used to manage thermal behavior may
not be sufficient. The following section describes state-of-
the-art work in scheduling techniques. Following, we analyze
existing techniques in context of our SUT. Last, we propose
a new scheduler that outperforms existing schemes.

A. Existing Scheduling Techniques

First, we examine existing scheduling techniques used to
mitigate thermal effects at the data center level.

Coolest First (CF). The CF policy [63] [76] [80] assigns
jobs to the coldest compute elements in the data-center in
order to add heat to cool areas and remove it from warm areas.
We use instantaneous socket temperatures within our dense
server as a metric to implement this scheme. This temperature
is maintained within our scheduler and updated every time
step. We also implement the Hottest First (HF) scheme. HF
is the exactly opposite policy to CF and schedules more work
on the warmer areas of the system, amongst the idle sockets.

Minimize Heat Recirculation (MinHR). The
MinHR [63] policy assigns jobs so as to minimize
the impact of heat recirculation in the data center. The
implementation of this scheme involves running (offline)
reference workloads at different servers and measuring
temperature throughout the data center to calculate heat
recirculation factors. Others have proposed better heat
transfer modeling techniques [77] [78] to implement similar
policies. We implement this scheme by assigning power
to sockets and measuring thermal coupling throughout the
server to make a fixed heat-transfer map of the dense server.
At run-time, the scheduler uses this map and assigns jobs to
the idle socket that causes the least thermal coupling in the
system.

Random. The Random scheduling policy [63] [76] assigns
jobs randomly across idle components in order to approach
the behavior of uniform power consumption and thermals.

Next, we examine thermal scheduling strategies previously
proposed at the chip level.

Coolest Neighbors (CN). The CN [54] policy is also a
variant of the CF policy. It considers the temperature of each
component as well as its neighbors’ temperatures to account
for on-chip lateral heat-transfer. It assigns jobs to locations
that have the coolest neighbors.

Balanced. The Balanced scheduling policy reduces tem-
perature variance by scheduling work to maintain a uniform
temperature profile at compute elements [54] [55]. The policy
works by scheduling work away from hot spot locations. We
implement this policy by scheduling work furthest away from
the hottest point in the server.

Balanced Locations (Balanced-L). The Balanced-L [55]
scheduling policy assigns work to locations that are expected
to be the coolest based on their location (e.g., cores on the
edges). We implement this policy by giving preference to
sockets that are closest to the air-inlets.

Adaptive-Random (A-Random). The A-Random [54]
policy is a variant of the CF policy and considers temperature
history along with the current temperature. Amongst the
components with lowest temperatures, the policy chooses
randomly from the ones with lowest historical temperature
in order to weed out locations that are consistently hot.

Predictive. The Predictive [81] [43] scheduling policy first
calculates the future temperature of a socket if the job were
to be scheduled on it. Based on the temperature it predicts
the frequency at which the socket can run the job and picks
the location that can run the job the fastest.
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Figure 13: Average frequency, work performed in front
half, back half and even zones of the SUT for various
schemes at (a) 30% load, and (b) 70% load.

B. Analysis

Figure 11 shows a performance comparison across all
existing schemes for the Computation workload at two
different load levels. Computation is the highest powered
workload and also the most sensitive to frequency changes.
We measure average run-time expansion across all job
completions and baseline the results versus the CF scheme.

We see that at low load, the CF scheme works fairly
well and most of the other schemes have similar or worse
performance than CF. Only the Predictive scheme is able to
significantly improve performance. However, at the higher
load, different schemes produce different results. HF and
MinHR are the worst performing schemes at the lower load
level, but at the higher load MinHR and HF become the best
schemes, while Predictive loses its advantages.

Before we explain the reasons for these results, we will
define zones in relation to the SUT. As shown in Figure 12,
the SUT has three cartridges in series, each like the cartridge
in Figure 2. We divide the SUT into 6 zones with each
cartridge consisting of two thermally coupled zones. We
label the zones 1 - 6. The odd zones have a 18-fin heat sink
and the even zones have a 30-fin heat sink. Air flows through
the system from zone 1 to zone 6. This creates asymmetric
thermal coupling, not just because of the different heat sinks,
but because sockets within the same cartridge are only 1.6
inches apart, while adjacent sockets between cartridges (e.g.,

zones 2 and 3) are about 3 inches apart.

Figure 13 present insights into the behavior of existing
schemes for the SUT. It shows two metrics for three different
locations of the server. Frequency is the average frequency
at which the sockets operate relative to the highest possible
frequency of operation (1900MHz). Workdone is the relative
amount of work performed within a specific location as a
proportion of overall work. Both these metrics are calculated
for the front zones 1-3, back half zones 4-6, and for even
zones with the better heat sink.

At 30% load, less than half of the system is sufficient
to complete all of the work. As seen in Figure 13 (a), all
schemes except Random, HF and MinHR allocate most of
the work on the front half of the server and are able to
sustain high frequency of operation including being in boost
states for a considerable amount of time. In this case, using
the back half of the server hardly provides any advantage –
we can clump jobs near the inlet and leave the downwind
sockets idle, minimizing the effect of coupling. The result is
that Random, HF, and MinHR, which do not do that, suffer.

CN schedules jobs primarily at zones 1, 3 and 5 in order to
choose sockets that are cool as well as have cool neighbors
and hence ends up with lower performance versus the other
schemes that schedule at the front part of the server. Predictive
is the best scheme at 30% load as it is able to choose the
fastest socket to run the current job dynamically. As Figure 13
(a) shows, Predictive performs almost 80% of its work in
the front half of the server but almost 50% of the work on
even zones. Since there is only one even zone in the front
half of the server, Predictive is performing most of its work
on zone 2, an even zone with the better heat sink. Hence by
combining the best from both scenarios (choosing the front
part of the server and also the part of the server with the
best heat sink), Predictive can outperform all other schemes.

At higher loads, however, we can no longer assume
downwind sockets will be idle. At 70% load, we are using the
back half more heavily, for most schemes, and the frequency
of the back half is more impacted. Schemes like HF and
MinHR perform more work at the back of the server and
also end up performing more work at even zones, as the
back of the server has two out of the three even zones.

An added advantage of packing more jobs in the back is
that the front sockets can run at higher frequency as they have
less work and hence can sustain boost longer for whatever
work they perform. As a result, at 70% load, schemes like
MinHR and HF outperform schemes that over-schedule in
the front part of the server. Predictive offers no advantage
as it schedules work to the coolest areas without regard for
thermal coupling and ends up heating both the front and
back of the server. In-fact, Random performs better than
most other schemes (except MinHR and HF) as it distributes
more jobs towards the back of the server than front loading
schemes.

This analysis shows all existing scheduling policies have
considerable drawbacks. CN, Random, MinHR and HF leave
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Figure 14: Performance versus CF baseline for various
schemes at various load values for different benchmarks
(a) Computation, (b) GP, and (c) Storage.

performance on the table at lower loads by not running at
the fastest locations. At the higher load levels, CF, Balanced-
L, A-Random, and Predictive do not account for thermal
coupling or the heterogeneous structure of heat sinks in the
server. In the following section, we will propose and evaluate
a new scheme that combines the best features of existing
schemes to provide better performance.

C. Proposed Scheme

As seen from the analysis in the previous section, a good
scheduling strategy for dense servers balances two factors.
First, it should consider the speed at which a job can run at
different locations in the server by accounting for ambient
temperatures and heat sink properties. Second, it should
consider how scheduling at a particular location degrades
performance of other downwind locations. The performance

degradation of other sockets should be balanced with running
the job faster at the socket where the job is to be scheduled.
That is, the scheduler should consider the system holistically
in making decisions and not just optimize point by point.

Based on these factors, we propose a new scheduling policy
named CouplingPredictor (CP). The CP algorithm extends
the Predictive [81] [43] algorithm by taking into account
thermal coupling effects. CP predicts the performance of
not only the socket where the job is scheduled but also the
performance of all other sockets that are downstream to this
socket. It chooses the socket to schedule that results in overall
benefit. Consider two cases, first, a socket that can run the job
at 1700MHz but slows down two other downstream sockets
total by 300 MHz, and second, a socket that can run the
current job at 1600MHz but does not slow down any other
sockets. Given such a choice, CP picks the second socket to
schedule the job on since it results in overall benefit.

Mechanics. At every time interval, the scheduler checks if
any jobs have arrived and scheduling decisions are pending.
If there are jobs that need scheduling, the scheduler first
picks a row of cartridges with idle sockets at random and
then evaluates candidates within that row.

Within the selected row of cartridges, the scheduler first
finds a list of idle sockets. Next, for each idle socket, it
assumes that the job is scheduled on to it and estimates an
initial chip temperature using equation 1. It then updates
power by compensating for temperature dependent leakage
and predicts final chip temperature, again using equation 1.
The scheduler then estimates the highest frequency of
operation that keeps the estimated chip temperature less
than the temperature limit and saves this value. In addition,
based on the ambient temperature model of the system, it
uses a table lookup to estimate downwind socket ambient
temperature. Then again using equation 1 and assuming the
downwind sockets continue to run the same jobs they are
running, it predicts frequencies of each downwind socket.

Note that we have sought to keep the scheduler very
simple. We use a simple linear coupling model, rather than
the complex models we use to evaluate this research. We do
not account for varying application slowdowns with respect
to frequency, etc. Thus, the gains we show here could be
improved with more accurate accounting of these effects, but
at a cost of a more computationally expensive scheduler.

V. RESULTS

In this section we will evaluate the proposed CP scheme
against other schedulers. Figure 14 shows performance results
at different load levels for all of our benchmarks.

As previously discussed, Predictive performed the best
amongst existing schemes at low load values. For load
values in the 10% – 30% range, CP outperforms or matches
Predictive across all benchmarks. For Computation, at 30%
load, CP is better than Predictive by about 2%. As compared
to other existing schemes, CP provides a 5% – 15% gain
over MinHR and about 3% – 7% over other schemes. As
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load increases to the 50% – 60% range, Predictive loses its
advantage and at higher loads CP is consistently better for
the Computation workload.

At low load values, Storage and GP benchmarks both show
good performance across schemes versus CF (note that these
graphs are normalized to CF – so CF is represented by the 1.0
line). CF packs almost all the work in the first zone. This may
lead to throttling of the first zone while scheduling at better
heat sinks downwind proves to be advantageous for other
schemes. This benefit disappears as load and consequently
heat in the system increases. As the load approaches 30% –
40% for the GP workload, we begin to see similar behavior
as we saw for 10% – 20% load in the Computation workload.
Storage is insensitive to frequency, and hence we see rather
muted behavior across all schemes for Storage, except in a
few cases such as 10% load.

The GP workload shows the most gain at low loads for
the CP scheme. GP has lower benchmark power and almost
comparable frequency sensitivity as compared to the Compu-
tation workload. Hence it exhibits slightly more opportunity
to optimize at lower loads where it sees less throttling than
Computation. Both Predictive and CP capitalize on GP and
provide gains of about 8% on average versus CF at low loads.
Overall, at low loads, CP out performs CF by 3% to 8% and
matches the performance of Predictive.

Mid load values (40% load – 60% load) exhibit some
interesting behavior. At these load values CP has to continu-
ously choose between optimizing for a single socket versus
accounting for thermal coupling. CP is able to make the right
decisions in almost all cases except for 50% and 60% load
in the GP benchmark where Predictive is about 2% better.

At high load values (70% load to 100% load), HF and
MinHR perform well. As seen from Figure 14, at high load
levels, the CP scheme is able to match the performance
of the HF and MinHR schemes in most cases. This is
because CP accounts for the effects of job scheduling
on downstream thermally coupled sockets. Computation
workload has the highest power, most throttling at high
loads, and highest frequency sensitivity. Hence, it presents
the highest opportunity to optimize. The CP scheme out-
performs CF by 8.5% for Computation on average across high
loads and by 6.5% across all load levels. Benefits can be as
high as 17% (Computation 80% load). CP also improves the
performance of GP by 6% over CF. Storage again sees muted
gain of about 2.5%. CP performs significantly better than
Predictive at high load values with gains between 2% to 9%
across different workloads and as high as 17% (Computation
80% load).

While HF and MinHR exhibit poor performance at low
loads for Computation, their relative behavior versus CP
improves for GP and Storage workloads. CP continues to
beat HF and MinHR but with decreasing margins. At high
load values, the relative differences between MinHR and
CP reduce where power and frequency sensitivity drops.
However, CP is able to compete or beat other schemes that

improve performance over certain localized load ranges. Such
adaptive and load agnostic behavior is important for server
systems where system load can change constantly based on
user demand.

If we are to consider averaged performance across all
load values, CP out performs all other schemes by at least
5.5% for Computation, 3% for GP and 1.5% for Storage. CP
outperforms CF by 6.5% for Computation and GP and about
2.5% for Storage. If we consider individual load values, CP
may outperform CF as much as 17% for Computation, 10%
for GP and 5% for Storage. We observe that no existing
scheme provide consistent performance across all load levels.
Existing work tends to optimize at single points such as
socket level frequency, or only minimizing heat recirculation
which under-performs at certain loads in dense servers. The
proposed CP algorithm not only improves performance but
also provides robust performance.

CP works better than existing schemes because it considers
inter-socket thermal coupling and carefully weighs scheduling
effects on other sockets. Also, decisions are made by
evaluating the potential for throttling at each job arrival,
allowing it to make decisions at a finer granularity than just
considering load as a proxy for thermals.

Figure 15 shows normalized ED2 product values across
different loads and schemes for all of our workloads. For
Computation, the ED2 product drops to as low as 0.7×
at 80% load. For GP and Storage, the ED2 product drops
to as low as 0.8× and 0.85× respectively. In general, the
ED2 product of CP tracks that of Predictive at low load
values and MinHR at high load values. These results show
that CP also matches the energy behavior of Predictive and
MinHR at different load values. The CP scheme buys us the
performance of these schemes but imposes no extra energy
penalties.

VI. RELATED WORK

There have been a large number of studies examining
thermal mitigation in processors [60] [56] [74] [57] [66] [82],
servers [79] [50] [40] [42] and in the data cen-
ter [44] [69] [63] [76]. Thermal mitigation could be achieved
via (1) power and thermally efficient system design including
micro architectural techniques [48] [72] [66] [61]; (2) power
management for energy efficiency [70] [45] [46] [39]; (3)
use of efficient packaging and cooling techniques including
management of cooling systems [51] [47] [71]; and (4)
runtime thermal management including scheduling methods.
Our work falls in this last category of dynamic thermal
management at runtime (DTM) techniques. Prior DTM
research can be further classified in to four categories.

Voltage and Frequency Scaling. The goal of dynamic
voltage and frequency scaling techniques is to control proces-
sor overheating by keeping the temperature below a critical
threshold [33] [67]. Modern processors implement such
techniques at finer granularities with the use of temperature
estimation or sensor implementations (several thermal entities
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Figure 15: ED2 versus CF baseline for various schemes
at various load values for different benchmarks (a)
Computation, (b) GP, and (c) Storage.

per chip [64] or per core DVFS proposals [56]). Research
in this area is orthogonal to our work which focuses on job
scheduling across sockets in a server and any improved DVFS
technique can be used in conjunction with our proposal.

Resource Throttling. Prior research involves controlling
the behavior of the processor when it approaches a critical
temperature limit. Proposals include global clock gating by
Brooks et al. [49], local feedback controlled fetch-toggling
by Skadron et al. [72] and decode-throttling by Sanchez
et al. [68]. These techniques can be implemented with any
scheduler as they manage thermals within a single socket.

Workload Profiling and Migration. Srinivasan et al. [74]
propose off-line workload analysis techniques to decide
processor operating frequencies in order to mitigate ther-
mals. Others propose techniques to migrate work reac-
tively [58] [54] (after reaching a temperature threshold), pro-

actively [52] (before reaching a limit) or predictive [81] [53]
(by estimating future temperature). Migration is analogous to
scheduling and may be useful when job durations are long.
Our scheduling strategy can just as easily be used to choose
sockets for workload migration in suitable systems, or even
identify when migration would be profitable.

Scheduling and Dynamic Thread Assignment. A vari-
ety of scheduling techniques have been proposed in the
past including techniques that make decisions based on
current temperature [63] [80], history [54], randomized [76],
prevent heat re-circulation [63] and predictive temperature
estimation [81] [43]. We compare against these schemes
and demonstrate better performance across various load
levels. Heat-and-Run [57] proposes the loading of cores as
much as possible by scheduling threads that use orthogonal
resources on to an SMT system. These techniques can be
used in conjunction with our research to perform core level
scheduling.

VII. CONCLUSION

This work provides a comprehensive analysis of intra-
server thermals for emerging density optimized systems.
It shows that existing scheduling algorithms perform sub-
optimally across the spectrum of load levels as they do
not account for inter-socket thermal coupling. We demon-
strate new scheduling techniques that account for heat
transfer amongst sockets and resulting thermal throttling.
The proposed mechanisms provide 2.5% – 6.5% performance
improvements across various workloads and up to 17% over
traditional temperature-aware schedulers for computation-
heavy workloads.
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