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Abstract—As the power density and power consumption of
large scale datacenters continue to grow, the challenges of
removing heat from these datacenters and keeping them cool
is an increasingly urgent and costly. With the largest datacenters
now exceeding over 200 MW of power, the cooling systems that
prevent overheating cost on the order of tens of millions of dollars.
Prior work proposed to deploy phase change materials (PCM)
and use Thermal Time Shifting (TTS) to reshape the thermal
load of a datacenter by storing heat during peak hours of high
utilization and releasing it during off hours when utilization
is low, enabling a smaller cooling system to handle the same
peak load. The peak cooling load reduction enabled by TTS is
greatly beneficial, however TTS is a passive system that cannot
handle many workload mixtures or adapt to changing load or
environmental characteristics.

In this work we propose VMT, a thermal aware job placement
technique that adds an active, tunable component to enable
greater control over datacenter thermal output. We propose two
different job placement algorithms for VMT and perform a scale
out study of VMT in a simulated server cluster. We provide
analysis of the use cases and trade-offs of each algorithm, and
show that VMT reduces peak cooling load by up to 12.8% to
provide over two million dollars in cost savings when a smaller
cooling system is installed, or allows for over 7,000 additional
servers to be added in scenarios where TTS is ineffective.

I. INTRODUCTION

The unprecedented growth of web and cloud services over
the last decade spurred an enormous investment in datacenters,
also called ”warehouse-scale computers” (WSCs) [1]. With
the largest datacenter facilities consuming over 200 MW of
power each [2], [3] and costing over a billion US dollars to
build [4], datacenters represent a huge investment not only in
server equipment but also in power, connectivity, facilities, and
cooling infrastructure.

In the United States alone, datacenters consumed over 2% of
all electrical power generated in 2014 [5], [6]. Extensive prior
work investigates how to build more energy efficient processors
and remove heat from the processors and servers better [7],
[8], [9], [10], [11], [12], [13], but relatively little research has
been published on how to maximize utilization and efficiency
while minimizing cost to remove this heat from a datacenter
facility.

In even a modestly sized datacenter the cooling system cost
can exceed hundreds of thousands of dollars per MW of critical
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Fig. 1: Thermal time shifting (TTS) can operate in a limited
range of temperatures (green), however many mixtures of
datacenter workloads lie outside of this range. Virtual Melting
Temperature (VMT) manages workload placement to greatly
expand the useful range (green+yellow) where deploying phase
change materials is beneficial.

power, with large datacenters spending tens of millions in
capital costs plus millions more per year in operating expenses
to power and maintain the cooling system [14]. Datacenter
cooling capital expenses in 2015 alone totaled more than $2.58
billion and are expected to exceed $6 billion by 2023 [15]. Prior
work investigating server and datacenter cooling techniques
demonstrate efficiency improvements [16], [17], [18], but
cannot address the growing cost problem due to a critical
assumption: that work and heat are coupled so that all of the
heat must be removed at the same time the work is done.

Thermal time shifting (TTS) [19] decouples work and heat
by storing excess heat in a phase changing material (PCM) and
removing that heat at a later time. TTS with PCM works by
placing a quantity of PCM downwind from the CPU sockets
in a rack mounted server. During the peak hours (midday
through the evening) when users are online and load is high,
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the PCM melts absorbing heat to reduce the thermal output
of the datacenter. Then during the off hours (late night and
early morning) when most users are asleep, load is low, and
extra cooling capacity is available, the PCM refreezes and the
stored thermal energy is released.

A reduced peak cooling load has two major advantages: the
datacenter can employ a smaller cooling system while still
meeting the computational demands of peak load, or the same
datacenter can run more and/or hotter servers under the same
cooling budget. Both benefits can save hundreds of thousands of
dollars per year or millions of dollars in capital expenses [19],
however it is not a universal solution.

While TTS implemented with commercial grade paraffin
wax can be both thermally effective and cost effective (approx-
imately $1,000 per ton [19]), it has key limitations. Most of
these limitations stem from the fact that the optimal melting
temperature for a datacenter depends on many factors, from
ambient temperature, to workload, to power and delivery limits.
All of these can change from installation to installation, from
season to season, or even from day to day. This is problematic
because:

1) Commercial-grade paraffin can only be purchased within
a limited range of melting temperatures, typically 40-60
◦C, however if a melting temperature outside of this
range is needed molecularly pure n-paraffin options cost
in excess of $75,000 per ton.

2) Once installed, the wax melting temperature cannot be
adjusted. On days when the load does not cause wax to
melt, there is no flattening of the diurnal cooling load
while on days when all the wax melts too soon, there is
no reduction in peak temperature and cooling load.

3) The power and temperature profile of a workload often
changes over the multi-year lifetime of a server. As the
power profile changes, the ideal (or required) melting
temperature can also change to necessitate new wax or
leave the range of commercial wax melting temperatures
entirely.

In all three cases, deploying wax in the servers provides
little to no benefit and TTS is a passive system that cannot
adapt.

In this work, we propose a new adaptable technique called
Virtual Melting Temperature (VMT) to handle workload power
mixtures that TTS alone is unable to cool. VMT does so in
such a way that it induces melting of the PCM (and thus heat
redistribution) at load and average temperature levels that are
(configurably) different than would happen with TTS, thus
mimicking the operation of wax with a melting point that is
different than the physical melting point of the deployed wax.

This is accomplished by rebalancing the load to raise
temperatures in some of the servers above the PCM’s melting
temperature and storing energy in select servers, with the ben-
efits of reduced cooling load and reduced power. Strategically
employing VMT enables fine-grained control of wax melting
and cooling, allowing VMT to reduce the peak cooling load
when TTS cannot.

In this paper, we make the following contributions:

1) We introduce VMT, a method to manage the thermal
properties of a PCM-enabled datacenter by controlling
workload placement. We introduce and discuss two

workload placement algorithms to enable VMT.
2) We perform a scale out study of VMT with both

algorithms, using a previously verified simulation method-
ology to execute a design space exploration of VMT on
a cluster of 1,000 PCM-enabled servers. We examine
two VMT algorithms in a cluster running five different
workloads, each with unique thermal characteristics.

3) We quantify the impact of VMT at the cluster and
datacenter levels, providing useful discussion of how
best to use VMT in a datacenter and quantifying the po-
tential benefits of VMT-enabled cooling oversubscription
policies.

At the cluster level, we find that VMT can reduce the peak
cooling load by 12.8% even when the average thermal output
of the the cluster is too low for TTS. At the datacenter level
VMT reduces the peak cooling load by up to 3.2 MW, allowing
for up to 7,339 more servers under the same cooling budget
or for the datacenter to operate at full capacity with a smaller
cooling system saving $2.6 million in scenarios where TTS
provides no measurable benefit.

II. BACKGROUND – TTS

Prior work [19] showed that TTS can greatly reduce the
peak cooling load of a datacenter, providing significant cost
savings by reducing the size of the cooling system needed or
providing cooling for thousands more servers under the same
cooling budget.

This is particularly important as datacenters continue to
grow because, while the cooling system is an integral and
critical part in the design of every datacenter, the cooling
system itself does not directly contribute towards revenue
generation. With cooling infrastructure costing millions of
dollars for even modestly sized datacenters [14] and consuming
millions of MWh annually [5], working towards more efficient
and affordable cooling systems is of critical importance.

TTS proposes to place a small amount of PCM in each
server in a datacenter running primarily user-facing workloads.
These types of workloads typically see a diurnal load pattern
with a high peak during the afternoon/evening and a large
trough during the late night [1], [20], however a diurnal cycle
is particularly problematic for the cooling system because the
system size must be provisioned for peak load even though
it spends most of the day running at levels considerably
below the peak (Figure 2). TTS addresses this by raising the
minimum load and lowering the maximum load, increasing
average utilization in an appropriately resized cooling system.
In the right configuration, TTS can accommodate the same
load without overheating or thermal downclocking.

To enable TTS, the PCM must have a melting temperature
that lies between the peak and trough such that during the peak
hours wax melts and stores thermal energy, and then during
the off hours when the load is low the PCM solidifies and
releases the stored energy. The total amount of energy stored
is proportional to the latent energy of the PCM (the amount of
energy absorbed during the phase transition), and how much
PCM melts. The sensible heat (energy required to raise the
temperature of the PCM without a phase transition) also stores
energy, but typically stores several times less energy than
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Fig. 2: Thermal time shifting with PCM.

the phase transition [19], [21], [22]. TTS does not inherently
remove heat or reduce the amount of heat that must removed
from the datacenter.

TTS proposes to alter this paradigm, storing thermal energy
at the peak and releasing it during the off hours to flatten the
cooling load. This enables two major opportunities for cost
savings. First, the cooling system in a datacenter may now be
sized for a reduced peak load, saving hundreds of thousands
of dollars per year in amortized TCO, or alternatively second:
more servers with a higher peak power load may be added to
the same datacenter without increasing the peak cooling load
and saving millions of dollars over a new cooling system in a
retrofit scenario [19].

However, a passive management system for TTS that only
melts or cools wax at a specific and set threshold [19]
(the physical melting temperature of the wax) cannot handle
many mixtures of different workloads, especially as the types,
prevalence and power characteristics of these workloads change
over the lifetime of the datacenter and may change as frequently
as day to day or hour to hour.

PCM Selection - Thermal energy storage can be accom-
plished with any PCM, however not all PCMs are appropriate
for deployment in a datacenter. Commercial paraffin wax is
particularly advantageous, not only because it is non-corrosive
and non-conductive in case of a leak, but also because it
is cheap and available with a range of melting temperatures
typically between 40 and 60 ◦C. Molecular n-paraffins can
have lower melting temperatures, but are cost prohibitive to
deploy in a datacenter [19], [21], [22], [23].

Wax Placement - TTS proposes to place the wax directly
inside of each server, behind the CPU heat sinks occupying
empty air space left available for expansion card slots and other
configuration options. Prior work demonstrated the benefits
of TTS in a variety of servers including low power and high
throughput commodity servers as well as high density Microsoft
Open Compute servers for workloads with heterogeneous
thermal profiles [19].

III. VIRTUAL MELTING TEMPERATURE

VMT actively manages workload placement to control the
distribution of temperatures within the datacenter, raising the
temperature in a subset of servers to melt wax (and thus store
heat) while lowering the temperature in other servers to reduce
the peak cooling load for the whole datacenter. This creates
a ”virtual” melting temperature where, although the average
temperature is unable to melt wax, we initiate melting in a
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Fig. 3: Thermal Aware VMT scheduling.

subset of servers to benefit from heat storage. VMT gives the
system or operator active control over the melting and cooling
cycles of wax in the datacenter.

Without VMT, the datacenter’s ability to target the best
physical melting temperature (the point at which temperature
of the server is held stable while the material melts) is relatively
limited and, most importantly, remains constant for the life of
the server unless the wax is swapped out and replaced (labor
intensive). VMT is a technique that allows a datacenter to
vary the apparent melting temperature in the datacenter to
melt wax even if it would not normally melt. With a diverse
workload, we can create thermal imbalance via job placement.
With a homogeneous workload we can do the same through
load imbalance; for this work we assume the former.

VMT can also raise the melting temperature by locating hot
jobs in a subset of servers with already melted wax, preserving
wax in anticipation of a very hot peak still to come. However,
the focus of this work is on reducing the melting point rather
than increasing it.

In this section we present two scheduling algorithms to
enable virtual melting temperature: a thermal aware algorithm
that sorts and places jobs based upon their thermal properties,
and a wax aware algorithm that additionally reallocates jobs
away from fully melted servers.

A. VMT with Thermal Aware Job Placement
VMT with thermal aware job placement (VMT-TA) proposes

to divide the cluster into a hot group of servers and cold group,
then schedule jobs with a hot thermal profile in the hot group
while jobs with a cold thermal profile are placed in the cold
group (Figure 3). (Note that hot group and cold group servers
do not need to physically clustered: they can be distributed
throughout datacenter to maintain the same cluster or DC-level
temperature distributions.)

Jobs are placed into either the hot group or the cold group
based on the thermal profile of the workload they belong to: if
a server filled with only a single workload can melt significant
wax over a peak load cycle, regardless of whether the jobs
can be colocated with itself enough times to do so as long as
they could be collocated with other hot jobs, the workload is
considered hot and VMT will attempt to located these jobs
together in the hot group. Otherwise, the workload is labeled
cold and VMT attempts to place jobs in the cold group.

In such a configuration, the hot group can melt wax even
if the mean temperature within all of the servers or mean
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temperature with round robin/non-thermal-aware scheduling is
not high enough to melt wax.

To calculate the number of servers placed in the hot group,
VMT-TA uses a ratio of the user-set Grouping Value (GV)
divided by the Physical Melting Temperature (PMT) of the
wax in the following formula:

hot group size =
GV

PMT
×num servers (1)

Where num servers is the number of servers in the cluster
and hot group size is the number of servers in the hot group.

There is not a general solution that maps the GV to a Virtual
Melting Temperature (VMT) because such a mapping depends
on the PMT as well as the workload power profile and workload
mixture, however a mapping can be experimentally derived for
a given combination. In Section V-A we show a GV to VMT
mapping for our test datacenter.

After calculating the hot group size, the cold group is simply
composed of the remaining servers:

cold group size = num servers−hot group (2)

To implement VMT-TA, workload types are first classified
as hot jobs or cold jobs based upon thermal characteristics.
This can be done using on-package thermal sensors and/or
power sensors or models (e.g. Intel RAPL). Once deployed,
hot jobs are placed in the hot group of servers while cold jobs
are placed in the cold group .

Within each group, jobs are distributed evenly among the
servers. Here care must be taken to ensure each group is large
enough to support the peak load for its respective subset of
workloads else individual queries must be dropped or queued
causing QoS degredation. This can be handled by dynamically
adjusting the VMT to modify the group sizes or by allowing
jobs to be scheduled to the other group if one group fills up.

B. VMT with Wax Aware Job Placement
Last, we propose VMT with wax aware job placement (VMT-

WA). Where VMT-TA has no mechanism to handle all of the
wax in the hot group melting early, VMT-WA monitors the
melted state of the wax and automatically increases the size
of the hot group if all of the wax melts before the end of the
load peak.

At its simplest, VMT-WA schedules just like VMT-TA until
wax on a server in the hot group is fully melted. Unlike VMT-
TA, once the wax is fully melted in a server VMT-WA moves
a server from the cold group to the hot group, maintains just
enough load on the melted servers to keep the wax melted,
and moves the additional load to the newly added server to
continue melting wax (Figure 4). A detailed description of the
algorithm follows.

VMT-WA begins by calculating the size of the hot and cold
groups using Equation 1, the same as VMT-TA, however the
group sizes are dynamically updated as wax melts and cools.

Periodically, the cluster scheduler updates the size of the
hot and cold groups by scanning the amount of wax melted on
each server. The scheduler compares each server against the
Wax Threshold, the fraction of the wax melted above which the
server is considered completely melted, and adds each server
above the threshold to a list of fully melted servers. After
counting the number of servers in this list, servers are removed
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Fig. 4: Wax Aware VMT scheduling.

from the cold group and added to the hot group based upon
current load trends. During each update, the scheduler restarts
from the minimum hot group size (Equation 1) and adds servers
in order. To the extent possible, we do not transition servers
from the hot group to the cold group during the peak because
cooling a melted server releases heat.

When placing individual jobs, the scheduler considers the
job’s thermal classification (the same as VMT-TA) but does not
strictly place the job in the corresponding server group. For hot
jobs, the scheduler first attempts to schedule the job in the hot
group by considering a subset of servers in the hot group that
are currently below a certain amount of wax melted (the wax
threshold) or are below the wax melting temperature. Placing
a hot job on either such server will attempt to melt more wax
or keep already molten wax melted (both advantageous for
reducing cooling load).

If there are no hot group servers meeting these characteristics
(possible with sudden spikes in load), then servers are added
to the hot group from the cold group sequentially until the
hot group includes a server that is below the wax threshold or
melting temperature. In the event that no such servers exist (a
corner case where all servers are added to the hot group) then
the job is scheduled on any server below the melted threshold
or, barring that, any remaining servers.

To place a cold job, the scheduler first attempts to place the
job in the cold group. If the job cannot be placed in the cold
group (as may occur when the hot group grows), the scheduler
attempts to place the job on a server in the hot group that is
already above the melted threshold and melting temperature to
minimize thermal impact. If the job cannot be placed in these
servers either, then the job is placed into one of the remaining
hot group servers.

This ordering of scheduling policies will only fail to schedule
a job in the case where a thermally unconstrained datacenter
would also run out of computational space, so we do not model
that case.

Tracking Wax State - VMT-WA requires knowledge of the
current melted state of wax in servers in the cluster to adjust
the size of the hot group properly. A single temperature sensor
on the exterior of the wax container can tell us when the wax
starts melting or freezing, then we add a light weight model of
current wax state running on each server. The model uses the
CPU power consumption and temperature sensors already in
the server to estimate the current state of the wax based upon
a lookup table [24].
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Fig. 5: Test server with 4.0 liters of wax (light blue) behind
the CPUs.

IV. METHODOLOGY

A. Datacenter Architecture

We consider a datacenter running a Google-style suite of
workloads: all are user facing with different latency require-
ments that, with modern contention reduction techniques [25],
[26], [27], allow for collocation on the same servers. Within the
datacenter, servers are divided into homogeneous clusters and
job scheduling is performed at the cluster level. In Section V we
perform a number of cluster-level scale out studies on a cluster
of 1,000 servers (with some parameter sweeps performed
with 100 servers to reduce total compute time). To perform
a datacenter-level TCO analysis, we consider many clusters
summing to a critical power of 25 MW, just shy of the
27.25 MW median critical power for large scale datacenter
reported by Ghiasi et al [3].

We provision the datacenter with 2U high throughput servers
(Figure 5), based upon the internal layout of a Sun Fire X4470
server but populated with 4x Xeon E7-4809 v4 CPUs. In this
form factor, this corresponds to approximately 20 servers per
rack and 50 racks per cluster. Each server has a peak power
consumption of 500 W, and an idle power consumption of
100 W. Per core power consumption is approximated using a
linear model [14].

Based upon computational fluid dynamics (CFD) design
space exploration, this server can hold 4.0 liters of wax without
exceeding CPU thermal limits [19]. The wax in each server is
commercial paraffin wax with a melting temperature of 35.7 ◦C,
the lowest commercially available temperature [28].

The paraffin wax is divided between four aluminum con-
tainers that contain the wax when molten and provide surface
area contact for heat transfer from the air to the wax. Even
though the paraffin wax has a melting temperature of 35.7 ◦C,
the lowest of a commercially available paraffin wax, for many
workload compositions this is not low enough to melt wax
even at peak load due to the thermal characteristics of the
datacenter and the workloads.

Each server in the cluster maintains its own model of the
state of the wax inside of it [24]. We update the model once
per minute based upon load and temperatures in the last
minute, and report the wax state to the cluster level scheduler
when it is updated. Running only once per minute, the update
process provides a negligible impact on server and network
performance.

TABLE I: Workloads considered for scaleout study (power is
normalized to a single 8 core Xeon E7-4809 v4 CPU; each
server contains four CPUs).

Workload CPU Power VMT Class
WebSearch 37.2 W hot
DataCaching 13.5 W cold
VideoEncoding 60.9 W hot
VirusScan 3.4 W cold
Clustering 59.5 W hot

B. Workloads
We consider a cluster of servers inside of datacenter running

5 different workloads (Table I). All of the workloads can
be co-located within the same server, however they are
assigned separate physical cores and never share simultaneous
multithreading (SMT) contexts to reduce the complexity of
contention mitigation techniques.

Of the five workloads two are user-facing, latency critical
workloads that demand immediate responses back from the
server: Web Search and Data Caching. These workloads
have strict QoS requirements on the order of milliseconds
or microseconds.

The other three workloads perform user-facing functions
that demands a degree of QoS (that is, they are not batch
jobs that can be scheduled hours later) but are not as strict
as web search and data caching. Video Encoding, e.g. for
Youtube, Virus Scanning files, e.g. for uploading files to Google
Drive, and Clustering, e.g. for web advertisements, demand
computation be near when the action is initiated to ensure
benefit (responsive file downloads, relevant ads, etc.) but a
runtime difference on the order of seconds will not greatly
reduce the user experience. On these workloads, we consider a
datacenter running contention mitigation techniques [25], [26],
[27] that allow a small performance penalty to ensure that the
latency critical workloads meet their QoS requirements.

To enable sorting and placement using VMT, jobs are
classified as either a ’hot’ or ’cold’ based upon whether their
power and temperature profile would enable them to melt
significant wax if run in isolation.

Web Search - We consider the CloudSuite 2.0 Web Search
benchmark [29]. Web Search shards queries to multiple servers,
each holding a portion of the index, and returns the results
based upon the users query. Using power profiling of Web
Search [30], we classify it as a hot job for VMT.

Data Caching - For Data Caching, we consider the
CloudSuite 2.0 implementation using the Memcached server
framework to meet the demands of a social media service [29].
The Memcached server must respond in real-time to user
requests, performing a number of memory operations on large
sets of data. With relatively low CPU power consumption [30],
VMT classifies data caching as a cold job.

Video Encoding (h264) - We consider the SPEC 2006
implementation of h264 video encoding [31]. Video media
uploaded to video sharing sites such as Youtube are re-encoded
to several different file sizes [32] before users can share or
view the video. As such, although this is not a batch job where
the host provider can leave the user waiting potentially several
hours until the encoding can be scheduled during off hours [20],
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Fig. 6: Latency scaling with load and cores for Web Search
and Data Caching colocated on a Xeon server, without
contention reduction techniques. Caching contention is within
an acceptable range when colocated versus not, and Web Search
exhibits behavior that can be managed using previously studied
contention mitigation techniques.

a small delay of seconds or even minutes for longer videos
is tolerable. Based upon power measurements of h264 Video
Encoding [19], we classify video encoding as a hot job for
VMT.

Virus Scanning - Files uploaded to a file host like Google
Drive are scanned for viruses before they are shared, converted
or downloaded [33]. We consider a virus scanner [30] running
on freshly uploaded files. Similarly, these are not latency critical
but cannot be delayed for batch job scheduling. Based upon
power profiling of VirusScan [30], virus scanning is classified
as a cold job for VMT.

Clustering - Clustering is commonly used to deliver ads
targeted ads based upon user actions on the web [34]. This is a
computationally intensive task with some leeway for contention
mitigation, but the sooner it can finish then the sooner relevant
ads can be delivered to the end user [34]. This makes batch
job scheduling possible but not ideal in many cases. Based
upon power profiling [35], we classify clustering as a hot job
for VMT.

1) Workload Migration: If a job cannot be migrated at all
and load cannot be redirected to a different host then VMT
cannot be used, however this is a relatively rare case.

Of the diverse workloads we consider, all can be migrated
or reallocated but some are more portable than others. Virus
Scanning and Video Encoding, for example, are very portable
with data requirements dominated by the incoming files to be
scanned or encoded. Web Search on the other hand requires
a large amount of data that is not very portable, however
multiple copies of the data are already distributed throughout
the datacenter to enhance query speed and redundancy [36].
This allows a degree of flexibility in job placement without
requiring data migration that VMT exploits.

C. Workload Colocation and Interference
In Figure 6, we consider latency scaling with load and cores

for mixtures of Web Search and Data Caching servers from the

Cloudsuite 3.0 benchmark suite [29] running on a 6 core E5-
2420 CPU with Turbo Boost turned off. All jobs are scheduled
on separate cores and have sufficient main memory to prevent
swapping to disk but still may interfere in the last level cache
and memory bandwidth. No contention reduction techniques
are applied during this test. Data Caching RPS per server core
was fixed at was 45k when collocated with Web Search, while
Web Search clients per server core was fixed at 37.5 when
collocated with Data Caching.

For Data Caching, we observe that that at very low loads,
when QoS targets are most often met, 6 cores running together
provides the best latency. Similarly at high latencies when
QoS targets are violated 6 cores once again provides slightly
better average QoS, however in the middle range for Data
Caching a mixture provides similar or better performance than
homogeneous workloads as the memory resources are split
between memory intensive data caching and more compute
intensive web search. Given that the total load must meet
QoS with all cores allocated to one workload at load, (thus
dividing peak resource utilization approximately even by the
number of cores), we assert that the high latency sensitive
workloads will be able to coexist in general with other high
latency sensitive workloads. Corner cases that may arise (e.sg.
specific cache thrashing access patterns) can be mitigated by
dynamic management and recompilation techniques [25], [26],
[27] or allocated to non-VMT-enabled servers.

For Web Search, we observe decreased performance across
the whole range of clients per core. Here, it is important to
observe that even with 6 cores running only Web Search the
clients per core are limited by QoS targets to return data to
the user. As these are compute heavy workloads and sufficient
memory bandwidth was available with 6 cores, the slowdown
is likely caused by cache interference which can be mitigated
by BubbleUp and Protean Code [25], [26].

D. Server Reliability
The impact of thermal wear on computer and server compo-

nents has been extensively studied [37], [38], [39]. Using VMT,
servers in the hot group experience higher average utilization
and the temperature of many components increases relative
to a round robin or coolest first scheduler (thus exhibiting a
higher failure rate) while servers in the cold group experience
the opposite.

To ensure even wear leveling across components, servers
should therefore be rotated between the hot group and cold
group regularly [40], [41], [42], [43]. In Figure 7, we plot the
6 month and 36 month (3 year) cumulative failure rates using
a RR scheduler and a VMT-WA scheduler.

To model the failure rate, we first begin with a 70,000 mean
time before failure (MTBF) at 30 ◦C based on numbers from
Intel [44]. We scale this reliability using the rule of thumb
that a 10 ◦C increase in temperature doubles the failure rate
of components [45], [39] to adjust the rate of failure to the
temperatures in our test datacenter.

We then assume a 20% rotation per month, where each
server spends two months in the cold group and three months
in the hot group based upon our breakdown of workloads.
After 3 years [1], the cumulative failure rate of all servers for
VMT-WA is only 0.6% higher than for round robin.
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Fig. 7: Server reliability for round robin versus VMT-WA
when 20% of servers are rotated each month (3 months in the
hot group, 2 months in the cold group). After 3 years, the
cumulative failure rate for VMT-WA is 0.4% higher than for
RR.
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Fig. 8: Two day trace (cumulative for 100 servers).

E. Simulation Infrastructure

We perform our scale out simulation using DCsim [14], an
event-driven simulator to model a cluster of 1,000 servers.
The wax model for the server is based upon real hardware
measurements to validate a CFD model of a test server [19],
and then the CFD result is used to derive model parameters for
DCsim. (CFD is more accurate, but computationally infeasible
to solve at the granularity needed to evaluate VMT in a cluster-
level scale out study.) The cluster results from DCsim are then
multiplied linearly to calculate the effects of VMT workload
placement policies on the datacenter level.

We use a two day trace of datacenter load from Google [46],
normalized using a similar procedure to Kontorinis et al. [14].
The total load is divided between our five workloads, providing
a roughly 60-40 split between hot jobs and cold jobs (Figure 8).
The load pattern on these two days, up to 95% server utilization,
represent the worst case days for the the cooling system. Servers
are usually provisioned such that peak daily load is much lower
than the total capacity [1], resulting in server and cooling
capacity that is underutilized. We consider atypically high
day-to-day utilization over two days to realistically stress the
cooling system and VMT algorithms in our evaluation.

F. TCO Model

To quantify the cost-saving benefits of VMT, we consider the
TCO of the cooling system in a datacenter. When constructing
a datacenter, the age of non-IT infrastructure (facilities, cooling,
power distribution, etc.) is typically expected to outlast the IT
infrastructure (servers, networking equipment, etc.).

To estimate lifetimes, costs and benefits we adapt the TCO
calculations from Kontorinis et al. [14] to our datacenter. They
use a 10 year linear depreciation for non-IT infrastructure
including the cooling system, and a 4 year depreciation for
servers.

To calculate the depreciation cost of the cooling system
alone, they report a depreciation cost of $7.00 per kilowatt of
critical power per month. With a cooling system expected to
depreciate over 10 years, this adds up to $84,000 per MW of
critical power per year, or $21 million total for 25 MW of
critical power.

We evaluate only the cost savings in the cooling system for
VMT. The cost to add wax to each server is very small (less
than 0.5% of the purchase cost per server at a wax price of
$1000/ton), as is the cost savings from utilizing lower electricity
prices during the off-peak hours [19].

V. EVALUATION

In our experiments, we consider two baselines. The first
is a round robin scheduler, the same used in prior work on
TTS [19]. The second is a more advanced coolest-first scheduler
that presumes the coolest servers have the greatest thermal
headroom available and schedules on them first.

In Figures 9 and 10, we plot a heat map of the temperature
inside of 100 servers and the portion of wax melted in those
servers when jobs are placed according to the round robin and
coolest first schedulers, respectively. Both schedulers receive
the same workload. Temperature peaks (around 20 hours and
46 hours) and troughs (around 5 and 29 hours) correspond with
the peaks and troughs seen in the workload pattern (Figure 8).
Compared to round robin, coolest first maintains a much
tighter temperature distribution between servers as expected
of a thermal aware load balancing scheduler, however due to
the diverse thermal profiles of these workloads the average
temperature in either cluster and the temperatures in each server
never reach levels high enough to melt a significant amount
of wax.

A. Thermal Aware VMT

First, we consider VMT-TA in a cluster of 1,000 servers. As
noted in Section III, the GV used to calculate the size of the
hot and cold groups does not directly correlate to a temperature
but is used to control the ratio of servers in the hot group to
servers in the cold group.

As noted in Section III-A, the grouping value is used to
determine the size of the hot group. We empirically derive
a mapping from GV to the VMT in Table II by running
multiple experiments where the wax heat of fusion is modified
to match the available thermal energy storage in the hot group
and the PMT is swept above and below the starting melting
temperature, 37.5 ◦C. (VMT temperatures above GV=20 are
indistinguishable because the datacenter no longer melts wax.)
Note that the relationship is non-linear, and is specific to this
configuration; the GV to VMT relationship can vary with
different mixtures of the PMT and workload composition.
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(a) Air temperatures at the wax using round robin placement.
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(b) No wax melts using round robin placement.

Fig. 9: Air temperatures and wax melted for 100 servers using
round robin placement. The cluster does not benefit from TTS
because both the average temperature and individual server
temperatures are not hot enough to melt wax.
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(a) Air temperatures at the wax using coolest first placement.
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(b) No wax melts using coolest first placement either.

Fig. 10: Air temperatures and wax melted for 100 servers
using coolest first placement. Coolest first scheduling produces
a much lower temperature deviation between the servers versus
round robin, but similarly does not melt significant wax.

TABLE II: Experimentally derrived mapping between the
Grouping Value (GV) and Virtual Melting Temperature (VMT)
for the test datacenter.

GV VMT (◦C) ΔPMT (◦C)
20.03 37.7 +2.0
20.14 36.7 +1.0
20.23 35.7 +0.0
20.83 34.7 -1.0
21.25 33.7 -2.0
21.55 32.7 -3.0
21.69 31.7 -4.0
21.84 30.7 -5.0
23.99 29.7 -6.0
30.75 28.7 -7.0
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(a) Air temperatures at the wax using VMT-TA.
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(b) Wax melted using VMT-TA.

Fig. 11: Air temperatures and wax melting for 100 servers
using VMT-TA with GV=22.
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Fig. 12: Average temperature in the hot group using VMT-TA
as the GV is adjusted for a cluster of 1000 servers.

Because of this fluid behavior, we plot the GV rather than
VMT in our evaluation.

In Figure 11, we plot air temperatures at the wax for VMT-
TA for GV=22 on 100 servers (one tenth of the cluster). In
Figure 11a, the separation between the hot group and cold group
is immediately apparent. Although the temperature trends with
the load pattern in both groups, placing the hot jobs together
in the hot group allows the hot group to exceed the melting
temperature of the wax (thus storing energy as the wax melts),
even though the average temperature remains unchanged. This
effect is visible in Figure 11b, where only wax in the hot group
melts.

In Figure 12, we plot the average temperature in the hot
group of the 1,000 server cluster versus the GV from GV=21 to
GV=26. The round robin job placement algorithm almost but
does not quite reach the melting temperature. With VMT-TA,
the average cluster temperature remains the same as round
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Fig. 13: Cooling load reduction with VMT-TA at 3 different
GVs for a cluster of 1000 servers. GV=20 begins melting
too soon and runs out of wax capacity before the end of the
peak. GV=24 begins melting too late, and still has a significant
amount of unmelted wax at the end of the peak.

robin but temperatures in the hot group exceed the melting
temperature of the wax.

The degree to which the hot group temperature exceeds
the average temperature is inversely proportional to the GV
value. As the GV setting is decreased the temperature of the
hot group increases because there are fewer servers to spread
the hot jobs out across, but there is also less thermal energy
storage capacity in the hot group because wax is allocated per
server.

In Figure 13, we plot the cooling load for three GV values:
GV=20, GV=22 and GV=24. GV=22 provides the best peak
cooling load reduction of 12.8%. GV=24 works about two-
thirds as well (8.8%) because the hot group is still hot enough
to melt the wax, but not hot enough for long enough to melt
all of the wax so some thermal energy storage capacity goes
unused. GV=20 on the other hand is even hotter than GV=22,
but melts too fast: just over halfway through the peak all of the
wax is melted and the thermal storage capacity is exhausted.
At this time, the cooling load increases to provide no benefit
for the rest of the peak.

B. Wax Aware VMT
In Figure 14 we plot heat maps of server temperature and

wax melted on 100 servers using the VMT-WA job placement
algorithm with GV=20. At this setting, which does not provide
a significant cooling load reduction using VMT-TA because
all of the wax melts prematurely, VMT-WA instead extends
the group of hot servers once wax in the hot group servers is
melted and continues to melt wax to store energy in the newly
added servers.

The temperature impact of this extension is first observable
in Figure 14a at the 19th hour, then more clearly after hour 20
where the hot group is expanded by around 20 servers as more
servers in the hot group reach the wax melting threshold. As the
hot group is expanded, hot jobs are still scheduled on the servers
originally in the hot group to maintain a temperature above the
melting temperature. This prevents the premature freezing and
release of stored thermal energy; however, additional load that

0 10 20 30 40

Time (hours)

0

20

40

60

80

100

S
er

ve
rI

D

Cluster Air Temperatures using VMT-WA

10

15

20

25

30

35

40

45

50 S
erverA

irTem
perature

( ◦C
)

(a) Air temperatures at the wax using VMT-WA.
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(b) Wax melted using VMT-WA.

Fig. 14: Heat map of Air temperature at the wax, and wax
melted, for a cluster of 100 servers using VMT-WA scheduling
(GV=20). The hot group servers (bottom) have a consistently
higher temperature than the cold group servers (top). Note the
expansion of the hot group around 20 and 45 hours correspond
with peak load and wax in the hot group reaching the wax
threshold.
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Fig. 15: Average temperature in the hot group using VMT-WA
as the GV is adjusted for a cluster of 1000 servers. The hot
group is extended when the average temperatures for GV=20
and 21 drop.

would have gone to those servers now goes to newly added
servers with unmelted wax. This has the double advantage
of moderating the temperature of the melted servers (at the
melting point) and moving new jobs to unmelted servers where
more thermal storage capacity is available. As a result, we can
see a quick drop in temperatures in the hot group in Figure 14a
and a capping of the cooling load in Figure 16 at the same
time. This quick drop is a result of the granularity in which
VMT-WA adds servers to the hot group.

In Figure 14b, the effects of extending the hot group can
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Fig. 16: Cooling load reduction with VMT-WA at 3 different
GV levels for a cluster of 1000 servers. For GV=20 when the
hot group becomes fully melted, VMT-WA adds more servers
to the hot group to and rebalanced load to continue melting
wax.
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Fig. 17: Peak cooling load reduction as the Wax Threshold is
adjusted for VMT-WA (GV=22) for 100 servers. Maximum
reduction is achieved above 0.95.

be seen in the distribution of wax melted. None of the newly
added hot group servers reach a fully melted state, but because
the thermal energy storage happens during the melting process
and they do melt more wax than otherwise is melted and more
thermal energy is stored.

The effect is further visible in Figure 15, where we plot the
average temperature in the hot group servers on GV values from
GV=20 to GV=26. The average temperature drops abruptly
(at roughly 20 hours for GV=20 and 21 hours for GV=21)
when the wax in the original group of servers for GV=20
and GV=21 melts to the wax threshold. Although the average
temperature is now lower, the VMT-WA carefully places jobs
to maintain the already melted wax and schedules the newly
added servers to exceed the melting temperature and melt as
much additional wax as possible. For larger GV values, where
the wax never becomes fully melted, the temperature and peak
cooling load reduction of VMT-WA closely match that provided
by VMT-TA.

In Figure 16, we plot the cooling load for GV=20, GV=22
and GV=24. As with VMT-TA, GV=22 provides the greatest
peak cooling load reduction (12.8%). This is expected because
the overall workload distribution is very close (approximately
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Fig. 18: Peak cooling load reduction as the GV is adjusted for
VMT-TA and VMT-WA for 100 servers. Both achieve peak
cooling load reduction at GV=22.

60% hot jobs) to the ratio of GV/PMT used to size the group
when GV=22. GV=24 also provides results similar to VMT-TA
(8.9%), but GV=20 provides significantly better results.

Unlike VMT-TA, where once the hot group is fully melted
the cooling load immediately returns to the level without wax,
the cooling load with VMT-WA increase once the wax in the
initial hot group is melted but levels off as new servers are
added to the hot group and hot jobs are placed on these servers
to melt more wax. GV=20 does not provide quite as much
benefit as the GV=22 or 24, but still manages a 7.0% reduction
in peak cooling load.

Figure 17 plots the result of varying the wax threshold, above
which VMT-WA considers the wax in a server to be ”fully
melted,” from 0.85 to 1.00. (We fix the wax threshold at 0.98, or
98% melted, in all other experiments.) A wax threshold of 1.00
means that all of the wax is melted, however in practice this
can be hard to maintain because mild temperature fluctuations
can cause small portions of wax to freeze again prematurely.
A lower threshold means we are less likely to overshoot the
desired temperature, but also risks leaving more wax unmelted
and sacrifices some thermal storage. We see from these results
that the threshold can be set as low as 0.95 without a noticeable
loss in capacity.

C. VMT-TA vs. VMT-WA
In Figure 18, we plot the results of sweeping the GV=10 to

GV=30 on 100 servers using VMT-TA and VMT-WA. Both
provide peak reduction at GV=22, and as the GV is increased
both trend downwards together closely. This is the best GV for
this specific combination of workloads and PMT, and will vary
from datacenter to datacenter. However because VMT gives
the ability to control GV, it provides a necessary degree of
flexibility and adaptability that TTS does not.

To evaluate VMT-TA versus VMT-WA, the advantage of
VMT-WA is most apparent below 22: while the peak cooling
load reduction using VMT-TA quickly drops to zero when
the hot group melts too quickly and cannot adjust, the
reduction using VMT-WA drops to around 6% immediately
then continues to decrease much more slowly afterwards.

First, both perform similarly well at GV=22 and above.
This is because there is a fixed amount of energy that can be
absorbed from the air before the temperature in the hot group
will drop below the melting temperature and no more heat can
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Fig. 19: Peak cooling load reduction using VMT-TA with
normally distributed inlet temperature variation (average of 5
runs of 100 servers each).
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VMT-WA: Peak Cooling Load Reduction with Inlet Temperature Variation
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Fig. 20: Peak cooling load reduction using VMT-WA with
normally distributed inlet temperature variation (average of 5
runs of 100 servers each).

be stored. Even if all of the wax in VMT-WA is melted and
the hot group extended, VMT-WA cannot absorb more energy
than VMT-TA at the ideal GV setting. The ideal setting may
vary as workload composition or daily load levels change.

This shows that the primary advantage of VMT-WA: it is
robust. In a scenario where the operators can predict load
accurately day to day, they can actually change the GV to the
optimal value each day. However, with VMT-TA they must
choose a conservative value because the risk of selecting a
value too low is extreme. With VMT-WA, the risk is more
balanced.

D. Impact of Inlet Temperature Variation
Real datacenters often have some variation in inlet tempera-

ture between servers due to airflow [47]. In this section, we
consider the impact of server inlet temperature variation on
VMT-TA and VMT-WA, and plot the average cooling load
reduction from 5 runs with 100 servers each.

In Figure 19, we plot the peak cooling load reduction using
VMT-TA for inlet temperature standard deviations of 0, 1, and
2 ◦C (95% within ±0, 2 and 4 ◦C of the mean) as the GV
setting is swept from 16 to 28. We observe that at GV=22 (the
peak without inlet temperature variation), no inlet temperature
variation provides the best reduction. Below GV=21 or above
GV=24 however, non-zero standard deviations offer slightly
better load reduction than no variation due to the distribution,
but still significantly less than near the optimal GV value.

In Figure 19, we plot the peak cooling load reduction using
VMT-WA across the same range of temperature variations. We
observe that like VMT-TA, outside of the best GV range a
small deviation provides the same or slightly better reduction.
At the peak we also observe a trend where a non-zero standard
deviation increases the GV at which peak reduction is achieved.
Even with STDEV=2 (95% within ±4 ◦C), the peak cooling
reduction still reaches 10.9%.

We see then that VMT jobs placement is still effective at
reducing total cooling load, even in a less uniform environment.
The optimal choice of GV increases slightly in this case
(because it is better to miss high than miss low); however,
we also continue to see that VMT-WA is much more robust
with respect to the choice of GV.

E. TCO Benefits of VMT
Lastly, we quantify the potential benefits that come from

using VMT to reduce the peak cooling load using a method-
ology published in prior work [19]. The two primary benefits
provided by a reduced peak cooling load are both derived
from cooling oversubscription: either that datacenter can now
achieve the same throughput with a smaller cooling system, or
more servers can be added to increase throughput under the
same cooling system. Both provide significant cost savings.

Both VMT-TA and VMT-WA achieve a peak cooling load
reduction of 12.8% in a cluster of 1,000 servers, versus less
than 0.2% with TTS alone. Considering the 25 MW datacenter
from Section IV-A, a fully subscribed cooling system would
need to remove 25 MW of thermal energy from the datacenter
at peak load. (The following cost-savings include cost estimates
to deploy wax into every server in the datacenter.)

Decreasing the peak cooling load 12.8% reduces the peak
cooling load of the datacenter from 25 MW to 21.8 MW and
enables a 12.8% smaller cooling system. This provides a cost
savings of $2,690,000 over the lifetime of the datacenter based
upon cooling system cost estimates [14].

(Note that deploying an n-paraffin wax with a melting
temperature near 30 ◦C for TTS to achieve the same peak
cooling load reduction would cost on the order of $10 million,
four times more than the money with VMT including the cost
of deploying commercial wax.)

For a more conservative approach, a datacenter using VMT-
WA may choose undertake only a 6% reduction in the cooling
system to account for load variation. A 6% reduction in the
size of the cooling system still provides a cost savings of
$1,260,000.

Alternatively, the reduced peak cooling load may be used
to add more servers to the datacenter under the same cooling
system size. Using VMT-TA or VMT-WA with the best peak
cooling load reduction, VMT enables 14.6% more servers: 146
additional servers per cluster or 7,339 additional servers in a
25 MW datacenter. The conservative 6% percent application of
VMT-WA also provides substantial benefit, enabling 6.4% more
servers: 64 additional servers per cluster or 3,191 additional
servers in the datacenter without increasing the cooling capital
expenditure.

The gains from reduce cooling capacity or greater overpro-
visioning come from using VMT to reduce the peak (annual)
cooling load as evaluated in this paper. There may be additional
benefits offered by the ability to control the melting temperature
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day-to-day, such as leveraging less expensive off-peak power
or green power when cooling energy can be temporally shifted
as well.

VI. RELATED WORK

A number of works have proposed to leverage the thermal
energy storage capacity of PCMs in the computing domain.
Computational sprinting [48], [49], [50], [51], [52] proposes
to place a small amount of PCM in contact with the CPU
to enable brief ”sprints” of fast operation that exceed the
safe sustained power levels, but is less useful for datacenters
where increased activity lasts for multiple hours at a time. TTS
proposes to use wax [19], [24] to passively reshape the thermal
profile, but cannot be widely deployed or adapted for many
workload mixtures. Other work related to TTS has proposed to
use a PCM for emergency overprovisioning [53], and to use an
adversarial approach to mitigate conflict for shared resources
in datacenters with limited power and cooling utilities [54].

VMT uses a similar approach to TTS, but propose to
accomplish the thermal reshaping using both latent energy
storage in wax as well as thermal aware job placement to
maximize stored energy. In contrast to TTS, which places wax
in servers and passively waits for conditions to be amenable
to melt wax, TTS actively places jobs to maximize thermal
storage and peak cooling load reduction.

Prior work on load balancing [55], [56], [57], [58], [59],
[60] used workload placement to improve performance, energy
consumption, and/or cooling efficiency. VMT implements
workload placement to unbalance power consumption and thus
temperatures at the cluster level, however for many workloads
these load balancing techniques may still be useful to coordinate
jobs within the hot and cold groups and to distribute hot and
cold servers spatially to balance load across multiple cooling
systems.

Similarly, job consolidation has been considered in prior
work to reduce power consumption [61], [62], [63], [64], [65],
however this approach requires extra server capacity that may
not be available during the peak hours. Job consolidation can
be used alongside VMT during the off hours, as long as jobs
are not consolidated to a level where they melt wax before the
peak hours.

Prior work in thermal aware job placement leverages spacial
aware of hot and cold spots in the datacenter to increase
efficiency [66]. Tang et al. manage the inlet temperature
distribution and place jobs accordingly for maximum power
efficiency [67], and Xu et al. propose to relocate jobs between
geographically dispersed datacenters to maximize cooling
efficiency [68], [69], [70], [71]. These are parallel or compatible
work with potential benefits when used alongside VMT.

Power over subscription is another area where prior work
proposed to use batteries to manage peak hours and/or power
emergencies [14], [72], [73], [74], [75]. Most of these leverage
uninterruptible power supply (UPS) batteries already present
in datacenters, and their techniques complement VMT well as
hot jobs both draw the most power and release the most heat.

Prior work for thermal overprovisioning proposed to use a
variety of sensible heat storage mechanisms. Several works
propose to use water tanks for thermal energy storage as the
thermal density of water is much greater than air, and the
water may be chilled during off hours to prepare for peak hour

load [76], [77], [78], [79]. VMT is not strictly applicable to
techniques that rely on sensible energy storage, rather than
latent energy storage, but these techniques are compatible with
VMT.

VII. CONCLUSION

In this work we introduced Virtual Melting Temperature
(VMT), a technique to control the thermal load of a datacenter
using workload placement in conjunction with Phase Change
Material (PCM)-enabled Thermal Time Shifting (TTS). We
presented two algorithms, Thermal Aware VMT (VMT-TA) and
Wax Aware VMT (VMT-WA), that manage workload placement
in order to maximize melting wax, and thus maximizing energy
storage with Thermal Time Shifting (TTS). Both policies group
hot jobs together to create warm spots in a subset of servers
(which may be distributed throughout the datacenter to maintain
balanced power distribution), melting more wax in this subset
than if job temperatures were evenly distributed. VMT-WA
goes a step further by relocating jobs as wax in the hot group
becomes fully melted.

We evaluated these algorithms with a scale out study using
a simulated cluster of 1,000 servers enabled with paraffin
wax over a two day trace covering a mixture of 5 datacenter
workloads with different thermal profiles. We found that both
VMT-TA and VMT-WA job placement algorithms provide
significant benefits VMT-WA, while slightly more complex
to implement than VMT-TA, also incorporates workload
movement to create a built-in safety factor against temperature
and workload variation. Overall, VMT enables up to a 12.8%
reduction in the peak cooling load that corresponds that to
over $2.6 million in savings over the life of a datacenter, or
adding up to 7,339 additional servers running under the same
fixed cooling budget.
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