
Proctor – Detecting and Investigating Performance
Interference in Shared Datacenters

Ram Srivatsa Kannan, Animesh Jain, Michael A. Laurenzano, Lingjia Tang and Jason Mars

Department of Computer Science and Engineering

University of Michigan, Ann Arbor

Email: {ramsri,anijain,mlaurenz,lingjia,profmars}@umich.edu

Abstract—Cloud-scale datacenter management systems utilize
virtualization to provide performance isolation while maximiz-
ing the utilization of the underlying hardware infrastructure.
However, virtualization does not provide complete performance
isolation as Virtual Machines (VMs) still compete for non-
reservable shared resources (like caches, network, I/O bandwidth
etc.) This becomes highly challenging to address in datacenter
environments housing tens of thousands of VMs, causing degra-
dation in application performance. Addressing this problem for
production datacenters requires a non-intrusive scalable solution
that 1) detects performance intrusion and 2) investigates both the
intrusive VMs causing interference, as well as the resource(s) for
which the VMs are competing for.

To address this problem, this paper introduces Proctor, a
real time, lightweight and scalable analytics fabric that detects
performance intrusive VMs and identifies its root causes from
among the arbitrary VMs running in shared datacenters across
4 key hardware resources – network, I/O, cache, and CPU.
Proctor is based on a robust statistical approach that requires
no special profiling phases, standing in stark contrast to a wide
body of prior work that assumes pre-acquisition of application
level information prior to its execution.

By detecting performance degradation and identifying the root
cause VMs and their metrics, Proctor can be utilized to dramati-
cally improve the performance outcomes of applications executing
in large-scale datacenters. From our experiments, we are able to
show that when we deploy Proctor in a datacenter housing a mix
of I/O, network, compute and cache-sensitive applications, it is
able to effectively pinpoint performance intrusive VMs. Further,
we observe that when Proctor is applied with migration, the
application-level Quality-of-Service improves by an average of
2.2× as compared to systems which are unable to detect, identify
and pinpoint performance intrusion and their root causes.

I. INTRODUCTION

Enterprise datacenters like VMWare, Microsoft, and Ama-

zon often house thousands of servers to service large-scale

cloud applications across the globe. Cloud computing is be-

coming more common every day among a diverse set of

users executing high-performance computing applications [5],

user-facing web service applications [12], machine learning

applications [17], [18] etc. Hence, improving the utilization of

cloud platforms is of critical importance in terms of improving

cost and reducing the footprint of the datacenters [2], [8]–

[10], [19], [26]. This has motivated users towards using cloud

platforms for executing a varied class of applications ranging

from

Over past few years, datacenter operators have switched

to virtualization, a technique that encapsulates and abstracts

applications from the physical hardware by creating Virtual

Machines (VM), that assists sharing of physical hardware

by scheduling multiple VMs on the same physical machine.

State-of-the-art VM monitors, also known as hypervisors, like

Xen, Hyper-V and ESXi [41], [45] reserve fragments of the

physical server resources (like CPU core, DRAM storage etc)

for each application separately in a virtualized environment.

This abstraction leads to better hardware utilization, as mul-

tiple VMs can now be easily scheduled on the same physical

machine.

However, virtualization does not provide complete per-

formance isolation as VMs still compete for non-reservable

shared resources (like caches, network, I/O bandwidth etc.),

resulting in performance interference between the VMs, which

can have significant and unpredictable effects on the appli-

cation performance. This unpredictable performance is par-

ticularly problematic for user-facing applications that have

strict Quality of Service (QoS) requirements, forcing the

datecenter operators to disable co-location, reducing datacenter

utilization. Therefore, data center operators need to achieve the

best of both worlds - satisfy strict QoS requirements while also

keeping server utilization high.

A suitable solution to mitigate the interference problem so

that it can take corrective measures later to meet QoS require-

ment while achieving good server utilization, needs to perform

two major tasks at runtime – Detection and Investigation.

First, when a performance intrusive VM is colocated with

an application having strict QoS requirement and negatively

impacts its performance, the technique should be able to detect
this performance degradation. Second, once this performance

intrusion is detected, it is necessary to investigate the source

of this contention (both the performance-intrusive VM and the

contended shared resource) to undertake useful remediation.

Due to the increasing usage of cloud services, along with

new server paradigms (e.g., colocating storage with compute in

HyperConvergence [44]), there are three major challenges that

arise while tackling the problem of mitigating interference.

1) Absence of Apriori Application Profile. There are new

applications getting executed in the cloud infrastructure,

for which the datacenter operators do not have any

prior performance profile. This makes the Detection

task challenging as there is no baseline performance to

compare against to detect a change in the QoS metric.

76

2018 IEEE International Symposium on Performance Analysis of Systems and Software

0-7695-6375-9/18/$31.00 ©2018 IEEE
DOI 10.1109/ISPASS.2018.00016

2) Multiple Sources of Contention. Different applications

put stress on different susbsystems of the stack (one

application might only stress network while other appli-

cation might have large number of IO requests stressing

IO system stack), requiring Investigation task to handle

multiple sources of contention.

3) Low Runtime Overhead. The technique needs to

perform both these tasks with very low performance

overhead in order to quickly adapt to the application

runtime environment.

Prior relevant body of work solves these challenges partially.

Bubble-up [27] and Cuanta [13] require a priori knowledge of

application behavior restricting its applicability in the Detec-

tion task. While Application Slowdown Model (ASM) [39],

Geiko [37] and Seawall [35] detect performance degradation,

the are unable to identify the source of contention, restricting

its applicability in the Investigation task. Finally, a third

category of work, Deepdive [31] and CPI2 [48], have very high

overhead in performing these two tasks, making it difficult to

deploy them at runtime systems.

To tackle these challenges, we present Proctor, a runtime

system that continuously monitors, automatically detects and

investigates a wide range of performance issues directly affect-

ing the Quality of Service of VMs running in a cloud scale

datacenter, with high accuracy and low performance overhead.

For Detection, Proctor employs a Performance Degradation

Detector (PDD), that continuously monitors the performance

metric of the executing VMs, looking for abrupt changes in

the QoS. PDD uses state-of-the-art noise removal technique

(median filtering algorithm) and step detection to detect a

performance anomaly, as opposed to previous work that re-

quires a priori knowledge. For Investigation, Proctor employs

Performance Degradation Investigator (PDI), that identifies the

source of contention for a performance anomaly at runtime

using online statistical correlation analysis. The challenge here

lies in performing investigation quickly as this process is

laborious and requires querying a database consisting of large

amounts of VM monitoring data. To tackle this challenge,

PDD uses a robust sub-sampling technique that reduces the

amount of the data that needs to be queried while accurately
detecting the source of contention.

The specific contributions of this paper are as follows:

1) Performance Degradation Detector – Accurately de-

tects sudden performance anomaly using HW perfor-

mance counters, without any apriori application profile.

2) Performance Degradation Investigator – Statistical

correlation analysis and robust sub-sampling technique

that greatly reduces the footprint of the telemetry data

that needs to be queried, to quickly and accurately

identify the exact source of contention.

3) Runtime System – Proctor, a runtime system, con-

tinuously monitors, automatically detects and identifies

the sources of contention, with low overhead and high

accuracy. We envision Proctor as a guide, that can direct

the corrective measures for mitigating interference.

We perform a thorough evaluation of our platform on real

systems across a wide range of applications and commonly

contended shared resources, demonstrating its effectiveness

in diagnosing performance issues at runtime, improving the

performance of the applications running in datacenter by up

to 2.2×.

II. BACKGROUND AND MOTIVATION

In this section, we provide the background for the per-

formance interference for different sources of contention,

followed by the limitations of the prior work in solving the

problem of mitigating interference.

A. Sources of Contention

Although virtualization reserves fragments of machine re-

sources for each application individually, the VMs can still

experience performance interference when multiple VMs are

colocated on the same physical machine. This happens be-

cause there are a number of non-reservable resources that

can be shared among VMs, that can have significant and

unpredictable effect on the VM performance. In datacenters,

there are mainly four such shared resources - I/O [14], [40],

CPU core [29], [38], [49], Network [36] and Last Level Cache
[21], [22], [27], [30], [39].

As an example, I/O contention can occur when guest

operating system within each VM is oblivious to the virtual

nature of underlying disk and the existence of neighboring

VMs on the same machine. Under such situations, a single

badly behaved application that continuously issues frequent

I/O requests to a disk array can disrupt the latency/throughput

of every other application running over that array, negatively

impacting the performance of other VMs. Similarly, such

performance intrusive behavior can happen at other hardware

resources like CPU core, Network and Last Level Cache.

B. Limitations of Prior Work

There exists several prior approaches that are specifically

designed to mitigate the effects of contention when multiple

VMs are consolidated in a shared datacenter. However, these

approaches have some limitations that restrict their deploya-

bility in a commercial datacenter. We have broadly classified

them under the following three categories based on their

limitations towards solving the Detection and Investigation

problems.

1) Require A Priori Application Profile. Prior ap-

proaches like Bubble-Up and Cuanta [13], [27] have

been shown to be effective at generating a precise

estimation of performance degradation at co-located

execution scenarios. However, these techniques require a

priori knowledge of application behavior restricting their

deployability in datacenters that encounter unknown ap-

plications on a regular basis (for eg., private datacenters

and public clouds). Additionally, these techniques are

incapable of investigating the root cause of performance

77

intrusion. Therefore, this category is unsuitable to per-

form Detection and Investigation tasks in datacenters

that encounter unknown applications.

2) Incapable of Investigating Root Cause. Second

category of prior approaches [14], [39], that do not

require a priori knowledge, focus on investigating a

particular source of contention, unable to detect and

mitigate the performance interference caused by other

shared resources. In addition, the overhead incurred by

these techniques in detecting performance degradation is

high because their methodology perturbs the execution

of VMs periodically for brief periods of time in order

to profile application execution. Therefore, this class of

prior work is also unsuitable because of its high over-

head in performing Detection task and their disability to

execute the Investigation task.

3) Performs VM Migration/Cloning. A third class of

approaches, identifies performance intrusion as well

as its root causes. However, these techniques perform

frequent VM migration and cloning, resulting in many

drawbacks. First, copying huge data across machines

is time consuming and introduces additional contention

on the computing resources. Second, the overhead with

respect to the number of additional servers required to

perform these techniques is very high. Therefore, this

category of prior work is also not suitable in shared

datacenters as they incur high overheads while executing

the Detection and Investigation tasks.

III. OVERVIEW OF THE PROPOSED APPROACH

To this end, we present Proctor, a runtime system that

utilizes a two step methodology to solve the Detection and

Investigation tasks respectively. In this section, we provide a

high level overview of our technique along with the challenges

in designing Proctor components.

A. Goals and Challenges

Performing Detection. Proctor utilizes Performance Degra-
dation Detector (PDD) for this purpose. In contrast to prior

approaches which affect the execution of application by uti-

lizing synthetic benchmarks like smashbench, PDD is an

extremely low overhead continuous monitoring infrastructure

that observes individual VM QoS metric to detect drastic

variation in the numerical range of the QoS metrics. This

change would be an indication of an event that signifies

performance degradation of the application. To detect drastic

variation in numerical range of metrics, we employ step

detection – a signal processing technique that is utilized to

find abrupt changes in time series signals [32].
Challenges and Approach – However, the time series data

obtained from system software tools and performance counters

is highly corrupted due to noise. The most straightforward

solution for such problems is to perform curve smoothing.

However, the most commonly used curve smoothing tech-

niques, like exponential moving average and Kalman fil-

ter [43], are not effective in highlighting drastic changes in the

��

��

��

�

�

��
�

�

�

�

�

�

�
�

�

�

�

�
�

�

��

�

�
���

�

�

�

�

�

�

�
�

�

�

�

��

�

��

�
�

�

�

�

�
�

�

�

�

�

�
�

�

�

�
� �

�

�

�

�

�
��

�
�

�

�

�

� � ��

�

�

�

�

�
�

�

�
�

�

�

�

�

�

��

�
�

�

�

�
�

��

�

��

�

�

�

�
�

�
�

�

�
�

�

�

�

�

�

�

�
�
�
�
�

�� �

�
�
��

�

�
���

�
�

�

�

�
���

����

��
�
�

� ��
�

�
�

�
�

� ���
�

���
�

�

�
�

��
��
�
�

�

�

�

�
�

��

�
�
�

�

�

�

�

�

� �
�
�

�

�

�

�
�

�

�
�

�

�

�

��
�

�

��
�� �

�

�

�

�
��

�

�

�

�

�
�

�

�
�

�

�

�

�

��

�
�
�

�

�

�

�

�
�

�

�

��

�

� ��

��

�

�
�

�

�

�

�

�

�

�

�

�

�
�

�
�

�

���	
��

��
��
�����
���
�������

���������
�����

���	
��

��
��
�����
���
�������

��������������
�����

��

�
��

�� ��

��

���	

���������

�������	 ���

��

��
��

��

��

��

��

���
���!�

��

Fig. 1: Proctor System Architecture - a two-step process

performing Detection and Investigation to identify the root

cause of performance interference

time series data. This is because they project drastic changes

in QoS measurements as a slow cumulatively occurring event,

making it hard to detect the abrupt changes. Hence, we used a

technique called median filtering designed specifically to cater

to the step detection problem.

Performing Investigation. Once, PDD establishes the exis-

tence of performance degradation, we utilize the Performance
Degradation Investigator (PDI) to pinpoint the exact source of

contention (both VM and the shared resource the applications

are competing for). PDI uses correlation analysis for this

purpose, finding correlation between the hardware counter

metrics of all the co-running VMs and the primary QoS

metric of the affected VM (as detected by PDD). High value

of correlation co-efficient for a particular metric provides

sufficient evidence that the co-running VM and the resource

corresponding to that metric is the root cause of performance

degradation.

Challenges and Approach – However, performing correlation

analysis on large amounts of HW performance counter data,

which is collected at a second level granularity, is computa-

tionally intensive, resulting in high performance overhead. To

tackle this problem, we sub-sample the performance counter

data, reducing the amount of data that is to be utilized to

find the source of contention. A random sub-sampling method

can be utilized for this purpose. However, it becomes crucial

that the obtained sample should be a good representation of

the population from which it is drawn, as biased samples can

lead to inaccuracy in performing Investigation. To address this

challenge, we validate each sample by utilizing hypothesis

testing techniques. As our time series measurements do not

follow the guassian curve, we use a non-parametric statistical

hypothesis testing technique called χ2 test to ensure that the

sub-sampled data is a good representation of the original

performance counter data [48].

IV. PROCTOR ARCHITECTURE

Proctor is a dynamic runtime system that automatically

detects performance intrusive VMs in the datacenters, their

victims and the shared resource that is causing contention,

with high accuracy and low overhead. In order to achieve this,

78

t1

Q
oS PDD performance

issue at t1

t2

VM

step
detection

t0

Fig. 2: PDD detects abrupt performance variations in the

application telemetry data

0.01 0.01 0.02 0.01 0.01 0.01 0.02 6.79 0.01 0.04

performance issue

1.71 1.72 1.71 1.73 1.71 1.72 1.71 1.73 8.52 8.51 8.55 8.52 8.51

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13

Y'1 Y'2 Y'3 Y'4 Y'5 Y'6 Y'7 Y'8 Y'9 Y'10

QoS
metric

�nite
di�erence

Fig. 3: PDD Step Detection using Finite Difference Method

Proctor utilizes a two step approach as shown in Figure 1. The

first step, PDD, detects performance degradation caused due

to performance intrusive VMs. The second step PDI, pinpoints

the root cause by identifying the exact VM that is responsible

for the performance intrusion and the corresponding metric for

which there is contention. This section elaborates in detail the

key components present in Proctor’s design.

A. Performance Degradation Detector

Proctor utilizes (PDD) that operates in parallel with appli-

cations, continuously monitoring and looking for performance

anomalies in the dataceters at runtime. It utilizes time series

measurements of the primary QoS metric of each application

executing inside a VM to detect drastic variation in the

numerical range of metrics. This drastic variation acts as an

indication of an event that the performance of the application

has degraded significantly.

PDD employs a signal processing technique called step
detection to detect these abrupt changes in the application

performance [32], [34]. However, time series performance data

of an application has high amount of noise, causing many false

alarms if step detection is applied naively. We use Median
filtering algorithm [7] to reduce the noise in the telemetry data,

making PDD accurate in detecting performance anomalies.

In the next two subsections, we will elaborate on the step

detection and median filtering techniques.

1) Step Detection: Step detection is a process of finding

abrupt changes in a time series signal [32], [34]. Using the

time series measurements of the primary QoS metrics, we

try to identify the exact timestamp at which abrupt changes

occur in the numerical quantity of primary QoS metric. An

abrupt change is statistically defined as a point in time where

the statistical properties before and after this time point differ

significantly. This is clearly illustrated by Figure 2 where we

can see a sharp increase in the QoS metric at time t1. The

role of PDD here is to detect such abrupt changes at runtime

0 100 200 300 400 500 600
Execution Time

50
100
150
200
250
300

I/O
 L

at
en

cy

I/O latency TPC-C

0
1
2
3
4
5
6
7
8

PDD

(a) no noise removal

0 100 200 300 400 500 600
Execution Time

25
50

100
150
200
250
300
250
400

I/O
 L

at
en

cy

I/O latency TPC-C

0
2
4
6
8
10
12
14
16
18

PDD

(b) exponential moving average

(c) median filtering

Fig. 4: Comparison of detection accuracies (a) without noise

removal, (b) with exponential moving average and (c) with

median filtering for the application TPC-C. Median filtering

algorithm detects abrupt changes in performance

and identify the exact timestamp at which such abrupt changes

occur. We utilize finite difference method for this purpose.

The fundamental hypothesis of finite difference method

towards identifying abrupt changes is based on the fact that

the absolute difference between subsequent time series mea-

surements is very high at the exact point where the abrupt

changes occur. This can be utilized to highlight the timestamp

at which these abrupt changes occur.

Mathematically, finite difference of a time series signal is

the rate of change in the individual elements in the time series.

We implement finite difference method by performing pair

wise difference of subsequent elements present in the time

series using the following formula :-

Y ′ =
Yj+1−Yj

2ΔT
Y ′j = Yj (f or 1 < j < n−1)

where Yj is the jth points present in the time series, n being

the number of points, ΔT being the difference between the

X values of adjacent data points (difference in the number

of timestamps for time series values). The result highlights

the drastic change by showcasing a high value for Y ′. This

is clearly illustrated by Figure 3 where we can see a sharp

increase in the QoS metric at time t1 at the point Y9. Its

corresponding finite differential value is very high at point

Y ′9, which is utilized to indicate performance degradation at

that timestamp t1.

2) Noise Reduction: Naively applying step detection leads

to large number of false positives because of the noise in

the time series measurements of QoS metric. For example,

we directly apply the step detection algorithm for TPC-C

benchmark and show the detected performance anomalies in

Figure 4a. The figure shows that there are large number of

false alarms.

79

In order to eliminate the noise present in the raw time

series measurements, we tried to utilize the state-of-the-art

curve smoothing techniques like exponential moving average

and kalman filter [25]. However, these techniques still show

significantly high number of false positives. This is because

these techniques end up smoothing out drastic changes in

time series measurements, projecting them as a slow and

cumulatively occurring event as shown in Figure 4b, failing to

detect the drastic performance degradation.

To tackle this problem, we use median filtering for noise

reduction as this technique preserves drastic changes. Our

implementation of median filter consists of a moving window

that selectively discard elements that are significantly higher

than the median within that window. This preserves drastic

changes while also removing noise from the time series

measurement. Finally, Figure 4c shows the effectiveness of

applying median filtering for noise reduction, reducing number

of false alarms and making PDD highly accurate.

3) Obtaining QoS Measurements: The presence of virtual-

ization in datacenter infrastructures introduces challenges to-

wards obtaining application specific QoS metrics. Applications

often run as performance black-boxes and adaptive services

must infer application performance from low-level information

or rely on system-specific ad hoc methods. Although this is

not a challenge for CPU intensive batch applications and I/O

intensive applications as their respective QoS metrics can be

obtained through performance counters and system software

tools, a class of user facing latency critical applications that run

as performance black-boxes, provide very little information

about their current performance and no information about

their performance goals (eg. 99th percentile tail latency). The

primary goal in such situations is to offload the responsibility

of providing time series measurements corresponding to the

QoS metrics of an application to the user. For this purpose

we utilize the the Application Heartbeats framework [20]

which provides a simple, standardized way for applications to

report their performance/goals to external observers. These are

enabled through API calls consisting of a few functions that

can be called from applications or through system software.

This is being utilized to track the progress of any executing

application which is fed into our proposed PDD for identifying

performance intrusion during runtime.

B. Performance Degradation Investigator

Once PDD establishes the existence of performance degra-

dation, Performance Degradation Investigator (PDI) is in-

voked for further analysis which pinpoints performance in-

trusive VMs and the major server resource that is causing the

performance degradation.

1) Correlation Based Root Cause Identification: PDI iden-

tifies performance intrusive VMs and the major server resource

causing contention by utilizing a correlation based root cause

identification technique. The primary objective of correlation

based root cause identification is to highlight the root cause

VM and the metrics corresponding to it that correlate highly

Name Description
load Input load of application
CPU util CPU utilization of app
page-faults Page faults per sec of app
context-switches Context switches per sec of app
n/w throughput Total bytes sent and received by network
cache-misses Total cache misses (L1,L2 and LLC)
I/O requests Total I/O requests (read + write)
branch-misses No. of branch mispredictions of app

TABLE I: List of metrics utilized for performing correlation

with the primary QoS metric to identify source of contention

with the primary QoS metric of the affected VM. In order to

obtain that, PDI utilizes the time series measurements from

each low level metric corresponding to the co-running VM

and tries to correlate them with the time series measurements

of the affected VM’s primary QoS metric. The metrics having

the highest value of correlation coefficient are the most highly

likely indicators of resource contention and its corresponding

VMs are the most likely culprits for creating performance

intrusion. The list of metrics that we try to correlate is

enumerated in Table I. Our implementation of correlation

tries to obtain Pearson’s correlation coefficient [6]. However,

performing correlation analysis on the complete telemetry data

causes high performance overhead. Therefore, we sub-sample

the complete dataset and reduce the time to find the source of

contention.

2) Real Time Sub-sampling: One of the key challenges

faced by Proctor while realizing a real time solution is the large

amount of telemetry data that needs to be queried, resulting

in high performance overhead. Hence, instead of performing

correlation analysis on full telemetry data, we utilize a sub-

sampling technique where a sample from a large data is

utilized as input to PDI.

The key objective to be satisfied while realizing a sub-

sampling technique is that the statistical characteristics of

the sample should be consistent with that of the population.

For example, measurements obtained from system software

tools are bound to contain extreme values (spikes) at a very

low frequency. The sub-sample that we collect should include

these events as well. To ensure that, we perform a hypothesis

testing to check whether the random sample that we select is

representative enough of the population. If not, our hypothesis

testing techniques repeats the process by randomly selecting

a sample till it is representative enough of the population.

Most widely used hypothesis testing techniques assume

population to be normally distributed. However, based on our

experiments we have observed that measurements that come

from system software tools and performance counters are

highly deviated from being normally distributed. Therefore,

widely used parametric hypothesis testing techniques like t-

test and F-test are not suitable for our purpose.

Hence, we use non-parametric hypothesis testing ap-

proaches that are capable of testing samples irrespective of

their nature (being normally distributed). Unlike parametric

statistics which primarily utilize mean and variance for this

purpose, non-parametric statistics make no such assumptions

80

Processor Microarchitecture Kernel Hypervisor
Intel Xeon E5-2630
@2.4 GHz

Sandy Bridge-EP 3.8.0 KVM-QEMU v2.0

Intel Xeon E3-1420
@3.7 GHz

Haswell 3.8.0 KVM-QEMU v2.0

TABLE II: Experimental platform where Proctor is evaluated

Application Description Benchmark
Suite QoS Metric

CPU /
LLC

lbm Fluid Dynamics
SPEC

CPU2006
IPC

libquantum Quantum Computing

omnetpp
Discrete Event
Simulation

sphinx3 speech recognition

CPU /
LLC

Naive Bayes Big data classification

Big Data
Bench

IPC
Sort Sort words from text
Grep Search words from text
Word Count Count words from text

Kmeans
Processing facebook
network

I/O

YCSB
Querying from Yahoo
dataset

OLTP
bench

I/O latency
and throughput

TPC-C
Querying from retail
database

I/O latency

TPC-H
Querying from business
database

I/O latency

Twitter Querying from tweets
I/O latency
and throughput

Network
Redis Key value store Redis Tail Latency

netperf
Network packet
generator

netperf
network
throughput

TABLE III: Benchmarks which have been used to evaluate

Proctor and its descriptions

on the probability distributions of the variables being assessed.

Therefore, we utilize Pearson’s Chi-Squared test for testing

whether a sample is representative of a population [47].

Chi-square χ2 test is a statistical test used to examine

differences within categorical variables [47]. For time series

data, we have taxonomized categories as numerical ranges

within which measurements from system software tools and

performance counters can fall into. In other words, we segre-

gate the population data into different categories where each

category refers to a specific range of numerical quantities.

Subsequently, we classify the sample data also into the same

categories as the population. We now obtain the frequency of

elements present in each category for both the sample and

population data. For the sample data to be acceptable, the

frequency of elements of the sample data in each category

should be close to the frequency of elements of the population

data in the same category. Chi squared test, compares the

frequency of elements of sample and population data in every

category to determine the sample’s acceptability

Input. Frequencies of population measurements and sample

measurements lying in each range.

Output. Accept/Reject sample to be representative of a

population.

Methodology. We undertake the following steps to perform

Chi-square χ2 test.

Work
Load ID

App 1 -
Main app

App 2 -
Colo app

App 3 -
Colo app

App 4 -
Colo app

App 5 -
problematic app

Network WL1 Redis Search lbm Sort netperf

Disk
I/O

WL2 Twitter lbm Redis Sort YCSB
WL3 TPC - C libquantum Redis Grep Random I/O
WL4 YCSB sphinx3 Redis Word Count TPC - H
WL5 TPC - H lbm Redis K-Means YCSB

CPU
WL6 Naive Bayes libquantum Redis lbm Page Rank
WL7 Grep TPC-C Redis sphinx3 Sort
WL8 lbm TPC-H Redis Sort libquantum

LLC
WL9 omnetpp TPC-H Redis Word Count lbm
WL10 libquantum Random I/O Redis Grep povray
WL11 Redis povray Redis povray libquantum

TABLE IV: Workload scenarios that have been created from

the benchmarks to evaluate Proctor

1) We identify the frequency of entities that belong to every

range for the sample distribution.

2) To compare the frequency per range of the sample

and population distribution, we adopt the following

methodology.

Null Hypothesis H0: Sample and Population distribu-

tions are similar

Hypothesis Test:

χ2 =
(Population−Sample)2

Sample

3) We assess the significance level based on the size of the

sample to accept/reject the null hypothesis. Hence, if the

null hypothesis is rejected we repeat the same test with

a different sample.

V. EVALUATION

A. Methodology

Infrastructure. We evaluate Proctor on two commodity

multicore processors summarized in Table II. We use system

software tools iostat and netstat to obtain network and

disk specific performance metrics and linux perf tool to

measure HW counters. Performance telemetry is collected at

a second level granularity using HW counters.

Applications. Table III enumerates the applications, their

description, input, application domain and the respective suite

from which they is obtained. We evaluate Proctor on work-
loads, where each workload is a mix of 5 applications. We

design these workloads in a careful manner to study different

types of resource contention. 4 out of 5 applications in a

workload are chosen in a manner that they put stress on the

four shared resources - I/O, network, CPU core and LLC.

Once these four applications are executing, arrival of fifth

application now causes contention for the resource it uses

heavily. Table IV illustrates the workload mixes that we have

considered in our evaluation. Workloads are executed for a

period of one hour where each application is introduced after

a period of 12 mins.

B. Proctor Accuracy

We first evaluate end to end accuracy of Proctor in detecting

and investigating the source of contention. In this experiment,

we execute all the workloads and check whether Proctor is

81

WL1 WL2 WL3 WL4 WL5 WL6 WL7 WL8 WL10 WL11 avg
0

20

40

60

80

100

P
e
rc
e
n
ta
g
e

Network
contention

I/O contention core sharing LLC contention

True Positives False Positives

Fig. 5: Percentage of true and false positives while utilizing

Proctor to detect performance issue and identify its root cause.

able to detect and identify the source of contention correctly.

The findings of this experiment are presented in Figure 5,

showing the true positive and the false positive rates across

our workloads.True positives are the situations during which

Proctor identifies performance intrusion when it exists. False

positives are the situations during which Proctor identifies

performance intrusion when there aren’t any. In this graph,

false positives represent the percentage of falsely identified

metrics compared to the total number of metrics present.

We observe that Proctor detects the interference and in-

vestigates its root cause for all the workloads, whenever a

performance intrusive VM is introduced into the system, as

shown by 100% true positives. In additional, Proctor shows

low false positive rate with an average of 8% across our

workloads. This experiment show that Proctor is accurate
in detecting and investigating the source of a performance

anomaly, and is fully capable of guiding the remediation

techniques for mitigating the performance interference. We

now show evaluate the two components of Proctor in more

detail.

C. Detection of Performance Interference

In this section, we evaluate the accuracy and performance

of Proctor Performance Degradation Detector (PDD).

Accuracy. One of the main reasons for Proctor’s accuracy is

its robustness in performing the Detection task by PDD. The

median filtering technique is highly effective in minimizing

the false positives in detecting performance intrusion. Here,

we compare the false positive rate for median filtering against

state-of-the-art exponential moving average curve smoothing

technique. In this experiment, we measure the false positives

for both the techniques just for detecting the performance

anomaly across all our workloads. The findings of this ex-

periment are presented in Figure 6, showing the number of

false positives for both the techniques.

The figure shows that the average number of false positives

is around 10× lesser for median filtering as compared to expo-

nential moving average. This is because exponential moving

averages are highly affected by extreme values, as described

in Section IV-A2, misinterpreting such noisy events as the

performance degradation events. However, median filtering

discards such extreme values, thereby reducing the error rate.

Performance. The computational time required for PDD

is extremely negligible. The functionalities can be broken

WL1 WL2 WL3 WL4 WL5 WL6 WL7 WL8 WL10 WL11 avg
0

10

20

30

40

50

N
o
o
f
F
a
ls
e
P
o
s
it
iv
e
s

Network
contention I/O contention core sharing LLC contention

Exponential Moving Average Median Filter

Fig. 6: Number of falsely identified performance degradation

scenarios when exponential moving average/median filtering

is utilized to remove noise before step detection

down into performing two tasks :- 1) a single subtraction per

second per VM for performing step detection and 2) sorting

and discarding outliers once in every 30 seconds per VM

for performing median filtering. Therefore, PDD has minimal

performance impact on VM performance.

D. Investigating the Performance Degradation

In this section, we evaluate the efficiency of Proctor’s

Performance Degradation Investigator, in pinpointing the root

cause of performance degradation, towards identifying both

the VM causing the performance degradation (referred to

as contentious VM) and the shared resource for which the

applications are competing. In this experiment, we execute

each workload with the Proctor runtime system, enabling PDI

to investigate performance anomalies. Here, we first show

how the QoS metric of VMs affected on the arrival of a

contentious VM. The QoS metric of the contentious VM

would correlate with the QoS metric of the affected VM.

Second, we enumerate the correlation coefficients obtained

from correlating the HW performance counter measurements

of the contentious VM and the QoS metric of the affected

VM. Due to lack of space, we show the results for only 4

workloads, covering the four shared resources most commonly

contended in datacenters - Network, I/O, CPU and Last level

cache (LLC). The findings of this experiment are presented in

7. We show all the five applications only for workload WL1,

but show only the contentious and affected VMs for the rest

of the workloads for clarity. We now present the evaluation

for each source of contention in detail.

Network Contention. We use setup present in WL1 to

study network contention, where contentious VM is executing

netperf and the affected VM is executing the application

redis. Therefore, we expect a high correlation between the

QoS metric of VMs executing redis and netperf. Figure 7a

illustrates this correlation, showing the QoS metrics for all

the five applications in the workload. We observe that the QoS

lines represented by Redis and netperf are highly correlated

having a correlation coefficient of 0.97, while the correlation

coefficient of the QoS metric of redis with other the QoS

metric of the other CPU bound applications is very low.

Further, Figure 8a shows the correlation coefficients ob-

tained by correlating the QoS metric of redis, the affected VM

82

Search - Grep

lbm

Sort

44 48 52 56 60

Execution Time (min)

Q
o
S

NetperfRedis

(a) WL1 – Root cause corr 0.97,
others corr 0.13

38 42 46 50 54 58

Execution Time (min)

Q
o
S

YCSB QoSTwitter QoS

(b) WL2 – Root cause corr 0.87

38 42 46 50 54 58

Execution Time (min)

Q
o
S

Naive Bayes QoS Page Rank QoS

(c) WL6 – Root cause corr 0.83

48 52 56 60

Execution Time (min)

Q
o
S

Omnetpp QoS libquantum QoS

(d) WL9 – Root cause corr 0.93

Fig. 7: Correlation between primary QoS of affected VM and other co-running VMs

page
faults

network
throughput

cache
misses

context
switches

disk
accesses

0.0

0.2

0.4

0.6

0.8

1.0

C
o
rr
e
la
ti
o
n

C
o
e
ff
e
c
ie
n
t

(a) WL1

page
faults

network
throughput

cache
misses

context
switches

disk
accesses

0.0

0.2

0.4

0.6

0.8

1.0

(b) WL2

page
faults

network
throughput

cache
misses

context
switches

disk
accesses

0.0

0.2

0.4

0.6

0.8

1.0

(c) WL6

page
faults

network
throughput

cache
misses

context
switches

disk
accesses

0.0

0.2

0.4

0.6

0.8

1.0

C
o
rr
e
la
ti
o
n

C
o
e
ff
e
c
ie
n
t

(d) WL9

Fig. 8: Root cause metrics identified by Proctor.

with HW performance counter measurements collected for the

contentious VM netperf. Since netperf puts significant stress

on the network, we observe that the correlation coefficient

for network throughput is highest, giving substantial evidence

that network is the shared resource for which the two VMs

are competing for.

Interestingly, we also observe high correlation for the cache

misses and the context switches. Upon further investigation,

we found the when netperf starts executing, its CPU based

telemetry like cache misses and context switches start giving

non-zero measurements compared to zero measurements when

it was idle. This directly correlates with the primary QoS

metric of the affected VM. As Proctor only looks at the most

correlated metric (network throughput in this case), these false

positives are ignored while performing the investigation.

I/O Contention. We use the scenario exhibited by WL2 to

study Disk I/O contention. Here, Twitter, an I/O latency critical

application, is being affected and Yahoo Cloud Serving Bench-

mark (YCSB) is the contentious application both running in

virtualized environments. Therefore, we expect the QoS metric

of YCSB to correlate with QoS metric of Twitter application.

We show this correlation in Figure 7b. YCSB, being an

I/O intensive application, increases the latency of the Twitter

drastically. This is because the I/O requests of the throughput

intensive I/O applications pollute the I/O queue present in the

disk, increasing the access time of the latency critical I/O

applications. Therefore, we observe high correlation coeffi-

cient of 0.87 between the QoS metrics of YCSB and Twitter

application.

Since both are I/O critical applications, sending a large

number of disk requests, we expect the I/O to the be shared

resource that VMs are competing for. Figure 8b shows this

investigation where the disk accesses are highly correlated

with the QoS of the Twitter application. In this manner, PDI

correctly identifies the contentious VM and the shared resource

for I/O intensive applications.

CPU Core Sharing. We use the setup present in WL6

for studying contention due to CPU core sharing. In this

workload, Naive Bayes is the affected VM and Page Rank

is the contentious VM. When a VM executing Naive Bayes

is consolidated with a VM executing Google Page Rank in

the same physical core, the IPC of Naive Bayes is affected as

both of them are CPU intensive and end up time sharing the

CPU core. In this case, we expect a high correlation between

the QoS metrics of Naive Bayes and Page Rank applications.

We illustrate this interference in Figure 7c, showing a high

correlation between the QoS metric of Naive Bayes and

Google Page Rank. We observe a correlation coefficient of

0.83 in this case.

Similarly, Figure 8c shows the metrics correlating with

Naive Bayes’ QoS when it shares the CPU core with Page

Rank algorithm. We observe that context switches, a by-

product of CPU core contention, show high correlation.

Interestingly, we also observe that the cache misses show

high correlation. This is because when VMs share physical

cores, in addition to core resources, they share all private and

shared caches as well. This leads to a high correlation between

primary QoS of the affected VM with the cache misses of the

contentious VM. Again, PDI only looks at the shared resource

with the highest correlation and ignore cache misses.

LLC Contention. We use the experimental setup present

in WL9 to study LLC contention, where omnetpp is the

affected application and lbm is the contentious application.

In this scenario, both the applications are cache sensitive

and compete for last level cache. Figure 7d shows the effect

of the arrival of lbm on the QoS of omnetpp application.

We observe that when omnetpp is consolidated with a VM

executing libquantum in the same server, its primary QoS

metric (IPC) drops substantially, resulting in a very high

correlation coefficient of 0.93.

Further, we use PDI to investigate the source of contention.

Figure 8d shows that cache misses of contentious VM have a

high correlation with the QoS of affected VM. This is expected

as both the applications are cache intensive. PDI’s correlation

83

0% 20% 10% 6.5% 4%

Sampling rate

0

1

2

3

4

5

%
o
f
to
ta
l
s
e
rv
e
rs

Servers

0

2

4

6

8

10

%
E
rro

r

Error

Fig. 9: No. of Proctor servers required to handle 12800 VMs

coefficient is able to tell that the cache misses of LLC for

libquantum correlates with primary QoS metric of omnetpp.

No Contention. Another interesting experimental setup was

conducted to verify if PDD is successful in disregarding false

positives when there is no contention. WL10 illustrates a

scenario where all the applications do not interfere with each

other’s performance. In such scenarios, PDD did not trigger a

performance degradation at all. This shows the robustness of

our technique in disregarding false positives.

These experiments show that PDI is accurate in investigat-

ing the source of contention across a wide range of shared

resources.

E. Scalability

One of the key goals of Proctor is to provide a datacenter

wide solution towards identifying performance intrusion. In

this section, we study how Proctor scales in a large datacenter.

In particular, we evaluate the benefits of subsampling when

scaled and show that there is a minimal loss in the accuracy

of detecting performance intrusive VMs when a sub-sampled

data is utilized by Proctor.

For this evaluation, we simulate an environment similar to

a datacenter setup capable of executing up to 12800 VMs si-

multaneously while utilizing 2560 nodes. For this experiment,

we collect telemetry data obtained from multiple executions

runs for the workload scenarios enumerated in III. We then

extrapolate the telemetry to obtain data nearly equivalent to

the amount of data that is being collected at large-scale data

centers [33]. PDI then queries the large-scale telemetry data to

identify the source of contention. In this experiment, we start

with no sampling and then increase the rate of subsampling,

calculating the number of servers required to address the PDI

requests from 12800 VMs. The findings of this experiment are

presented in Figure 9, showing the impact of subsampling on

datacenter resources (left y-axis).

Our baseline utilizes live telemetry (no sampling) to inves-

tigate the root cause of performance intrusion. We observe

that the size of telemetry data for 12800 VMs that have been

executing for an hour is around 91 GB. The baseline requires

50 servers (2% of production datacenters) to keep up with the

requests of 12800 VMs. To reduce the amount of data required

for the investigation, PDI uses a robust subsampling technique,

that significantly reduces the server resource requirements. As

WL1 WL2 WL3 WL4 WL5 WL6 WL7 WL8 WL10 WL11 avg
0.0

0.5

1.0

1.5

2.0

2.5

S
p
e
e
d
u
p

Network
contention

I/O contention core sharing LLC contention

No mitigation Proctor with mitigation

Fig. 10: Performance improvement due to Proctor runtime

system

shown in the figure, Proctor at 20% sampling requires only

15 machines, as compared to 50 machines with no sampling.

This number reduces to just 6 machines with 4% sampling.

However, aggressive sampling can result in inaccurate re-

sults. We show the effect of sampling rate on accuracy error in

Figure 9 (right y-axis), where accuracy error is measured from

the difference between the correlation coefficients obtained by

querying the sampled data and corrletaion coefficient obtained

from the original data. As shown in the Figure, no sampling

has zero error. We observe that subsampling results in low

error in the investigation process, increasing the error to

just 5% and 8% for 20% and 4.5% samples respectively. In

addition, this error gets masked because the VM or the metric

having maximum correlation coefficient stays the same before

and after sampling. We observe diminishing benefits with more

aggressive sub-sampling rate. Hence, we utilize 6.5% sampling

as a final parameter for our experiments as it was the sweet

spot optimizing for low error and server count overhead.

F. Putting It All Together

The key use case of Proctor’s detection and investigation

technique is mitigate VMs that are subjected to performance

intrusion. In this section, we demonstrate the benefits brought

by Proctor towards this regard. For this study, we couple Proc-

tor’s detection and investigation methodology with a simple

mitigation technique that migrates the contentious applica-

tion to another core/physical disk/network channel if Proctor

detects a performance anomaly. Our baseline is a system

with no performance degradation detection and identification

mechanism. Speedup is calculated as the ratio of QoS of

the application when its performance is degraded with the

QoS of the application after Proctor mitigates the performance

intrusive VM at the point when PDD detects intrusion. The

findings of this experiment are presented in Figure 10, showing

the speedup achieved by Proctor for the affected VM as

compared to baseline.

We are able to see that in every situation, the presence

of Proctor is able to improve the QoS of the affected VMs.

For example, Proctor improves the performance of I/O and

network intensive workloads on an average of about 2×. This

is due to the fact that the latency of I/O intensive workloads

are highly affected in many cases due to intrusion. In situations

when CPU cores are being shared, IPC is affected minimum

2×. This is primarily due to context switch overhead when

two applications share the same CPU core. On an average, we

84

observe that the presence of Proctor improves the performance

of datacenters by 2.2×.

VI. RELATED WORK

In this section we discuss work relevant to Proctor in the

areas of detecting problematic application/VM behavior and

diagnosing its root causes. We also present related work that

mitigates I/O and network contention.

VM Management: State-of-the-art VM management tools

such as vSphere [16], XenServer [45] or resource management

tools utilized in IaaS public clouds like Microsoft Azure [26]

and Amazon Web Services [2] performs VM placements

naively using primitive factors and metrics. For example,

VMware’s Distributed Resource Management (DRM) [15]

takes into account factors like load balancing and power

management as factors for optimal placement of VMs. How-

ever, this is agnostic towards performance issues due to disk

failures, congestion in the network or contention by neigh-

boring VMs. This can create several issues like performance

problems, resource unavailability and in some cases also

resulting in security vulnerabilities like denial of service [11],

SQL injection [3] etc. Proctor can complement such systems

by informing datacenter providers information pertaining to

problematic VMs and its root causes. This can motivate smart

VM placement strategies.

Contention Detection Techniques Major classes of con-

tention detection techniques focus on a particular aspect

present in the system rather than providing an integrated

approach. Zhuravlev et al.extended the CPU scheduler to alle-

viate the degree of interferences in a native system. The goal of

this work is to schedule the threads by evenly distributing the

load intensity to caches [49]. Shieeh et.al [35] tries to eliminate

disk contention by utilizing a log-structured design for disk

arrays. Parda [14] and IOFlow [40] tries to address contention

at the disk level by observing latency of I/O requests and re-

ordering disk queues. Seawall [36], EyeQ [23] and Hadrian [4]

focus mainly on isolating interference in network in multi-

tenant environments. However, all these techniques fail to pro-

vide an integrated solution for hyperconverged environments

where contention exists at storage, network and in CPUs.

A Priori Knowledge Another class of applications ob-

serve correlation between various system parameters to detect

performance issues in runtime and its root causes [1] [42]

[46] [28] [24]. Typically, these techniques leverage baseline

performance from a set of training applications and provide

predictive solutions at runtime for unknown applications.

However, the hyper-parameters present in current day systems

are too complex to create a generalized model for predic-

tion. Moreover, in current generation datacenters, we observe

system configurations to be highly dynamic which is directly

reflected on the application’s performance. Hence, in addition

to being agnostic towards the nature of the application, it

becomes mandatory for our solution to be adaptable towards

changing characteristics of system as well as newer systems.

VII. CONCLUSION

We have presented Proctor, a real time performance moni-

toring infrastructure that is able to detect performance intru-

sion and identify the root cause VM and resources causing

contention. Proctor is based on a robust statistical online

learning approach that requires no special profiling phases

or assumptions about system and hardware configuration,

standing in stark contrast to a wide body of prior work

that assumes pre-acquisition of application or system level

information prior to its execution. We implement proctor as

a real time system that can identify performance issues for

VMs at a very low overhead. This, in turn, can improve the

application perfromance by 2.2× on an average by identifying

smart co-location scenarios.

ACKNOWLEDGEMENT

We thank our anonymous reviewers for their construc-

tive feedback and suggestions. This work was sponsored by

the National Science Foundation (NSF) under grants IIS-

VEC1539011 and NSF CAREER SHF-1553485.

REFERENCES

[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A. Muthi-
tacharoen. Performance debugging for distributed systems of black
boxes. In Proceedings of the Nineteenth ACM Symposium on Operating
Systems Principles, SOSP ’03, pages 74–89, New York, NY, USA, 2003.
ACM.

[2] Amazon Inc. Amazon Elastic Compute Cloud(EC2).
[3] S. Avireddy, V. Perumal, N. Gowraj, R. S. Kannan, P. Thinakaran,

S. Ganapthi, J. R. Gunasekaran, and S. Prabhu. Random4: An applica-
tion specific randomized encryption algorithm to prevent sql injection. In
2012 IEEE 11th International Conference on Trust, Security and Privacy
in Computing and Communications, pages 1327–1333, June 2012.

[4] H. Ballani, D. Gunawardena, and T. Karagiannis. Network sharing in
multi-tenant datacenters. Technical report, February 2012.

[5] S. Benedict. Performance issues and performance analysis tools for hpc
cloud applications: a survey. Computing, 95(2):89–108, Feb 2013.

[6] J. Benesty, J. Chen, Y. Huang, and I. Cohen. Pearson correlation
coefficient. In Noise reduction in speech processing, pages 1–4. Springer,
2009.

[7] D. R. K. Brownrigg. The weighted median filter. Commun. ACM,
27(8):807–818, Aug. 1984.

[8] Q. Chen, H. Yang, M. Guo, R. S. Kannan, J. Mars, and L. Tang. Prophet:
Precise qos prediction on non-preemptive accelerators to improve utiliza-
tion in warehouse-scale computers. SIGOPS Oper. Syst. Rev., 51(2):17–
32, Apr. 2017.

[9] C. Delimitrou and C. Kozyrakis. Paragon: Qos-aware scheduling for het-
erogeneous datacenters. In Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’13, pages 77–88, New York, NY, USA,
2013. ACM.

[10] C. Delimitrou and C. Kozyrakis. Quasar: Resource-efficient and qos-
aware cluster management. In Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’14, pages 127–144, New York, NY, USA,
2014. ACM.

[11] C. Delimitrou and C. Kozyrakis. Bolt: I Know What You Did Last Sum-
mer... In The Cloud. In Proceedings of the Twenty Second International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), April 2017.

[12] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-
jic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi. Clearing the
clouds: A study of emerging scale-out workloads on modern hardware.
SIGPLAN Not., 47(4):37–48, Mar. 2012.

85

[13] S. Govindan, J. Liu, A. Kansal, and A. Sivasubramaniam. Cuanta: Quan-
tifying effects of shared on-chip resource interference for consolidated
virtual machines. In Proceedings of the 2Nd ACM Symposium on Cloud
Computing, SOCC ’11, pages 22:1–22:14, New York, NY, USA, 2011.
ACM.

[14] A. Gulati, I. Ahmad, and C. A. Waldspurger. Parda: Proportional
allocation of resources for distributed storage access. In Proccedings
of the 7th Conference on File and Storage Technologies, FAST ’09,
pages 85–98, Berkeley, CA, USA, 2009. USENIX Association.

[15] A. Gulati, A. Holler, M. Ji, G. Shanmuganathan, C. Waldspurger, and
X. Zhu. Vmware distributed resource management: Design, implemen-
tation, and lessons learned. VMware Technical Journal, 1(1):45–64,
2012.

[16] F. Guthrie, S. Lowe, and K. Coleman. VMware vSphere Design. SYBEX
Inc., Alameda, CA, USA, 2nd edition, 2013.

[17] J. Hauswald, Y. Kang, M. A. Laurenzano, Q. Chen, C. Li, T. Mudge,
R. G. Dreslinski, J. Mars, and L. Tang. Djinn and tonic: Dnn as a service
and its implications for future warehouse scale computers. SIGARCH
Comput. Archit. News, 43(3):27–40, June 2015.

[18] J. Hauswald, M. A. Laurenzano, Y. Zhang, C. Li, A. Rovinski, A. Khu-
rana, R. Dreslinski, T. Mudge, V. Petrucci, L. Tang, and J. Mars.
Sirius: An open end-to-end voice and vision personal assistant and
its implications for future warehouse scale computers. In Proceedings
of the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), ASPLOS
’15, New York, NY, USA, 2015. ACM. Acceptance Rate: 17

[19] P. Hill, A. Jain, M. Hill, B. Zamirai, C.-H. Hsu, M. A. Laurenzano,
S. Mahlke, L. Tang, and J. Mars. Deftnn: Addressing bottlenecks for
dnn execution on gpus via synapse vector elimination and near-compute
data fission. In Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO-50 ’17, pages 786–799, New
York, NY, USA, 2017. ACM.

[20] H. Hoffmann, J. Eastep, M. D. Santambrogio, J. E. Miller, and A. Agar-
wal. Application heartbeats: A generic interface for specifying program
performance and goals in autonomous computing environments. In Pro-
ceedings of the 7th International Conference on Autonomic Computing,
ICAC ’10, pages 79–88, New York, NY, USA, 2010. ACM.

[21] A. Jain, P. Hill, S. C. Lin, M. Khan, M. E. Haque, M. A. Laurenzano,
S. Mahlke, L. Tang, and J. Mars. Concise loads and stores: The case for
an asymmetric compute-memory architecture for approximation. In 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 1–13, Oct 2016.

[22] A. Jain, M. A. Laurenzano, L. Tang, and J. Mars. Continuous shape
shifting: Enabling loop co-optimization via near-free dynamic code
rewriting. In 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 1–12, Oct 2016.

[23] V. Jeyakumar, M. Alizadeh, D. Mazières, B. Prabhakar, C. Kim, and
A. Greenberg. Eyeq: Practical network performance isolation at the
edge. REM, 1005(A1):A2, 2013.

[24] M. P. Kasick, J. Tan, R. Gandhi, and P. Narasimhan. Black-box problem
diagnosis in parallel file systems. In Proceedings of the 8th USENIX
Conference on File and Storage Technologies, FAST’10, pages 4–4,
Berkeley, CA, USA, 2010. USENIX Association.

[25] A. J. Lawrance and P. A. W. Lewis. An exponential moving-average
sequence and point process (ema1). Journal of Applied Probability,
14(1):98?113, 1977.

[26] H. Li. Introducing Windows Azure. Apress, Berkely, CA, USA, 2009.
[27] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa. Bubble-

up: Increasing utilization in modern warehouse scale computers via
sensible co-locations. In Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-44, pages 248–
259, New York, NY, USA, 2011. ACM.

[28] K. Nagaraj, C. Killian, and J. Neville. Structured comparative analysis
of systems logs to diagnose performance problems. In Proceedings
of the 9th USENIX Conference on Networked Systems Design and
Implementation, NSDI’12, pages 26–26, Berkeley, CA, USA, 2012.
USENIX Association.

[29] V. Nagarajan, R. Hariharan, V. Srinivasan, R. S. Kannan, P. Thinakaran,
V. Sankaran, B. Vasudevan, R. Mukundrajan, N. C. Nachiappan, A. Srid-

haran, K. P. Saravanan, V. Adhinarayanan, and V. V. Sankaranarayanan.
Scoc ip cores for custom built supercomputing nodes. In 2012 IEEE
Computer Society Annual Symposium on VLSI, pages 255–260, Aug
2012.

[30] V. Nagarajan, K. Lakshminarasimhan, A. Sridhar, P. Thinakaran, R. Har-
iharan, V. Srinivasan, R. S. Kannan, and A. Sridharan. Performance and
energy efficient cache system design: Simultaneous execution of multiple
applications on heterogeneous cores. In 2013 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), pages 200–205, Aug 2013.

[31] D. Novaković, N. Vasić, S. Novaković, D. Kostić, and R. Bianchini.
Deepdive: Transparently identifying and managing performance interfer-
ence in virtualized environments. In Proceedings of the 2013 USENIX
Conference on Annual Technical Conference, USENIX ATC’13, pages
219–230, Berkeley, CA, USA, 2013. USENIX Association.

[32] E. S. Page. A test for a change in a parameter occurring at an unknown
point. Biometrika, 42(3/4):523–527, 1955.

[33] G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and R. Hundt. Google-wide
profiling: A continuous profiling infrastructure for data centers. IEEE
Micro, pages 65–79, 2010.

[34] B. M. Sadler and A. Swami. Analysis of multiscale products for step
detection and estimation. IEEE Transactions on Information Theory,
45(3):1043–1051, Apr 1999.

[35] A. Shieh, S. K, A. Greenberg, C. Kim, and B. Saha. Sharing the data
center network. In In NSDI, 2011.

[36] A. Shieh, S. Kandula, A. G. Greenberg, and C. Kim. Seawall:
Performance isolation for cloud datacenter networks. In HotCloud, 2010.

[37] J. Y. Shin, M. Balakrishnan, T. Marian, and H. Weatherspoon. Gecko:
Contention-oblivious disk arrays for cloud storage. In Presented as part
of the 11th USENIX Conference on File and Storage Technologies (FAST
13), pages 285–297, San Jose, CA, 2013. USENIX.

[38] V. Srinivasan, R. Basu Roy Chowdhury, E. Forbes, R. Widialaksono,
Z. Zhang, J. Schabel, S. Ku, S. Lipa, E. Rotenberg, W. Davis, and
P. D. Franzon. H3 (heterogeneity in 3d): A logic-on-logic 3d-stacked
heterogeneous multi-core processor, 11 2017.

[39] L. Subramanian, V. Seshadri, A. Ghosh, S. Khan, and O. Mutlu. The
application slowdown model: Quantifying and controlling the impact of
inter-application interference at shared caches and main memory. In
2015 48th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), pages 62–75, Dec 2015.

[40] E. Thereska, H. Ballani, G. O’Shea, T. Karagiannis, A. Rowstron,
T. Talpey, R. Black, and T. Zhu. Ioflow: a software-defined storage
architecture. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, pages 182–196. ACM, 2013.

[41] VMWare. Vmware esxi and esx.
[42] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang. Automatic

misconfiguration troubleshooting with peerpressure. In Proceedings of
the 6th Conference on Symposium on Opearting Systems Design &
Implementation - Volume 6, OSDI’04, pages 17–17, Berkeley, CA, USA,
2004. USENIX Association.

[43] G. Welch and G. Bishop. An introduction to the kalman filter. Technical
report, Chapel Hill, NC, USA, 1995.

[44] Wikipedia. Hyper-converged infrastructure — wikipedia, the free
encyclopedia, 2017. [Online; accessed 5-May-2017].

[45] D. E. Williams. Virtualization with Xen(Tm): Including XenEnterprise,
XenServer, and XenExpress: Including XenEnterprise, XenServer, and
XenExpress. Syngress Publishing, 2007.

[46] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan. Detecting
large-scale system problems by mining console logs. In Proceedings of
the ACM SIGOPS 22Nd Symposium on Operating Systems Principles,
SOSP ’09, pages 117–132, New York, NY, USA, 2009. ACM.

[47] F. Yates. Contingency tables involving small numbers and the χ 2 test.
Supplement to the Journal of the Royal Statistical Society, 1(2):217–235,
1934.

[48] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and J. Wilkes.
Cpi2: Cpu performance isolation for shared compute clusters. In Pro-
ceedings of the 8th ACM European Conference on Computer Systems,
EuroSys ’13, pages 379–391, New York, NY, USA, 2013. ACM.

[49] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing shared
resource contention in multicore processors via scheduling. SIGPLAN
Not., 45(3):129–142, Mar. 2010.

86

