
...

SIRIUS IMPLICATIONS FOR FUTURE
WAREHOUSE-SCALE COMPUTERS

...

DEMAND IS EXPECTED TO GROW SIGNIFICANTLY FOR CLOUD SERVICES THAT DELIVER

SOPHISTICATED ARTIFICIAL INTELLIGENCE ON THE CRITICAL PATH OF USER QUERIES, AS IS

THE CASE WITH INTELLIGENT PERSONAL ASSISTANTS SUCH AS APPLE’S SIRI. IF THE

PREDICTION OF THE TREND IS CORRECT, THESE TYPES OF APPLICATIONS WILL LIKELY

CONSUME MOST OF THE WORLD’S COMPUTING CYCLES. THE SIRIUS PROJECT WAS

MOTIVATED TO INVESTIGATE WHAT THIS FUTURE MIGHT LOOK LIKE AND HOW CLOUD

ARCHITECTURES SHOULD EVOLVE TO ACHIEVE IT.

......Ultimately, that’s why [Clarity
Lab] is running [the] Sirius project. The
Apples and Googles and … Microsoft know
how this new breed of service operates, but
the rest of the world doesn’t. And they need
to.”1

In this article, we discuss Sirius, an open
end-to-end intelligent personal assistant (IPA)
application, modeled after popular IPA serv-
ices such as Apple’s Siri. Sirius leverages well-
established open infrastructures for speech
recognition, image recognition, and question-
answering systems. We use Sirius to investigate
the performance, power, and cost implications
of hardware accelerator-based server architec-
tures for future datacenter designs. Among the
popular acceleration options, including GPUs,
Intel Phi, and field-programmable gate arrays
(FPGAs), the FPGA-accelerated server is the
best server option for a homogeneous datacen-
ter design when the design objective is to mini-
mize latency or maximize energy efficiency
with a latency constraint. The FPGA achieves
an average 16 times reduction on the query
latency across various query types over the

baseline multicore system. GPUs provide the
highest total cost of ownership (TCO) reduc-
tion on average. GPU-accelerated servers can
achieve an average 10 times query-latency
reduction, translating to a 2.6 times TCO
reduction (while FPGA-accelerated servers
achieve 1.4 times TCO reduction). When
excluding FPGAs as an acceleration option,
GPUs provide the best latency and cost reduc-
tion among the rest of the accelerator choices.
Replacing FPGAs with GPUs leads to a 66
percent longer latency, but in return achieves a
47 percent TCO reduction.

Motivation
Siri, Google’s Google Now, and Microsoft’s
Cortana represent a class of emerging Web
service applications known as IPAs. An IPA is
an application that uses inputs such as the
user’s voice, vision (images), and contextual
information to provide assistance by answer-
ing questions in natural language, making
recommendations, and performing actions.
These IPAs are emerging as one of the fastest-
growing Internet services; they recently have

Johann Hauswald

Michael A. Laurenzano

Yunqi Zhang

Cheng Li

Austin Rovinski

Arjun Khurana

Ronald G. Dreslinski

Trevor Mudge

University of Michigan

Vinicius Petrucci

Federal University of Bahia

Lingjia Tang

Jason Mars

University of Michigan

...

42 Published by the IEEE Computer Society 0272-1732/16/$33.00�c 2016 IEEE

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 28,2020 at 23:37:35 UTC from IEEE Xplore. Restrictions apply.

been deployed on well-known platforms
such as iOS, Android, and Windows Phone,
making them ubiquitous on mobile devices
worldwide. In addition, the usage scenarios
for IPAs are rapidly increasing, with recent
offerings in wearable technologies such as
smart watches and glasses. Recent projections
predict that the wearables market will reach
485 million annual device shipments by
2018.

In this article, we present Sirius, the first
open source voice and vision IPA. Prior to the
release of Sirius, large companies such as
Apple, Google, Microsoft, and Amazon had a
monopoly on the intelligent assistant applica-
tion space. But without access to a representa-
tive open intelligent assistant application,
researchers cannot investigate the system
architecture implications of this type of work-
load. Sirius is the first effort to serve this pur-
pose. The Sirius study provides insights on the
landscape of current accelerator hardware in
datacenters for a future in which demand for
intelligent assistants grows radically.

Specifically, our study found that IPAs differ
from many Web service workloads present in
modern warehouse-scale computers (WSCs).
In contrast to the queries of traditional
browser-centric services, IPA queries stream
through software components that leverage
recent advances in speech recognition, natural
language processing (NLP), and computer
vision to provide users with a speech- and/or
image-driven contextually based question-and-
answer system. Owing to the computational
intensity of these components and the large
data-driven models they use, service providers
house the required computation in massive
datacenter platforms in lieu of performing the
computation on the mobile devices themselves.
This offloading approach is used by both Siri
and Google Now as they send compressed
recordings of voice commands and queries to
datacenters for speech recognition and seman-
tic extraction.2 However, datacenters have been
designed and tuned for traditional Web serv-
ices, and questions arise as to whether the cur-
rent design employed by modern datacenters,
composed of general-purpose servers, is suit-
able for emerging IPA workloads.

In particular, IPA queries require a signifi-
cant amount of computational resources com-
pared to traditional text-based Web services

such as search. The computational resources
required for a single leaf query, for example,
are in excess of 100 times more than that of
traditional Web search. Figure 1 illustrates the
scaling of computational resources in a mod-
ern datacenter required to sustain an equiva-
lent throughput of IPA queries. Because of the
looming scalability gap shown in the figure,
both academia and industry have expressed
significant interest in leveraging hardware
acceleration in datacenters using various plat-
forms such as GPUs, many-core coprocessors,
and FPGAs to achieve high performance and
energy efficiency. To gain further insight on
whether there are sufficient acceleration
opportunities for IPA workloads and what the
best acceleration platform is, we must address
the following challenges:

� Identify critical computational and
performance bottlenecks throughout
the end-to-end lifetime of an IPA
query.

� Understand the performance, energy,
and cost tradeoffs among popular
accelerator options given the charac-
teristics of IPA workloads.

� Design future server and datacenter
solutions that can meet the amount
of future user demand while being
cost and energy efficient.

However, the lack of a representative,
publicly available, end-to-end IPA system is
prohibitive for investigating the design space
of future accelerator-based server designs for
this emerging workload. To address this chal-
lenge, we constructed Sirius as an end-to-end
stand-alone IPA service that implements an

DC after scaling
for matching no. of

IPA queries

1x 10x 100x

DC for browser-
based Web search

queries

Figure 1. Impact of higher computational requirements for intelligent

personal assistant (IPA) queries on datacenters. Illustrated is the scaling of

computational resources in a modern datacenter required to sustain an

equivalent throughput of IPA queries compared to Web search.

...

MAY/JUNE 2016 43
Authorized licensed use limited to: University of Michigan Library. Downloaded on April 28,2020 at 23:37:35 UTC from IEEE Xplore. Restrictions apply.

IPA’s core functionalities, such as speech rec-
ognition, image matching, NLP, and a ques-
tion-and-answer system. Sirius takes as input
user-dictated speech and images captured by
a camera. A voice command primarily exer-
cises speech recognition on the server side to
execute a command on the mobile device. A
voice query additionally leverages a sophisti-
cated NLP question-and-answer system to
produce a natural language response to the
user. A voice and image question—such as,
“When does this restaurant close?” coupled
with an image of the restaurant—also lever-
ages image matching with an image database
and combines the matching output with the
voice query to select the best answer for the
user.

Sirius also provides the Sirius Suite, a
benchmark suite composed of the seven
computational bottlenecks on a query’s
pathway that represent 92 percent of that
query’s execution time. The Sirius Suite also
includes implementations of these bottle-
necks for a spectrum of computational sub-
strates, including CPU, GPU, FPGAs, and
many-core (Phi), all of which are included
in the open source release.3 Sirius was the
top-trending open source project on
GitHub for the first few weeks after its
release. In fact, Sirius and the Sirius Suite
have been downloaded tens of thousands of
times since their release and are already
being used in research papers as well as pro-
duction projects.

In designing Sirius, we performed inves-
tigative research by going to several large
companies and talking with key engineers
on relevant teams. We asked for insights as
to the algorithms and approaches actually
used in production, and, using this infor-
mation, we integrated three services built
using well-established open source projects
representative of those found in commercial
systems. These included Carnegie Mellon
University’s Sphinx,4 which represented
speech recognition based on the widely
used Gaussian mixture model (GMM);
Kaldi5 and RWTH Aachen University’s
Speech Recognition System (RASR),6

which represented the industry’s recent
trend toward speech recognition based on
the deep neural network (DNN); Open-
Ephyra, which represented the-state-of-the-

art question-and-answer system based on
IBM’s Watson7; and SURF8 implemented
using OpenCV,9 which represented the
state-of-the-art image-matching algorithms
widely used in various production applica-
tions. We used these open source projects to
steer the construction of both Sirius and the
Sirius Suite.

Sirius: An End-to-End IPA
In this section, we describe the design objec-
tives for Sirius, then present an overview of
Sirius and a taxonomy of the query types it
supports. Finally, we detail the underlying
algorithms and techniques used by Sirius.

Design Objectives
We had three key objectives when designing
Sirius. The first objective was completeness:
Sirius should provide a complete IPA service
that takes the input of human voice and
images and provides a response to the user’s
question with natural language. The second
objective was representativeness: the computa-
tional techniques used by Sirius to provide
this response should be representative of
state-of-the-art approaches used in commer-
cial domains. The third objective was deploy-
ability: Sirius should be deployable and fully
functional on real systems.

Overview: Life of an IPA Query
Figure 2 presents a high-level diagram of the
end-to-end Sirius query pipeline. The life of a
query begins with a user’s voice and/or image
input through a mobile device. The audio is
processed by an automatic speech recognition
(ASR) front end that translates the user’s speech
question into text. The text then goes through
a query classifier that decides whether the
speech is an action or a question. For an action,
the command is sent back to the mobile device
for execution. Otherwise, the Sirius back end
receives the question in plain text. The ques-
tion-answering service extracts information
from the input, searches its database, and choo-
ses the best answer to return to the user. If an
image accompanies the speech input, Sirius
uses computer-vision techniques to match the
input image to its image database and return
relevant information about the matched image
using the image-matching service. For example,

..

TOP PICKS

..

44 IEEE MICRO

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 28,2020 at 23:37:35 UTC from IEEE Xplore. Restrictions apply.

a user can ask, “What time does this restaurant
close?” while capturing an image of the restau-
rant via smart glasses.3 Sirius can then return an
answer to the query based not only on the user’s
speech but also on information from the image.
Table A in “Sirius Web Extra” summarizes
the queries supported by Sirius (see http://
extras.computer.org/extra/mmi2016030042s1.
pdf).

Design of Sirius: IPA Services and Algorithmic
Components
We leverage open infrastructures that use the
same algorithms as commercial applications.
Speech recognition in Google Voice has used
speaker-independent GMMs and hidden
Markov models (HMMs) and is adopting
DNNs. The OpenEphyra framework used
for question answering is an open source
release from Carnegie Mellon University’s
prior research collaboration with IBM on the
Watson system.7 OpenEphyra’s NLP techni-
ques, including conditional random field
(CRF), have been recognized as state-of-the-
art and are used at Google and in other
industry question-answering systems.10 Our
image-matching pipeline design is based on
the widely used SURF algorithm. We imple-
ment SURF using the open source computer
vision (OpenCV9) library, which is employed
in commercial products from companies
including Google, IBM, and Microsoft.

Automatic Speech Recognition Pipeline
The ASR inputs are feature vectors represent-
ing the speech segment. The ASR compo-

nent relies on a combination of an HMM
and either a GMM or a DNN. Sirius’s
GMM-based ASR uses Sphinx,4 whereas the
DNN-based ASR includes Kaldi5 and
RASR.6

As Figure 3 shows, the HMM builds a
tree of states for the current speech frame
using input feature vectors. The GMM or
DNN scores the probability of the state tran-
sitions in the tree, and the Viterbi algo-
rithm11 then searches for the most likely path
based on these scores. The path with the
highest probability represents the final trans-
lated text output. The GMM scores HMM
state transitions by mapping an input feature
vector into a multidimensional coordinate
system and iteratively scores the features
against the trained acoustic model.

Image-Matching Pipeline
The image-matching pipeline receives an
input image, attempts to match it against
images in a preprocessed image database, and
returns information about the matched
images. Image keypoints are extracted from
the input image using the SURF algorithm.8

In feature extraction, the image is down-
sampled and convolved multiple times to
find interesting keypoints at different scales
(see Figure 4). The keypoints are passed to
the feature descriptor component, where
they are assigned an orientation vector, and
similarly oriented keypoints are grouped into
feature descriptors. The descriptors from the
input image are matched to preclustered
descriptors representing the database images

Answer

Question answering

Search
database

Action
M

ob
ile

S
er

ve
r

Display
answer

Image
database

Image matching

Image

Im
ag

e d
ata q

uestionVoice Question
or

action

Query
classifier

Automatic
speech recognition

Users

Execute
action

Figure 2. End-to-end diagram of the Sirius pipeline. Sirius is built of three core components that communicate with one

another to service IPA queries.

...

MAY/JUNE 2016 45
Authorized licensed use limited to: University of Michigan Library. Downloaded on April 28,2020 at 23:37:35 UTC from IEEE Xplore. Restrictions apply.

using an approximate nearest-neighbor
search.

Question-Answering Pipeline
The text output from the ASR is passed to
OpenEphyra,7 which uses word stemming,
regular expression matching, and part-of-
speech tagging. Figure 5 shows a diagram of
the OpenEphyra engine incorporating these
components, generating Web search queries,
and filtering the returned results. The Porter
Stemming12 algorithm (stemmer) exposes a

word’s root by matching and truncating com-
mon word endings. OpenEphyra also uses a
suite of regular-expression patterns to match
common query words. The CRF classifier2

takes a sentence, the position of each word in
the sentence, and the label of the current and
previous word as input to make predictions
on the part of speech for each word of an
input query. Filters using the same techniques
extract information from the returned docu-
ments; the document with the highest overall
score after score aggregation is returned.

H
M

M

Speech decoder

Feature
extraction

Feature vectors

Speech

0.3

0.9

0.2

...

V
iterb

i search

Input
layer

Hidden
layers

Output
layer

DNN scoring
or

GMM scoring

Trained data
Word

dictionary
Language

model
Acoustic

model

Scored
HMM states

“Who was elected
44th president?

Figure 3. Automatic speech recognition pipeline. The decoding stage receives speech features and uses either a Gaussian

mixture model or a deep neural network in combination with a hidden Markov model to transcribe the speech to text.

Calculate Hessian
 matrix

SURF feature
extractor

Build scale-space

Find keypoints

Haar wavelet

SURF feature
descriptor

Orientation
assignment

Keypoint
descriptor

Descriptor
database

Image descriptors

Image Keypoints

Figure 4. Image-matching pipeline. Keypoints are first extracted from the image and are used to build descriptors (grouping of

keypoints). These descriptors are used to find similar images in the database.

..

TOP PICKS

..

46 IEEE MICRO

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 28,2020 at 23:37:35 UTC from IEEE Xplore. Restrictions apply.

Real System Analysis for Sirius
In this section, we present a real-system anal-
ysis of Sirius. The experiments throughout
this section are performed using an Intel
Haswell server.

Scalability Gap
To gain insights on the required resource scal-
ing for IPA queries in modern datacenters,
we juxtapose the computational demand of
an average Sirius query with that of an aver-
age Web search query. We compare the aver-
age query latency for both applications on a
single core at a very low load.

Figure 6a presents the average latency of
both Web search using open source Apache
Nutch (http://nutch.apache.org) and Sirius
queries. The average Nutch-based Web
search query latency is 91 ms on the Haswell-
based server. Sirius’s query latency is signifi-
cantly longer, averaging around 15 s across
42 queries spanning our three query classes
(voice command, VC; voice query, VQ; and
voice image query, VIQ). Based on this sig-
nificant difference in the computational

demand, we perform a back-of-the-envelope
calculation of how the computational resour-
ces (machines) in current datacenters must
scale to match the throughput in queries for
IPAs and Web search.

Figure 6b presents the number of ma-
chines needed to support IPA queries as the
number of queries increases. The x-axis shows
the ratio between IPA queries and traditional
Web search queries. The y-axis shows the ratio
of computational resources needed to support
IPA queries relative to Web search queries.
Current datacenter infrastructures will need to
scale their computational resources to 165
times their current size when the number of
IPA queries scales to match the number of
Web search queries. We refer to this through-
put difference as the scalability gap.

Cycle Breakdown of Sirius Services
To identify computational bottlenecks, we
perform top-down profiling of hot algorith-
mic components for each service. Figure 7
presents the average cycle breakdown results.
We identify the architectural bottlenecks for

^[0-9,th]$ 44th

VERB NUM N

elected 44th president

Stemmer

Question answering

Web search

Inp
ut filter

D
ocum

ent filters

Regex

CRF

elect

Scores

D
ocum

ent selector

Documents
“Who was elected

44th president?”

“Barack Obama”

“... elected 44th
president” “-ed”

Figure 5. OpenEphyra question-answering pipeline. The QA system uses a combination of natural language processing

techniques to generate search queries for the document database and score the returned queries to pick out the best answer.

...

MAY/JUNE 2016 47
Authorized licensed use limited to: University of Michigan Library. Downloaded on April 28,2020 at 23:37:35 UTC from IEEE Xplore. Restrictions apply.

these hot components to investigate the per-
formance improvement potential for a gen-
eral-purpose processor. From our analysis,
even with all stall cycles removed (that is, per-
fect branch prediction, infinite cache, and so
on), the maximum speedup is bound by
about three times. Considering the orders of
magnitude difference indicated by the scal-
ability gap, further acceleration is needed to
bridge the gap.

Accelerating Sirius
In this section, we describe the platforms and
methodology used to accelerate the key com-
ponents of Sirius. We also present and discuss
the results of accelerating each of these com-
ponents across four different accelerator
platforms.

Accelerator Platforms
We used a total of four platforms, summar-
ized in Table B online, to accelerate Sirius.
Our baseline platform was an Intel Xeon
Haswell CPU running single-threaded
kernels.

Each accelerator platform has advantages
and disadvantages. Multicore CPU offers
high clock frequency and is not limited by
branch divergence, but it has the least
amount of threads available. The GPU is
massively parallel, but it is also power hungry,
requires a custom ISA, has large data transfer
overheads, and offers limited branch diver-
gence handling. Intel Phi has a many-core,
standard programming model (same ISA);
offers optional porting and compiler help;
handles branch divergence; and has high
bandwidth. On the other hand, it has data
transfer overheads and relies on the compiler.
Finally, FPGAs can be tailored to implement
efficient computation and data layout for the
workload, but they also run at a much lower
clock frequency, are expensive, and are hard
to develop for and maintain with software
updates.

16

14

12

10

La
te

nc
y

(s
)

N
o.

 o
f m

ac
hi

ne
s

8

6

0.091

0.0 0.2 0.4

QIPA/QWS

Scalability gap

0.6 0.8 0.10

4

2

0

103

102

101

100

IPA
query

Web
search(a) (b)

WS

VC

VQ

VIQ

Time (s)
0 5 10 15 20 25 30

0.091
ASR
IMM
QA

Figure 6. Scalability gap and latency. (a) Average latency of Web search using Apache Nutch and Sirius queries. (b) The

number of machines needed to support IPA queries as the number of queries increases. (c) Latency across query types.

HMM

DNN
HMM

GMM
78% 22%15%

85%

(a)

Stemmer
Other

3%

Search

CRF

12%

17%
22%

46%

FE ANN
3%

FD

56%

41%

(b)

(d)(c)
Regex

Figure 7. Cycle breakdown per service. (a) ASR (Sphinx); (b) ASR (RASR); (c)

QA (OpenEphyra); (d) IMM (SURF). Across the services, several hot

components emerge as good candidates for acceleration.

..

TOP PICKS

..

48 IEEE MICRO

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 28,2020 at 23:37:35 UTC from IEEE Xplore. Restrictions apply.

Sirius Suite: A Collection of IPA Computational
Bottlenecks
We extracted Sirius’s key computational bot-
tlenecks to construct a suite of benchmarks
called the Sirius Suite. The Sirius Suite and
its implementations across the described
accelerator platforms are available alongside
the end-to-end Sirius application.3 We
ported existing open source C/Cþþ imple-
mentations available for each algorithmic
component to our target platforms. We
additionally implemented stand-alone
C/Cþþ benchmarks based on Sirius’s
source code where none were currently
available. For each Sirius Suite benchmark,
we built an input set representative of IPA
queries. The baseline implementations are
summarized in column 3 of Table 1. The
table also shows the granularity at which
each thread performs the computation on
the accelerators.

Porting Methodology
The common porting methodology used
across all platforms is to exploit the large
amount of data-level parallelism available
throughout the processing of a single IPA
query.

Multicore CPU
We used the Pthread library to accelerate the
kernels on the multicore platform by divid-

ing the size of the data. Each thread is respon-
sible for a range of data over a fixed number
of iterations. This approach lets each thread
run concurrently and independently, syn-
chronizing only at the end of the execution.

GPU
We used Nvidia’s CUDA library to port the
Sirius components to the Nvidia GPU. To
implement each CUDA kernel, we varied
and configured the GPU block and grid sizes
to achieve high resource utilization, matching
the input data to the best thread layout. We
ported additional string manipulation func-
tions not currently supported in CUDA for
the stemmer kernel.

Intel Phi
We ported our Pthread versions to the Intel
Phi platform, leveraging the target compiler’s
ability to parallelize the loops on the target
platform. To investigate this platform’s poten-
tial to facilitate ease of programming, we used
the standard programming model and custom
compiler to extract performance from the
platform. As such, the results represent what
can be accomplished with minimal pro-
grammer effort.

FPGA
We used previously published details of
FPGA implementations for several of our
Sirius benchmarks in this work. We designed

Table 1. The Sirius Suite and granularity of parallelism.

Service Benchmark Baseline Input set Granularity

Automatic speech

recognition (ASR)

Gaussian mixture model Sphinx4 Hidden Markov model

(HMM) states

For each HMM state

Deep neural network RASR6 HMM states For each matrix multiplication

Question

answering (QA)

Porter Stemming (stemmer) Porter12 4M word list For each individual word

Regular expression (regex) Super Light Regular

Expression Library

(SLRE;

http://cesanta.com)

100 expressions/

400 sentences

For each regex-sentence pair

Conditional random

fields (CRFs)

CRFSuite13 CoNLL-2000 shared task For each sentence

Image matching

(IMM)

Feature extraction (FE) SURF8 JPEG image For each image tile

Feature description (FD) SURF8 Vector of keypoints For each keypoint

...

MAY/JUNE 2016 49
Authorized licensed use limited to: University of Michigan Library. Downloaded on April 28,2020 at 23:37:35 UTC from IEEE Xplore. Restrictions apply.

our own FPGA implementations for GMM
and stemmer and evaluated them on a Xilinx
FPGA. Our full paper offers more details on
the FPGA designs.14

Accelerator Results
Figure 8 presents the performance speedup
achieved by the Sirius kernels running on each
accelerator platform. For the numbers from
prior literature, we scaled the FPGA speedup
number to match our FPGA platform based
on the fabric usage and area reported in prior
work. We used numbers from the literature
for kernels (regex and CRF) that were already
ported to the GPU and yielded better speed-
ups than our implementations.

ASR
The GMM implementation had the best per-
formance on the GPU (70 times) after opti-
mizations. The FPGA implementation using
a single GMM core achieved a speedup of 56
times; when fully utilizing the FPGA fabric,
we achieved a 169 times speedup using three
GMM cores. RWTH’s DNN includes both
multithreaded and GPU versions out of the
box. RWTH’s DNN parallelizes the entire
framework (both HMM search and DNN
scoring) and achieves good speedup in both
cases. In the cases where we used a custom
kernel or cited literature, we assumed a 3.7
times speedup for the HMM15 as a reason-
able lower bound.

Question Answering
The NLP algorithms as a whole have similar
performance across platforms because of the
nature of the workload: high input variability
with many test statements causes high branch
divergence. The FPGA stemmer implemen-
tation achieved 6 times speedup over the
baseline with a single core using only 17 per-
cent of the FPGA. Scaling the number of
cores to fully utilize the FPGA’s resources
yielded a 30 times speedup over the baseline.

Image Matching
The image-processing kernels achieved the
best speedup on the GPU that uses heavily
optimized OpenCV9 SURF implementations,
yielding speedups of 10.5 and 120.5 times for
feature extraction and feature description,
respectively. The tiled multicore version yields
good speedup, but the performance does not
scale as well on the Phi because the number of
tiles is fixed, which means there is little
advantage to having more threads available.
The GPU version has better performance
because it uses a data layout explicitly opti-
mized for a larger number of threads.

Implications for Future Server Design
We first investigated the end-to-end latency
reduction and power efficiency achieved across
server configurations for Sirius’s services,
including ASR, question answering, and
image matching.

Latency Improvement
Figure 9 presents the end-to-end query
latency across Sirius’s services on a single leaf
node configured with each accelerator. For
question answering, we focused on the NLP
components comprising 88 percent of the
question-answering cycles, because search has
already been well studied.

Our baseline in this figure, CMP, is the
latency of the original algorithm implementa-
tions of Sirius running on a single core of an
Intel Haswell server, described in Table B
online. CMP (subquery) is our Pthreaded
implementation of each service exploiting par-
allelism within a single query. This is executed
on four cores (eight threads) of the Intel Has-
well server. CMP (subquery) in general achieves
a 25 percent latency reduction over the

FPGA

Phi

GPU

CMP

P
la

tfo
rm

GMM DNN Stemmer
Workload speedup heat map

CRF FE FD

160

140

120

100

80

60

40

20

Regex

Figure 8. Heat map of acceleration results. The heat map presents the

results of accelerating each of the seven kernels (x-axis) across the four

platforms (y-axis), with the darker color representing higher speedups.

..

TOP PICKS

..

50 IEEE MICRO

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 28,2020 at 23:37:35 UTC from IEEE Xplore. Restrictions apply.

baseline. Across all services, the GPU and
FPGA significantly reduce the query latency.

Datacenter Design
Next, we evaluate multiple design choices for
datacenters composed of accelerated servers to
improve performance (throughput) and
reduce the TCO. We also investigate each
platform’s energy efficiency and throughput
improvement, which can be found online in
the “Energy Efficiency” and “Throughput
Improvement” sections of the web extra.

TCO Analysis
Improving throughput lets us reduce the
amount of computing resources (servers)
needed to serve a given load. However, this
may not necessarily lead to a reduction in a
datacenter’s TCO. Although reducing the
number of machines leads to a reduction in
the datacenter construction cost and power/
cooling infrastructure cost, we may increase
the per-server capital or operational expendi-
ture cost either from the additional accelera-
tor purchase cost or energy cost.

We performed our TCO analysis using the
TCO model recently proposed by Google.16

Table D online gives the parameters used in

our TCO model. We based the server price
and power usage on the following server con-
figuration based on the OpenCompute Proj-
ect: 1 CPU Intel Xeon E3 1240 V3 3.4 GHz,
32 Gbytes of RAM, and two 4-Tbyte disks.

Figure 10 presents the datacenter TCO
with various accelerator options, normalized
by the TCO achieved by a datacenter that
uses only CMPs. FPGAs and GPUs provide
high TCO reduction. We further discuss the
TCO results, derive our datacenter designs,
and present query-level results online.

Overall Latency Reduction Results
Using the derived datacenter design and
query-level results, Figure 11 presents the
latency reduction of these two accelerated
datacenters and how homogeneous acceler-
ated datacenters can significantly reduce the
scalability gap, from the current 165 times
resource scaling, shown in Figure 6, down
to 16 and 10 times for GPU- and FPGA-
accelerated datacenters, respectively.

S ince the release of Sirius, hundreds of
companies around the world have down-

loaded the Sirius code base. Large companies

Latency (s) (* includes DNN and HMM combined)

0 1 2 3 4 5

*

0.09*

0.3

0 1 2 3 4 5

CMP

CMP (subquery)

GPU

Phi

FPGA

0.22

0.19

ASR_GMM
ASR_HMM

ASR_DNN
ASR_HMM

0

0.94

2 4 6 8 10 12 14

CMP

CMP (subquery)

GPU

Phi

FPGA

0 1 2 3

0.12

0.05

QA_Stemmer
QA_CRF
QA_Regex
QA_Other

IMM_FE
IMM_FD

Figure 9. Latency across platforms for each service. The speedups translate into latency

gains, with the x-axis presenting the end-to-end latency of a single query across the four

accelerator platforms.

...

MAY/JUNE 2016 51
Authorized licensed use limited to: University of Michigan Library. Downloaded on April 28,2020 at 23:37:35 UTC from IEEE Xplore. Restrictions apply.

such as Ford, Intel, GE, and Wells Fargo, as
well as numerous medium-sized and start-up
companies, have demonstrated interest in
integrating Sirius into their products. With
the release of Sirius, we have made open the
type of technology only expected from the
big cloud companies. Now any smaller outfit
can have a nicely packaged end-to-end solu-
tion and a set of tools to design its own IPA.
Thus, Sirius represents the democratization
of intelligent assistants. Now the technology
is in the hands of everyone. MICR O

..
References
1. C. Metz, “Voice Control Will Force an Over-

haul of the Whole Internet,” Wired, 24

Mar. 2015; www.wired.com/2015/03/voice-

control-will-force-overhaul-whole-internet.

2. J. Lafferty, A. McCallum, and F.C.N. Pereira,

Conditional Random Fields: Probabilistic

Models for Segmenting and Labeling

Sequence Data, ACM, 2001.

3. “Sirius: An Open End-to-End Voice and

Vision Personal Assistant,” 2015; http://

sirius.clarity-lab.org.

4. D. Huggins-Daines et al., “Pocketsphinx: A

Free, Real-Time Continuous Speech Recog-

nition System for Hand-Held Devices,”

Proc. IEEE Int’l Conf. Acoustics, Speech

and Signal Processing, 2006; doi:10.1109/

ICASSP.2006.1659988.

5. D. Povey et al., “The Kaldi Speech Recogni-

tion Toolkit,” Proc. IEEE Workshop Auto-

matic Speech Recognition and

Understanding, 2011; http://infoscience.

epfl.ch/record/192584.

6. D. Rybach et al., “RASR—The RWTH

Aachen University Open Source Speech

Recognition Toolkit,” Proc. IEEE Automatic

Speech Recognition and Understanding

Workshop, 2011.

7. D. Ferrucci et al., “Building Watson: An

Overview of the DeepQA Project,” AI Mag-

azine, vol. 31, no. 3, 2010, pp. 59–79.

8. H. Bay, T. Tuytelaars, and L. Van Gool,

“Surf: Speeded Up Robust Features,” Com-

puter Vision–ECCV 2006, Springer, 2006,

pp. 404–417.

9. G. Bradski and A. Kaehler, Learning

OpenCV: Computer Vision with the OpenCV

Library, O’Reilly Media, 2008.

10. J. Dean et al., “Large Scale Distributed

Deep Networks,” Proc. 25th Conf. Advan-

ces in Neural Information Processing Sys-

tems, 2012, pp. 1232–1240.

11. G. David Forney Jr., “The Viterbi Algo-

rithm,” Proc. IEEE, vol. 61, no. 3, 1973, pp.

268–278.

12. M.F. Porter, “An Algorithm for Suffix

Stripping,” Program: Electronic Library and

Information Systems, vol. 14, no. 3, 1980,

pp. 130–137.

13. N. Okazaki, “CRFSuite: A Fast Implementa-

tion of Conditional Random Fields (CRFs),”

blog, 2007; www.chokkan.org/software/

crfsuite.

ASR(DNN/HMM) QA IMMASR(GMM/HMM)

8x
6x
4x
2x
1x

–2x
–4x
–6x
–8x

–10x

TC
O

CMP (subquery)
GPU

Phi
FPGA

Figure 10. Total cost of ownership across platforms for each service. Bars

show the benefits of accelerator DCs normalized to the TCO achieved by a

DC that uses only CMPs.

W
eb

 s
ea

rc
h

IP
A

 q
ue

ry

IP
A

 q
ue

ry
 (

G
P

U
)

IP
A

 q
ue

ry
 (

FP
G

A
)

16
14
12
10
8
6
4

0.091
1.48 0.942

0

La
te

nc
y

(s
)

N
um

b
er

 o
f m

ac
hi

ne
s

103

102

101

100
0.0 0.2 0.4

Scalability gap

IPA query (w/o acceleration)
IPA query (GPU)
IPA query (FPGA)

0.6
QIPA/QWS

0.8 1.0

Figure 11. Bridging the scalability gap. The significant latency reductions

using GPUs and FPGAs in homogeneous DCs help bridge the scalability gap.

..

TOP PICKS

..

52 IEEE MICRO

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 28,2020 at 23:37:35 UTC from IEEE Xplore. Restrictions apply.

14. J. Hauswald et al., “Sirius: An Open End-to-

End Voice and Vision Personal Assistant

and its Implications for Future Warehouse

Scale Computers,” Proc. Int’l Conf. Archi-

tectural Support for Programming Lan-

guages and Operating Systems, 2015, pp.

223–238.

15. J. Chong, E. Gonina, and K. Keutzer,

“Efficient Automatic Speech Recognition

on the GPU,” GPU Computing Gems Emer-

ald Edition, Morgan Kaufmann, 2011.

16. L.A. Barroso, J. Clidaras, and U. Holzle, The

Datacenter as a Computer: An Introduction

to the Design of Warehouse-Scale

Machines, 2nd ed., 2013.

Johann Hauswald is a PhD candidate in
the Computer Science and Engineering
Department at the University of Michigan.
He received an MS in computer science and
engineering from the University of Michi-
gan. Contact him at jahausw@umich.edu.

Michael A. Laurenzano is a PhD candidate
in the Computer Science and Engineering
Department at the University of Michigan.
He received an MS in computer science and
engineering from the University of Califor-
nia, San Diego. Contact him at mlaurenz@
umich.edu.

Yunqi Zhang is a PhD candidate in the
Computer Science and Engineering Depart-
ment at the University of Michigan. He
received an MS in computer science and
engineering from the University of Califor-
nia, San Diego. Contact him at yunqi@
umich.edu.

Cheng Li is a PhD student in the Computer
Science and Engineering Department at the
University of Illinois, Urbana–Champaign.
She received an MS in computer science and
engineering from the University of Michi-
gan, where she completed the work for this
article. Contact her at elfchris@umich.edu.

Austin Rovinski is an undergraduate stu-
dent in electrical engineering at the Univer-
sity of Michigan. Contact him at rovinski@
umich.edu.

Arjun Khurana is a master’s student in the
Computer Science and Engineering Depart-

ment at the University of Michigan. He

received a BSE in electrical engineering

from the University of Michigan. Contact

him at khuranaa@umich.edu.

Ronald G. Dreslinski is an assistant profes-
sor in the Computer Science and Engineer-

ing Department at the University of Michi-

gan. He received a PhD in computer science

and engineering from the University of

Michigan. Contact him at rdreslin@umich.

edu.

Trevor Mudge is the Bredt Family Professor
of Computer Science and Engineering at

the University of Michigan, Ann Arbor. He

received a PhD in computer science from

the University of Illinois, Urbana–

Champaign. Contact him at tnm@umich.

edu.

Vinicius Petrucci is an assistant professor in
the Department of Computer Science at the

Federal University of Bahia, Brazil. He

received a PhD in computer science from

the Fluminense Federal University, Brazil.

Contact him at petrucci@dcc.ufba.br.

Lingjia Tang is an assistant professor in the
Computer Science and Engineering Depart-

ment at the University of Michigan. She

received a PhD in computer science from

the University of Virginia. Contact her at

lingjia@umich.edu.

Jason Mars is an assistant professor in the
Computer Science and Engineering Depart-

ment at the University of Michigan. He

received a PhD in computer science from

the University of Virginia. Contact him at

profmars@umich.edu.

...

MAY/JUNE 2016 53
Authorized licensed use limited to: University of Michigan Library. Downloaded on April 28,2020 at 23:37:35 UTC from IEEE Xplore. Restrictions apply.

	fig1
	fig2
	fig3
	fig4
	fig5
	fig6
	fig7
	table1
	fig8
	fig9
	ref1
	ref2
	ref3
	ref4
	ref5
	ref6
	ref7
	ref8
	ref9
	ref10
	ref11
	ref12
	ref13
	fig10
	fig11
	ref14
	ref15
	ref16

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

